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Transient solution of a fractional stochastic dynamical system under wide-band noise excitation is investigated. Generalized
Harmonic Balance technique is firstly used to approximate restoring force of the given system as an amplitude-dependent form. In
this way, stochastic averaging method then can be applied to transform the system into an Ito differential equation. Furthermore,
the fractional derivative in the integral-differential form can be equivalent to a combination of periodic functions after the averaging
procedure. As the following, Galerkin method therein is utilized to obtain the transient probability density functions by solving
associated Fokker-Planck-Kolmogorov (FPK) equation. As an example, the Rayleigh oscillator is studied to illustrate the efficiency
and accuracy of the proposed approaches. Numerical results show that exact stationary solution and transient solution derived

from Galerkin method are in good agreement with those from Monte Carlo Simulation.

1. Introduction

Engineering structures such as high buildings and huge
bridges often vibrate if they are subjected to random excita-
tion, such as earthquake or strong wind. The vibration behav-
ior of these engineering structures is usually characterized by
a dynamical system under noise excitation in mathematical
framework. Therefore, how to determine the solution or
response, that is, vibrating displacement and velocity, of
engineering structural system is an important issue in the
field of structural dynamics and mechanical engineering.

Generally, there are two different kinds of system
response that researchers often considered. One is stationary
response which can be obtained by setting the time tending
to infinity and therein only displays the future feature of
system response. The other is transient response which shows
the dynamical evolution of system solution with respect to
each time instant. Comparatively, transient response is more
important due to its comprehensive expression of system
evolution with the time than stationary response but also
more difficult to get owing to time involved.

It has been proved [1, 2] that only few one-order nonlinear
systems or higher-dimensional linear systems have achieved

the exact solutions by now; most generally structural systems,
for example, the fractional systems we considered in the
present paper, have to develop approximated techniques to
get numerical solution. In the past decades, Calculus of
Variations [3], perturbation method [4], Non-Gauss Closure
method [5], and Galerkin method [6] have ever been applied
to derive approximated transient solution for systems without
any fractional derivative terms and without wide-band noise
in them. As for those systems endowed with fractional
derivative terms, new methods have to be developed and
applied to explore dynamical behaviors of systems especially
transient response. The difficulty associated with fractional
derivative is mainly caused by its complicated integral-
derivative mathematical form with time delay in the inte-
gration; this mathematical formula means the first task to
deal with fractional derivative is to transform or replace it by
other special functions. Therefore, how to deal with fractional
derivative becomes a big challenge to those researchers who
focus on studying fractional dynamical systems. According to
my knowledge, only few works by now have been concerned
with discussion on the solution of fractional dynamical
system and most of them mainly pay attention to analyze



stationary response or resonance response under Gaussian

white noise.
For example, Chen et al. [7] analyzed stationary response

of a Duffing oscillator with hardening stiffness and fractional
derivative subjected to Gaussian white noise. Hu et al.
[8] investigated stationary response of a strongly nonlinear
oscillator with fractional derivative damping under bounded
noise excitation. Yang et al. [9] estimated stationary response
of a nonlinear system with Caputo-type fractional derivative
under Gaussian white noise. These three works are all
achieved on the basis of stochastic averaging method [10].
On the other hand, Liu et al. [11] used multiple scales to
investigate principal resonance response of SDOF system
with small fractional derivative damping under narrow-
band random parametric excitation. Xu et al. [12] utilized
Lindstedt-Poincare and multiple scales method to investigate
a stochastic viscoelastic system with fractional damping; they
obtained resonance response and moment response. Matteo
etal. [13] applied Wiener path integral to study nonstationary
response of nonlinear oscillators with fractional derivative
elements under Gaussian white-noise excitation. Li et al. [14]
have ever attempted to study the solution for one kind of
stochastic dynamical systems with fractional derivative by
using equivalent linearization method in 2014. To sum up, all
these works have ever given much insight into the cases of
stationary response and Gaussian white-noise excitation for
fractional dynamical systems. Nevertheless, as for transient
response and more practically wide-band noise, due to their
instantaneous feature with the time change and different
forms of power spectrums, analysis of them is very rare and
valuable.

Different from these works, the present paper aims to
extend Galerkin method often used in deterministic systems
to study transient response for those systems under wide-
band noise excitation in which damping or restoring force
is of fractional order. By selecting the eigenfunctions of FPK
equation with respect to the oscillator envelope as a set
of basic functions, this method may provide substantially
computational advantages in the implementation of the
approximate procedure based on eigenfunctions’ orthogonal
properties. Except that, we use an effective approximate
method to replace complicated fractional derivative as a
series of periodic functions.

This paper is organized as follows. Harmonic Balance
technique is applied to transform the original system into
an equivalent linear one in Section 2. After that, stochastic
averaging method will reduce the envelope process to satisfy
a diffusive differential equation in Section 3. In Section 4,
Galerkin method is used to get transient response of system
by way of solving associated Fokker-Planck equation. At the
end of this paper, numerical results associated with Rayleigh
oscillator derived from proposed approaches are drawn and
compared with results from Monte Carlo Simulation to show
the efficiency.

2. Equivalent System

Consider the lightly damped oscillators governed by a
second-order differential equation. The motion equation of
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such oscillators with fractional derivative under wide-band
noise excitation may be written in the form

% (1) + 20wy (t) + BD%x () + wix (t)
+ef (x(t),x (1) =W(t),

where x is generalized displacement and the superscript dot
represents differentiation with respect to time t. {, w,, and
B are all constants: they are critical damping rate, natural
angular frequency, and coefficient of fractional derivative,
respectively. It is assumed that € is a small real number.

There are three classical definitions on fractional deriva-
tive in the field of mathematics. The first one is in the sense
of Grunwald-Letnikov, defined as the limit of difference form
of integer-order calculus and often used in numerical calcu-
lation. The second is Riemann-Liouville definition, defined
as derivative of a generalized integral with a time delay in
it, often used in theoretic analysis in continuous systems.
The third one is Caputo definition, defined as a generalized
integral with the derivative of time delay in integration,
often used in theoretic analysis in continuous systems too.
Comparatively, Riemann-Liouville and Caputo definitions
are all generalization from the Grunwald-Letnikov one, and
they are nearly equivalent on some conditions. The essential
difference is that hypersingularity is required on initial
condition in the sense of Riemann-Liouville definition, but
only weak singularity, that is, integer-order derivative with
engineering and physical significance on initial condition, is
required in the sense of Caputo definition. Consider that, in
the present paper, we take the Caputo definition for D*x(t),
and only 0 < « < 1 is considered.

1 rjc(t—‘r)
rdl-w) Jo ¢

@

D*x (t) = dr, O0O<a<l, (2
where I'() is the Gamma function. f(x, X) is a function with
respect to generalized displacement and generalized velocity;
W (t) is wide-band stationary and ergodic random noise with
spectral density:

D 1
Slw)=— 2 2)2 2,2 2"
T (w* - wp)” + 40 wiw

3)

{, and wy are all constants. The samples of wide-band noise
can be produced by the following second-order linear filter
equation, in which G(t) is the Gaussian white noise with zero
mean and constant intensity D.

W (t) + 200 W (1) + wopW (8) = G (¢). (4)

In order to develop an analytical procedure to estimate the
probability density function (PDF) for the system response, it
is needed to introduce the generalized Van der Pol transfor-
mation from the system response (x, x) to envelope response
a(t). According to the assumption on parameters, the sample
motion of system (1) is quasiperiodic; hence, we can take

x(t) =a(t)cosg(t)
x(t) =-a(t)w(a)sing (t)

(5)
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in which @(t) = w(a)t + y(t), a(t) is the envelope process
and y(t) is the phase process; they are all stochastic processes
slowly varying with respect to time t; w(a) represents effective
angular frequency of system (1). It has been illustrated [15]
that function f(x, x) partly plays a role of classical damping
force and partly contributes to the restoring force. Therefore,
itis feasible to replace it by the combination of linear restoring
force and linear damping; that is,

f(x, %) = 2w,¢, (a) X + wf (a) x, (6)

where {,(a) and w’(a) can be computed by applying Har-
monic Balance Technique [16]; that is,

1
2w (a) wyma

G (a) = -
7)

2n
: J f (acos g, —aw (a) sin ) sinp do,
0

wﬁ (a) = € rﬂ f (acos¢, —aw (a)sing) cospdep.  (8)

Ta Jo

Obviously, the effective angular frequency is something with
natural frequency of system, w,, and fractional derivative.
Thus, the original nonlinear system (1) can be reconstructed
as a quasilinear system, which is

X+ 2wy (¢ + e, (a)) x + BDx (t) + (w(z) + swez (a)) x

=&()

€

with initial conditions x(0) = 0 and x(0) = 0. Since
the envelope process a(t) varies slowly with respect to time,
therefore a(t — 1) = a(t) for all small delay 7. At the same
time, first-order Taylor is expanding ¢(t — 1) at the point of
t; then the time-delay term in fractional derivative can be
approximated by

x(t-1)=—a(t-1)w(@)sing(t-1)=—-a(t)w(a)

- (sin ¢ cos (w (a) T) — cos ¢ sin (w (a) 7)) .

As a consequence, the integral in the expression of fractional
derivative D*x(t) can be rewritten as

Jt x(t - T)dr
o 1%
=a(t) w(a)cosp J-t Waﬁ (1)
0

—a(t)w(a)sing Lt wdt

The following asymptotic integrals are introduced herein
[17] in order to solve the above integral, which will be very

helpful to simplify the whole calculation for the expression of
fractional derivative.

J’ ! cos (wT) dr

o T¢

o— . T i t 1
—w l[m_a)sm;ﬁ(j;;+o((wtw)],
o (12)
J sm(::.)r)dT
0 T

_ 1
=@ [F(l —oc)cosE + cosa;t +o<—1)] ,
2 (wb) (wt)*

where o() denotes infinitesimal of the higher order. Substi-
tuting (12) into (11) and ignoring the higher-order terms, the
fractional derivative can be replaced by

Jt X (t ; T) dr
0 T
o T COSwt
= a (t) cos pw” (a) [F(l - &) cos 5 W] (13)

. . . o sinwt
—a(t) sin pw” (a) [F(l - ) sin—- + @)® ] .

Substituting (5) and (13) into (9), and after some mathemat-
ical procedure, the equation governing the evolution of a(t)
can be obtained

a
— <200, ({ +l,)sin'p - ST )

mx) (14)

+ Baw™" (a) sing (cos @ cos ? — sin ¢ cos 5

Basin ¢ (cos ¢ cos wt — sin ¢ sin wt)
rl-a)t*

w(a)

3. Procedure of Stochastic Averaging

Since the envelope a(t) varies slowly with respect to time,
according to the Stratonovich-Khasminskii limit theory
[18], the slow-varying process a(t) will converge to one-
dimensional diffusive Markov equation in the sense of
Gaussian white-noise excitation after deterministic averaging
and stochastic averaging, called stochastic averaging method.
Stochastic averaging method was initially proposed by
Stratonovich in solving the response of stochastic dynamical
systems; its basic idea is to approximate the system response
by a Fokker-Planck-Kolmogorov equation, which is derived
from a diffusive Markov equation with transient probability
density governed by a partial differential equation; more
relative investigations and mathematical foundation can be
found in [18, 19].

Suppose the system response is ergodic in the state space;
then, stochastic averaging method leads the envelope process



a(t) to the following first-order stochastic differential equa-

tion based on averaging operator (), = lim_,,(1/T) _[OT ()dt:

’ W (a) . S (w)

a = —aw, (C + SCE) - a/}Tsm? " 27;602‘;)!1)
(7S (w))"/2 -
To@ 1O

where #(t) is a zero-mean and delta correlated random
process and S(w) is power spectral function defined in (3).

Consequently, the Fokker-Planck-Kolmogorov (FPK)
equation associated with transient solution of fractional
dynamical system (1) can be casted as

0,p(a,t) = =0, [M(a) p(a,1)]
| (16)
+20 [N@ p(@n),

where the symbol p(a, t) is the probability density function
of envelope process a(t). Furthermore, we assume that the
system is initially at rest; this condition can be expressed
as p(a,0) = 8(a), where §(a) is Dirac delta function. Drift
function M(a) and diffusion function N(a) in FPK (16) are,
respectively, of the following form:

o—1
M (a) = —aw, ({ +&(,) - (JMSinE

> w
7S (w)
2aw? (a)
N (a) = ’;S((;‘;). (18)

4. Solution of the FPK Equation

Searching for solution of the FPK equation is always a hard
work to get the response of the stochastic dynamical systems,
and many efforts have been denoted to solving this problem.
In some special cases such as first-order nonlinear systems
with Gaussian excitations or second- and higher-order linear
systems with constant coefficients, exact solution of FPK
equation can be achieved. However, in most general cases,
we have to explore approximate solutions for governing FPK
equation of high-order and nonlinear systems. In this section,
we will discuss the stationary solution in a closed form
and transient solution in an approximate way for envelope
response a(t).

4.1. Stationary Solution. By reviewing the partial differential
equation (16), stationary solution will be obtained if time
tends to infinity; that means the stationary probability density
function of envelope process a(t), which we denote by p(a),
can be found if dp(a,t)/0t = 0 in (16). Based on Spanos et
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al. work in [15], the stationary PDF p,(a) satisfies an ordinary
differential equation, which is

d 1 d dp, d
T da [M (a) p] + 2 da [N(a) Tn +Psd—aN(a)] )

=0.

The exact solution of this differential equation may be
determined in a closed form [18, 19] as

o M (a)
ps(@) = N@ P [ZJ N (a)

da] , (20)

where ¢ is normalization constant. Correspondingly, the exact
stationary response of original system (1) associated with
generalized displacement and velocity might derive from
conversion back.

p (%) = py (a)|a:m ' @)

4.2. Transient Solution. In this section, the Galerkin method
will be developed to estimate the transient solution of the
fractional dynamical system (1) on the basis of PFK equation.
It has been mentioned that Galerkin method is an important
numerical analysis on the basis of variation of parameters.
One can characterize the solution of a differential equation
by a finite set of basis functions with some constraints on
the function space. In this way, original differential equation
can be converted to be a set of solvable high-dimensional
linear equations in a weak sense. Following Galerkin method,
the approximate transient solution denoted by p(a, t) can be
expressed by the following:

N
P@t) =py @)+ ) y, (A, @), (22)
n=0

where p; (a, t) is transient solution to the linear system when
parameter € = 0, which is governed by

(a1) = -
PLi®t)= 02 [1 - exp (—20w,t)]
(23)
-exp | - a
P| 202 [1-exp(—2¢w,yt)] |’
in which o? is the stationary variance of x(¢) for ¢ = 0;

the eigenvalues A, and eigenfunctions A, (a) can be obtained
from partial differential equation (16); they are given by

A, =2wyn, neZz’

2 2 (24)
a a a
An(a):pexp(—F>Ln<F>, neZ,

where L,() is the Laguerre polynomial of order n. It has
been proved [18] that the eigenfunction A,(a) fulfills the
orthogonality condition on the basis of the properties of
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Laguerre polynomials and satisfies the following two recur-
rence formulae:

© A4,(@) A () _

(A, A,) = L 5

o M€ ZT, (25)
Ag (a)

where §,,,, is the Kronecker delta symbol. Except that, it can
be proved that eigenfunction A, (a) satisfies the following
iterative formula and differential relationship:

2
2“ )Anw)

n+1)A,, (@)= (2n+1——2
o

- nAn_l (a) (26)
adl (@) =2(n+1)A,,, (a)
-(2n+1)A, (a).

In (22), y,(t) is a series of unknown deterministic func-
tions with respect to ¢, and N is an appropriate order, which
will be decided by the approximation accuracy between the
exact solution and approximated solution that we expected.

Substituting p(a, t) into (16) and at the same time replac-
ing the exact transient solution p(a,t) by the approximate
one, thatis, p(a, t), consequently, the residual error will occur.
We denote the residual error by Ar, which should be the
function with regard to a(t) and y, (¢); hence,

Ara,Y (t)] = 0,p (a,t) — 0,p (art), (27)

where Y(t) = [y,(®), y;(1),..., yN(t)]T is a vector func-
tion composed of N + 1 unknown functions. Obviously,
Ar[a,Y(t)] should be zero if p(a,t) is exactly equivalent to
pla,t) in the strong sense. However, p(a,t) is usually not
zero because p(a, t) is only assumed to be an approximation
of p(a,t), but not a definitely exact solution. Therefore,
according to Galerkin technique, the N+1 unknown function
¥,(t) in (27) can be estimated by imposing the condition that
the projection of the residual error Ar[a, Y(¢)] on an appro-
priate set of independent weighing functions is zero. Taking
orthogonality condition of A, (a) into account, multiplying
(27) at two sides byA j(a)/AO(a), and then integrating from
zero to infinity and utilizing the orthogonality relation (25),
we have

ro ) ey ©ldaz0, jez'. (@)
0o Ag(a)

This is a set of linear first-order ordinary differential equa-
tions containing N + 1 unknown functions y, (t); we can sim-
plify (28) by considering the orthogonality of eigenfunctions
A, (a). In this way, a reduced equation is derived, which can
be expressed as a vector form

Y#)=CY(@®)+F(@t), (29)

where C is a matrix of order (N+1)x(N+1) and F(t) isan N+1
dimensional vector; their elements can be obtained by solving
(28). At this point, how to find the transient solution for the
fractional system (1) turns out to be how to get unknown

function y,(¢) from solving this linear differential equation
(29). Specifically, we can define the following operator for
eigenfunction:

dmdn,
A (@) (30)

mnk

I _ JOO kAm (a)An (a)
n,k A N
nk=01,2,...

Then, it can be proved that the above integrals satisty a
recursive formula governed as follows by using the properties
of Laguerre polynomials:

I

m,n,k+2
R (31
=207 [@n+ 1) Ly — 0l — M+ 1) 1000

With the assistance of these recursive formulas, substituting
back y,(t) into (22), then the transient solution of envelope
response can be completely obtained.

5. Examples and Results

As an example, we consider a Rayleigh oscillator subjected to
wide-band noise excitation, in which

f(x,%) = qx + 6%, (32)

where ¢, and ¢, are all constants. Substituting this function
into system (1), then system (1) can be represented as

% (£) + 20wy (£) + BD%x (t) + wyx (t)

(33)
+ s(clx + czjc3) =W(t).
Based on formulas (7) and (8), it can be verified that
4¢, + 3c,0° (a) a®
{, (a) = #)
8wy (34)
w, (a) = 0.

If so, the exact stationary solution of the envelope a(t) is
determined according to (20), which is governed by

cw

V7S (w)

[ wp (Cwo +e¢ /2 + ﬁ/Zwé“_l) sin (noc/z))
cexp | -

ps(a) =

7S () (35)

3 4 4
B e A P
167S (w)



Relatively, the differential equation governing unknown
functions y,,(t) satisfies the following differential equations
according to (29):

j
+ Jo aAO (a)aapLda

N
+ Zyn (t) [(21’[ + 2) Io)j,n+1:| ]

o (36)

3c,e; [ JOO ,Aj(a)
- 3 a da
. pr

8 A (a)

3¢, ew?
Ld]—‘“
4

0 3Aj(a)
+J0 a A, (a)aap

N
Yy [A=m L+ A+ 0] =0,
n=0

j=0,1,...,N.

Figure 1 shows the exact solutions of the system envelope
according to the mathematical formula (35) and Monte Carlo
Simulation. The solid lines represent the exact solution, and
the hollow circles represent the simulated solution. In this
example, we take parametersas{ = 0.04,w, = 2,¢ = 0.45, 5 =
0.045,¢, = -0.1,¢; = 0.001,D = 0.8l,w, = 2.1,{, =
0.05,and ¢ = 0.2. Observing that two results are in good
agreement with each other, therefore, this figure illustrates
the efficiency of stochastic averaging method and Galerkin
method.

Joint probability density function with respect to general-
ized displacement and velocity is also plotted in Figure 2. It is
seen that the joint probability density function is an upside-
down mountain shape with one peak, which shows the entire
evolution principle of system solution. Except that, Figures 3
and 4 show the stationary displacement and velocity response
of original system by calculating the marginal probability
density; the good agreements are also achieved between exact
solutions and MCS.

Figure 5 shows the solutions to the differential equation
(36) for N = 7, where eight unknown functions y,(¢),
n=0,1,2,...,7, are displayed with respect to time ¢, where
parametric values are the same as those in Figure 1. It can be
seen that y, (t) and y,(t) decrease from zero monotonously as
time increases but others tend to be constant very fast, which
means these two functions are more important than the oth-
ers, because they nearly dominate the whole approximated
series in (29) as large value of N is considered.

Figure 6 displays the transient solution p(a, t) at different
time instants by way of proposed Galerkin method and
Monte Carlo Simulation, where we take N = 15. Observe
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ps(a)

—— Exact solution
o MCS

FIGURE 1: Stationary solution of the envelope response obtained
from exact expression and Monte Carlo Simulation.

-5 g x

FIGURE 2: Joint stationary PDF response of generalized displacement
and velocity.

that the maximum of the transient solutions goes down as
the increase of time, and the peak points move toward the
right with the increase of envelope values. Particularly, the
transient solution tends to be stationary very fast once time
reaches 150 s and more. The comparisons between analytical
solution and those derived from Monte Carlo Simulation
have demonstrated that the methods we used in this paper
are in good agreement at each time instant. In fact, Monte
Carlo Simulation is one of the powerful tools to find statistical
properties of stochastic dynamical systems on the basis of
probability theory. Generally, the first step is to generate
amounts of samples according to the distribution of noise
excitation and then solve the differential equation by Rugge-
Kutta method from one initial point. Repeat the procedure
above to get a great large amount of samples; at last, we can
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0.2
0.15 }
E o1}
Y
0.05 |
0 1 1 1 1 1
-6 -4 -2 0 2 4 6
x
—— Exact stationary response x
o MCS

FIGURE 3: Stationary generalized displacement solution of the
fractional system.

— Exact stationary response X'
o MCS

FIGURE 4: Stationary generalized velocity solution of the fractional
system.

get the probability density of envelope response at any time
based on the law of large numbers.

At the given time instant t = 150, Figure 7 illustrates that
the solutions we get from the proposed Galerkin method also
coincide with both the exact solution and MCS; this agree-
ment exactly proves the efficiency of our proposed methods.
Moreover, the effect caused by the terms of truncated series is
plotted and shown in Figure 8. Note that 5 and higher terms
in truncated series are enough to get an expected result of
approximate transient PDF solutions.

6. Conclusion

The transient solution of a dynamical system with fractional
derivative term is discussed from the point of view of
analytical and numerical points. We firstly apply generalized
Harmonic Balance technique to transform the system to be a

-0.02 t+ i
()

—-0.04 -

Yut)

-0.06 4

«—— )
-0.08 ]

t

FIGURE 5: The time evolution of unknown functions y,(t) as time
increase.

0.9

0.8 |
0.7
0.6+ ——t=1

0.5+

pla.t)

04 p t=5
0.3 k il
0.2} 8

0.1 fu

0

FIGURE 6: The transient solution of the system at different time
instant along with the envelope.

quasilinear one. Based on the framework of stochastic aver-
aging method, the fractional derivative damping is averaged
to be a function associated with envelope. In this way, the
system envelope can be described by a Markov diftusive
equation with an FPK equation followed. Galerkin method is
used to get time-evolutionary probability density function for
envelope response. Numerical results concerning Rayleigh
oscillator including stationary solution and transient solution
have shown the efliciency of the proposed approaches and
agreement with Monte Carlo Simulation.
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