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This paper analyzes the general properties of IMP-based controller and presents an internal-model-principle-based (IMP-based)
specific harmonics repetitive control (SHRC) scheme. The proposed SHRC is effective for specific 𝑛𝑘 ± 𝑚 order harmonics, with
𝑛 > 𝑚 ≥ 0 and 𝑘 = 0, 1, 2, . . .. Using the properties of exponential function, SHRC can also be rewritten into the format of multiple
resonant controllers in parallel, where the control gain of SHRC is 𝑛/2 multiple of that of conventional RC (CRC). Therefore,
including SHRC in a stable closed-loop feedback control system, asymptotic disturbance eliminating, or reference tracking for any
periodic signal only including these specific harmonic components at 𝑛/2 times faster error convergence rate compared with CRC
can be achieved. Application examples of SHRC controlled three-phase/single-phase grid-connected PWM inverters demonstrate
the effectiveness and advantages of the proposed SHRC scheme.

1. Introduction

Repetitive control (RC), as an internal model principle (IMP)
[1, 2] based controller, can track or eliminate periodic signals
in an effective way if it is included in a stable closed-loop
system. Conventional RC (CRC) [3], presented since the early
1980 and being the most widely used RC format nowadays,
can achieve zero-error tracking or disturbance rejection for
any periodic signal whose fundamental period time is known
at first. Through fast-Fourier transformation (FFT) analysis,
any known periodic signal can be decomposed into dc,
fundamental component, and all harmonic components.That
is, CRC is effective to track or eliminate any periodic signal
including any order harmonic. Due to the time delay line
being included in the RC structure, CRC is slower than
any instantaneous feedback controller although it has better
tracking accuracy. RC has been studied in several aspects
[4–12], including its properties and structures. Moreover, its
applications can be found in many fields, such as disc drives
[13], robots [14], satellites [15], and PWMconverters [8, 9, 16–
22].

However, in many applications [7, 8, 10], dominant
harmonics only concentrate at some specific order harmonic

frequencies. Especially, in three-phase/single-phase PWM
inverter applications, 6𝑘±1 or 4𝑘±1 (𝑘 = 1, 2, . . .) order har-
monics dominate their output voltages/currents distortions.
In these cases, CRCmight be too slow to track/eliminate these
specific harmonics with satisfactory error convergence rate.

In order to solve this problem, this paper proposes
an IMP-based specific harmonics RC (SHRC) for three-
phase/single-phase grid-connected PWM inverters. To better
understand the proposed SHRC, the general properties of
IMP-based controller and the performance of IMP-based
CRC are analyzed at first. Then, the performance of IMP-
based SHRC and its error convergence rate analysis are also
given. Finally, two application cases of SHRC controlled
three-phase/single-phase grid-connected PWM inverters are
provided to demonstrate the effectiveness and advantages of
the proposed SHRC scheme.

2. IMP-Based Controller

2.1. Internal Model Principle (IMP). Some specific distur-
bance and reference signals can be described as the output
of a linear dynamic system with zero-input and certain
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Figure 1: Closed-loop feedback control system.

initial conditions. Thus, a general disturbance signal can be
described as the format of a differential equation as follows:

𝑑
𝑞
𝑑 (𝑡)

𝑑𝑡
𝑞

+

𝑞−1

∑

𝑖=0

𝛾𝑖

𝑑
𝑖
𝑑 (𝑡)

𝑑𝑡
𝑖

= 0. (1)

Using Laplace transform, (1) can be derived into

𝑑 (𝑠) =

𝑁𝑑 (𝑠) 𝑥𝑑 (0)

Γ𝑑 (𝑠)

, (2)

whereΓ𝑑(𝑠) is the disturbance generating polynomial (D-GP),
which can be defined into

Γ𝑑 (𝑠) ≜ 𝑠
𝑞
+

𝑞−1

∑

𝑖=0

𝛾𝑖𝑠
𝑖
. (3)

Notice that this D-GP is only related with the denomi-
nator of (2). Similarly, reference signal can be described in
the same way, as long as replacing the symbol “𝑑” with “𝑟.”
Reference generating polynomial (R-GP) Γ𝑟(𝑠) can be defined
as follows:

Γ𝑟 (𝑠) ≜ 𝑠
𝑞
+

𝑞−1

∑

𝑖=0

𝜆𝑖𝑠
𝑖
. (4)

Then, internal model principle (IMP) [2, 23] can be
expressed as follows: If disturbance 𝑑(𝑡) or reference input
𝑦𝑟𝑒𝑓(𝑡) can be expressed as its D-GP or R-GP just like Γ𝑑(𝑠)

or Γ𝑟(𝑠), asymptotic error elimination or reference tracking
can be achieved for the control system using the following
controller:

𝐺𝑐 (𝑠) =

𝑃 (𝑠)

Γ𝑑 (𝑠) 𝐿 (𝑠)

, (5)

or

𝐺𝑐 (𝑠) =

𝑃 (𝑠)

Γ𝑟 (𝑠) 𝐿 (𝑠)

. (6)

Therefore, only D-GP or R-GP, that is, Γ𝑑(𝑠) or Γ𝑟(𝑠), is
needed when using IMP, while the amplitude information of
disturbance or reference input is not needed.

2.2. The General Properties of IMP-Based Controller. Figure 1
shows the diagram of a closed-loop feedback control system.
Let the model of plant be

𝐺𝑝 (𝑠) =

𝐵𝑜 (𝑠)

𝐴𝑜 (𝑠)

=

𝑏𝑛−1𝑠
𝑛−1

+ 𝑏𝑛−2𝑠
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑏0

𝑠
𝑛
+ 𝑎𝑛−1𝑠

𝑛−1
+ 𝑎𝑛−2𝑠

𝑛−2
+ ⋅ ⋅ ⋅ + 𝑎0

(7)

and assume that Γ𝑑(𝑠) or Γ𝑟(𝑠) is not the factor of 𝐵𝑜(𝑠).

Then, the output sensitivity function of closed-loop feed-
back system shown in Figure 1 is

𝑆𝑜 (𝑠) =

Γ𝑑 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠)

Γ𝑑 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)

(8)

or

𝑆𝑜 (𝑠) =

Γ𝑟 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠)

Γ𝑟 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)

(9)

and the output complementary sensitivity function is

𝑇𝑜 (𝑠) = 1 − 𝑆𝑜 (𝑠) =

𝑃 (𝑠) 𝐵𝑜 (𝑠)

Γ𝑑 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)

(10)

or

𝑇𝑜 (𝑠) = 1 − 𝑆𝑜 (𝑠) =

𝑃 (𝑠) 𝐵𝑜 (𝑠)

Γ𝑟 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)

. (11)

Assume the selected 𝐿(𝑠) and 𝑃(𝑠) can make the closed-
loop characteristic equation

𝐴cl (𝑠) = Γ𝑑 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)
(12)

or

𝐴cl (𝑠) = Γ𝑟 (𝑠) 𝐿 (𝑠) 𝐴𝑜 (𝑠) + 𝑃 (𝑠) 𝐵𝑜 (𝑠)
(13)

have the negative realistic roots. Thus, the output response of
disturbance 𝑑(𝑡) can be obtained as

𝑦 (𝑠) = 𝑆𝑜 (𝑠) 𝑑 (𝑠) =

𝐿 (𝑠) 𝐴𝑜 (𝑠)𝑁𝑑 (𝑠) 𝑥𝑑 (0)

𝐴cl (𝑠)
. (14)

Because 𝐴cl(𝑠) has stable roots, the inverse Laplace
transform of 𝑦(𝑠) can asymptotically converge to zero; that
is, 𝑦(𝑡 → ∞) = 0.

The system error response of disturbance 𝑑(𝑡) is

𝑒 (𝑠) = −𝑆𝑜 (𝑠) 𝑑 (𝑠) = −

𝐿 (𝑠) 𝐴𝑜 (𝑠)𝑁𝑑 (𝑠) 𝑥𝑑 (0)

𝐴cl (𝑠)
. (15)

Because 𝐴cl(𝑠) has stable roots, the inverse Laplace
transform of 𝑒(𝑠) can asymptotically converge to zero; that is,
𝑒(𝑡 → ∞) = 0.

The system error response of reference 𝑦ref (𝑡) is

𝑒 (𝑠) = 𝑆𝑜 (𝑠) 𝑦ref (𝑠) =

𝐿 (𝑠) 𝐴𝑜 (𝑠)𝑁𝑟 (𝑠) 𝑥𝑟 (0)

𝐴cl (𝑠)
. (16)

Because 𝐴cl(𝑠) has stable roots, the inverse Laplace
transform of 𝑒(𝑠) can asymptotically converge to zero; that is,
𝑒(𝑡 → ∞) = 0.

The system output response of reference 𝑦ref (𝑡) is

𝑦 (𝑠) = 𝑇𝑜 (𝑠) 𝑦ref (𝑠)

= 𝑦ref (𝑠) −
𝐿 (𝑠) 𝐴𝑜 (𝑠)𝑁𝑟 (𝑠) 𝑥𝑟 (0)

𝐴cl (𝑠)
.

(17)
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Figure 2: Specific harmonics repetitive control (SHRC).

Because 𝐴cl(𝑠) has stable roots, the inverse Laplace
transform of 𝑦(𝑠) can asymptotically track its reference input;
that is, 𝑦(𝑡) → 𝑦ref(𝑡).

Therefore, if D-GP or R-GP is included in the denomi-
nator of a controller, asymptotic disturbance eliminating or
reference tracking can be achieved for the control system.

Then, we will see why conventional RC (CRC) is an IMP-
based controller andwhy it can track/eliminate all harmonics.

2.3. IMP-Based Conventional Repetitive Controller (CRC).
According to the properties of exponential function [24],
CRC can be rewritten into

𝐺rc (𝑠) = 𝑘rc ⋅

𝑒
−𝑠𝑇
𝑜

1 − 𝑒
−𝑠𝑇
𝑜

= 𝑘rc ⋅

𝑒
−𝑠𝑇
𝑜
/2

2 sinh (𝑠𝑇𝑜/2)

= 𝑘rc ⋅

𝑒
−𝑠𝑇
𝑜
/2

𝑠𝑇𝑜 ⋅ ∏
∞

𝑘=1
[1 + 𝑠

2
/ (𝑘
2
𝜔
2
𝑜
)]

,

(18)

where 𝑘rc is the control gain and 𝑇𝑜 = 2𝜋/𝜔𝑜 = 1/𝑓𝑜 is the
fundamental period of signals with 𝑓𝑜 being the fundamental
frequency, 𝜔𝑜 being the fundamental angular frequency.

If the disturbance 𝑑(𝑡) or reference input 𝑦ref (𝑡) of closed-
loop feedback control system is a periodic signal, which
can be decomposed into the summation of all harmonic
components, that is, dc, fundamental component and any
order harmonic component using FFT, its D-GP or R-GP, that
is, Γ𝑑(𝑠) or Γ𝑟(𝑠), can be derived as follows:

𝑑 (𝑡) = 𝑑0 +

∞

∑

𝑘=1

𝑑𝑘 cos (𝑘𝜔𝑜𝑡 + 𝜑𝑘) 󳨐⇒

Γ𝑑 (𝑠) = 𝑠

∞

∏

𝑘=1

(𝑠
2
+ (𝑘𝜔𝑜)

2
)

(19)

or

𝑦ref (𝑡) = 𝑟0 +

∞

∑

𝑘=1

𝑟𝑘 cos (𝑘𝜔𝑜𝑡 + 𝜑
󸀠

𝑘
) 󳨐⇒

Γ𝑟 (𝑠) = 𝑠

∞

∏

𝑘=1

(𝑠
2
+ (𝑘𝜔𝑜)

2
) .

(20)

Then, CRC can be derived into

𝐺𝑐 (𝑠) = 𝐺rc (𝑠) =

𝑘rc𝑒
−𝑠𝑇
𝑜
/2
∏
∞

𝑘=1
(𝑘
2
𝜔
2

𝑜
)

𝑇𝑜 ⋅ Γ𝑑 (𝑠)

(21)

or

𝐺𝑐 (𝑠) = 𝐺rc (𝑠) =

𝑘rc𝑒
−𝑠𝑇
𝑜
/2
∏
∞

𝑘=1
(𝑘
2
𝜔
2

𝑜
)

𝑇𝑜 ⋅ Γ𝑟 (𝑠)

. (22)

From (21) or (22), it can be seen that D-GP Γ𝑑(𝑠) or R-GP
Γ𝑟(𝑠) is included in the denominator of CRC controller.Thus,
asymptotic disturbance eliminating or reference tracking for
any periodic signal can be achieved using IMP indicated in
Section 2.1, if CRC is used as the controller in a closed-
loop feedback control system. Therefore, CRC is an IMP-
based controller and is effective for any periodic signal that
is composed with all harmonic components.

3. SHRC

3.1. Specific Harmonics RC (SHRC). A specific harmonics RC
(SHRC) shown in Figure 2 for efficient removing/tracking
specific 𝑛𝑘 ± 𝑚 order harmonics is proposed as follows:

𝐺rc (𝑠) = 𝑘rc ⋅

cos (2𝜋𝑚/𝑛) 𝑒
𝑠𝑇
𝑜
/𝑛

− 1

𝑒
2𝑠𝑇
𝑜
/𝑛

− 2 cos (2𝜋𝑚/𝑛) 𝑒
𝑠𝑇
𝑜
/𝑛

+ 1

, (23)

where 𝑛 and 𝑚 are integers with 𝑛 > 𝑚 ≥ 0.
In three-phase/single-phase PWM inverter applications,

because 6𝑘 ± 1 or 4𝑘 ± 1 (𝑘 = 1, 2, . . .) order harmonics
dominate its output distortion, (23) can be used for these
specific harmonics with 𝑛 = 6 or 𝑛 = 4 and 𝑚 = 1.

Using the similar analysis with CRC in Section 2.3, it can
be achieved that SHRC is also an IMP-based controller in the
following subsection.

3.2. IMP-Based SHRC. According to the properties of expo-
nential function [24], (23) can be rewritten into
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𝐺rc (𝑠) =

𝑘rc
2

⋅

cos (2𝜋𝑚/𝑛) − 𝑒
−𝑠𝑇
𝑜
/𝑛

cosh (𝑠𝑇𝑜/𝑛) − cos (2𝜋𝑚/𝑛)

=

𝑘rc ⋅ [cos ((2𝜋/𝑛)𝑚) − 𝑒
−𝑠(𝑇
𝑜
/𝑛)

]

{4sin2 (𝑚𝜋/𝑛) (1 + 𝑠
2
/ (𝑚
2
𝜔
2
𝑜
)) ⋅ ∏

∞

𝑘=1
{[1 + 𝑠

2
/ ((𝑛𝑘 + 𝑚)

2
𝜔
2
𝑜
)] [1 + 𝑠

2
/ ((𝑛𝑘 − 𝑚)

2
𝜔
2
𝑜
)]}}

,

(24)

where 𝑚 ̸= 0. If 𝑚 = 0, (23) can be rewritten into

𝐺rc (𝑠) =

𝑘rc
𝑒
𝑠𝑇
𝑜
/𝑛

− 1

=

𝑘rc

(𝑠𝑇𝑜/𝑛) ⋅ 𝑒
𝑠𝑇
𝑜
/2𝑛

⋅ ∏
∞

𝑘=1
[1 + 𝑠

2
/ (𝑛𝑘𝜔0)

2
]

.

(25)

If the disturbance signal 𝑑(𝑡) of closed-loop feedback
control system is a periodic signal only including specific
𝑛𝑘 ± 𝑚 order harmonic components, its D-GP, that is, Γ𝑑(𝑠),
can be derived as follows:

𝑑 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑑0 +

∞

∑

𝑘=1

𝑑𝑛𝑘 cos (𝑛𝑘𝜔𝑜𝑡 + 𝜑𝑛𝑘) (𝑚 = 0)

∞

∑

𝑘=1

𝑑𝑛𝑘−𝑚 cos ((𝑛𝑘 − 𝑚)𝜔𝑜𝑡 + 𝜑𝑛𝑘−𝑚) +

∞

∑

𝑘=0

𝑑𝑛𝑘+𝑚 cos ((𝑛𝑘 + 𝑚)𝜔𝑜𝑡 + 𝜑𝑛𝑘+𝑚) (𝑚 ̸= 0) .

󳨐⇒

Γ𝑑 (𝑠) =

{
{
{
{

{
{
{
{

{

𝑠

∞

∏

𝑘=1

(𝑠
2
+ (𝑛𝑘𝜔𝑜)

2
) (𝑚 = 0)

(𝑠
2
+ (𝑚𝜔𝑜)

2
)

∞

∏

𝑘=1

{(𝑠
2
+ ((𝑛𝑘 − 𝑚)𝜔𝑜)

2
) ⋅ (𝑠
2
+ ((𝑛𝑘 + 𝑚)𝜔𝑜)

2
)} (𝑚 ̸= 0) .

(26)

Then, SHRC can be derived into

𝐺𝑐 (𝑠) = 𝐺rc (𝑠) =

{
{
{
{

{
{
{
{

{

𝑘rc ⋅

𝑛 ⋅ 𝑒
−𝑠𝑇
𝑜
/2/𝑛

∏
∞

𝑘=1
(𝑛𝑘𝜔𝑜)

2

𝑇𝑜 ⋅ Γ𝑑 (𝑠)

(𝑚 = 0)

𝑘rc [cos (2𝜋𝑚/𝑛) − 𝑒
−𝑠𝑇
𝑜
/𝑛
]𝑚
2
𝜔
2

𝑜
∏
∞

𝑘=1
[(𝑛𝑘 + 𝑚)

2
(𝑛𝑘 − 𝑚)

2
𝜔
4

𝑜
]

4sin2 (𝑚𝜋/𝑛) ⋅ Γ𝑑 (𝑠)

(𝑚 ̸= 0) .

(27)

Similarly, if the reference input 𝑦ref (𝑡) is a periodic signal
only including specific 𝑛𝑘 ± 𝑚 order harmonic components,
its R-GP, that is, Γ𝑟(𝑠), and corresponding SHRC can also be
derived.

So, it can be seen that D-GP Γ𝑑(𝑠) or R-GP Γ𝑟(𝑠) is
included in the denominator of SHRC controller. Thus,
asymptotic disturbance eliminating or reference tracking for
any periodic signal only including these specific 𝑛𝑘±𝑚 order
harmonic components can be achieved using IMP indicated
in Section 2.1, if SHRC is used as the controller in a closed-
loop feedback control system. Therefore, SHRC is also an
IMP-based controller and is effective for any periodic signal
only including these specific harmonics.

3.3. Error Convergence Rate of SHRC. According to the
properties of exponential function [24], SHRC can also be
rewritten into the format of multiple resonant controllers in
parallel as follows:

𝐺rc (𝑠) =

1

2

𝑘rc ⋅ [

𝑒
𝑗(2𝜋/𝑛)𝑚

𝑒
𝑠(𝑇
𝑜
/𝑛)

− 𝑒
𝑗(2𝜋/𝑛)𝑚

+

𝑒
−𝑗(2𝜋/𝑛)𝑚

𝑒
𝑠(𝑇
𝑜
/𝑛)

− 𝑒
−𝑗(2𝜋/𝑛)𝑚

] = 𝑘rc ⋅ {−

1

2

+

𝑛

2𝑇𝑜 (𝑠 − 𝑗𝑚𝜔𝑜)

+

𝑛

2𝑇𝑜 (𝑠 + 𝑗𝑚𝜔𝑜)

+

𝑛

2𝑇𝑜

+∞

∑

𝑘=1

2 (𝑠 − 𝑗𝑚𝜔𝑜)

(𝑠 − 𝑗𝑚𝜔𝑜)
2
+ 𝑛
2
𝑘
2
𝜔
2
𝑜

+

𝑛

2𝑇𝑜

+∞

∑

𝑘=1

2 (𝑠 + 𝑗𝑚𝜔𝑜)

(𝑠 + 𝑗𝑚𝜔𝑜)
2
+ 𝑛
2
𝑘
2
𝜔
2
𝑜

} .

(28)

From (28), it can be achieved that, for specific 𝑛𝑘±𝑚 order
harmonics, the control gain of SHRC is (𝑛/2)𝑘rc/𝑇𝑜. From
[25], the corresponding control gain of CRC is 𝑘rc/𝑇𝑜. So,
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Figure 3: Repetitive controlled three-phase grid-connected PWM inverter.

the control gain of SHRC is 𝑛/2 multiple of that of CRC. The
error convergence rate of SHRC is also 𝑛/2 times faster than
that of CRC. Particularly, for the three-phase PWM inverters
application, the error convergence rate of SHRC with 𝑛 = 6

and 𝑚 = 1 is three times (i.e., 𝑛/2 = 3) faster than that of
CRC. For the single-phase PWM inverters application, the
error convergence rate of SHRC with 𝑛 = 4 and 𝑚 = 1 is
two times (i.e., 𝑛/2 = 2) faster than that of CRC. Therefore,
SHRC can be used to enhance the error convergence rate
for tracking/removing specific harmonics and thus improve
the performance of three-phase/single-phase PWM inverter
control system.

In the next two sections, SHRC will be used in three-
phase and single-phase grid-connected PWM inverter sys-
tems to verify the effectiveness of SHRC and to improve the
control performance of both inverter systems.

4. Case 1: Three-Phase Grid-Connected
PWM Inverters

4.1. Modeling. Figure 3 shows a three-phase grid-connected
PWM inverter system, where 𝑈dc is the dc-side voltage; 𝐿
and 𝑅 are inductance and resistor, respectively; 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐

are the inductance currents; V𝑎, V𝑏, and V𝑐 are the 𝑎, 𝑏, and 𝑐

three-phase grid voltages. The control objective is to achieve
high current tracking accuracy through forcing 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐

to exactly track their reference 𝑖aref, 𝑖bref, and 𝑖cref, which are
generated by using PQ control method and instantaneous
power theory [26]. System parameter values are shown in
Table 1.

Table 1: Parameters for three-phase grid-connected inverter system.

Inverter

𝑈dc = 50V
𝐿 = 5mH
𝑅 = 0.5Ω

V
𝑎𝑏,𝑏𝑐,𝑐𝑎

= 25V (rms)

Reference 𝑃ref = 100W
𝑄ref = 0

Switching frequency 𝑓
𝑠
= 6 kHz

The mathematical model [18] can be described as

(

̇𝑖𝑎

̇𝑖𝑏

̇𝑖𝑐

) = (

−

𝑅

𝐿

0 0

0 −

𝑅

𝐿

0

0 0 −

𝑅

𝐿

)(

𝑖𝑎

𝑖𝑏

𝑖𝑐

)

+

(

(

(

(

1

𝐿

(V𝑎 − V𝐴)

1

𝐿

(V𝑏 − V𝐵)

1

𝐿

(V𝑐 − V𝐶)

)

)

)

)

.

(29)
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The data-sample format of (29) can be gotten:

(

𝑖𝑎 (𝑘 + 1)

𝑖𝑏 (𝑘 + 1)

𝑖𝑐 (𝑘 + 1)

)

=
(

(

𝑏1 − 𝑏2

𝑏1

0 0

0

𝑏1 − 𝑏2

𝑏1

0

0 0

𝑏1 − 𝑏2

𝑏1

)

)

(

𝑖𝑎 (𝑘)

𝑖𝑏 (𝑘)

𝑖𝑐 (𝑘)

)

+

(

(

(

(

(

1

𝑏1

V𝑎 (𝑘) −
1

𝑏1

𝑈dc (𝑘)

2

𝑢𝑎 (𝑘)

1

𝑏1

V𝑏 (𝑘) −
1

𝑏1

𝑈dc (𝑘)

2

𝑢𝑏 (𝑘)

1

𝑏1

V𝑐 (𝑘) −
1

𝑏1

𝑈dc (𝑘)

2

𝑢𝑐 (𝑘)

)

)

)

)

)

,

(30)

where 𝑢𝑎(𝑘), 𝑢𝑏(𝑘), and 𝑢𝑐(𝑘) are the three-phase duty cycles,
𝑏1 = 𝐿/𝑇, and 𝑏2 = 𝑅. Therefore, three independent single
subsystems can be decomposed into

𝑖𝑗 (𝑘 + 1) =

𝑏1 − 𝑏2

𝑏1

𝑖𝑗 (𝑘) +

1

𝑏1

V𝑗 (𝑘)

−

𝑈dc (𝑘)

2

1

𝑏1

𝑢𝑗 (𝑘) ,

(31)

where 𝑗 = 𝑎, 𝑏, 𝑐.
A dead-beat (DB) current controller is chosen as follows:

𝑢𝑗 (𝑘) =

2

𝑈dc (𝑘)
[V𝑗 (𝑘) − 𝑏1𝑖jref (𝑘) + (𝑏1 − 𝑏2) 𝑖𝑗 (𝑘)] , (32)

where 𝑗 = 𝑎, 𝑏, 𝑐. Letting 𝑖jref(𝑘) = 𝑖𝑗(𝑘 + 1), the closed-loop
transfer function without RC is 𝐻(𝑧) = 𝑧

−1. Therefore, the
control delay forDB current controller is only one step, that is,
one sample period, in theory, which can achieve fast dynamic
response.

Using the parameter values in Table 1, the mathematical
model for the three-phase grid-connected inverter system in
(31) can be rewritten into

𝑖𝑗 (𝑘 + 1) = 0.9833𝑖𝑗 (𝑘) + 0.0333V𝑗 (𝑘) − 0.8333𝑢𝑗 (𝑘) (33)

and the DB current controller in (32) can be rewritten into

𝑢𝑗 (𝑘) = 0.04V𝑗 (𝑘) − 1.2𝑖jref (𝑘) + 1.18𝑖𝑗 (𝑘) , (34)

where 𝑗 = 𝑎, 𝑏, 𝑐.

4.2. Experimental Results. Figure 4(a) shows the experimen-
tal result with single DB controller. It can be seen that current
distortion is relatively serious; that is, the current waveform
is not a smooth sine wave.

Table 2: Parameters for single-phase grid-connected inverter sys-
tem.

Inverter

𝑈dc = 50V
𝐿 = 5mH
𝑅 = 0.5Ω

V
𝑠
= 25V (rms)

Reference 𝑃ref = 50W
𝑄ref = 0

Switching frequency 𝑓
𝑠
= 6 kHz

Figures 4(b), 4(c), and 5 show the steady-state response
and the current error convergence histories with CRC con-
troller and the proposed SHRC controller being plugged
into the DB controlled three-phase grid-connected inverter,
respectively. For comparability, both RC gains are 𝑘rc =

0.2. Figures 4(b) and 4(c) show the current distortions can
be greatly improved with both CRC and SHRC controllers.
Moreover, it can be clearly seen from Figure 5 that the
current error convergence times for CRC and SHRC are
0.32 s and 0.12 s, respectively. Therefore, the current error
convergence rate of the proposed SHRC controller is nearly
three times faster than that of CRC controller (as indicated in
Section 3.3).

Therefore, the effectiveness of SHRC for three-phase grid-
connected PWM inverter system and its advantage compared
with CRC are verified.

5. Case 2: Single-Phase Grid-Connected
PWM Inverters

5.1. Modeling. Figure 6 shows a single-phase grid-connected
PWM inverter system, where𝑈dc is the dc-side voltage; 𝐿 and
𝑅 are inductance and resistor, respectively; 𝑖𝑠 is the inductance
current; and V𝑠 is the grid voltage. The control objective is to
achieve high current tracking accuracy through forcing 𝑖𝑠 to
exactly track its reference 𝑖sref which is generated by using PQ
controlmethod and instantaneous power theory [26]. System
parameter values are shown in Table 2.

The mathematical model can be described as

̇𝑖𝑠 = −

𝑅

𝐿

𝑖𝑠 +

1

𝐿

(V𝑠 − Vin) . (35)

The data-sample format of (35) can be gotten:

𝑖𝑠 (𝑘 + 1) =

𝑏1 − 𝑏2

𝑏1

𝑖𝑠 (𝑘) +

1

𝑏1

V𝑠 (𝑘)

−

1

𝑏1

𝑈dc (𝑘) 𝑢𝑠 (𝑘) ,

(36)

where 𝑢𝑠(𝑘) is the single-phase duty cycles, 𝑏1 = 𝐿/𝑇, and
𝑏2 = 𝑅.

A DB current controller is chosen as follows:

𝑢𝑠 (𝑘) =

2

𝑈dc (𝑘)
[V𝑠 (𝑘) − 𝑏1𝑖sref (𝑘) + (𝑏1 − 𝑏2) 𝑖𝑠 (𝑘)] . (37)

Letting 𝑖jref(𝑘) = 𝑖𝑗(𝑘 + 1), the closed-loop transfer function
without RC is𝐻(𝑧) = 𝑧

−1.Therefore, the control delay for DB
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Figure 5: Current tracking error histories with two RCs plugged into for three-phase grid-connected inverter system.

current controller is only one step, that is, one sample period,
in theory, which can achieve fast dynamic response.

Using the parameter values shown in Table 2, the math-
ematical model of the single-phase grid-connected inverter
system in (36) can be rewritten into

𝑖𝑠 (𝑘 + 1) = 0.9833𝑖𝑠 (𝑘) + 0.0333V𝑠 (𝑘) − 0.4167𝑢𝑠 (𝑘) (38)

and the DB current controller can be used with the same
coefficients in (34) for a convenient implementation purpose
as follows:

𝑢𝑠 (𝑘) = 0.04V𝑠 (𝑘) − 1.2𝑖sref (𝑘) + 1.18𝑖𝑠 (𝑘) . (39)

5.2. Experimental Results. Figure 7(a) shows the experimen-
tal result with single DB controller. It can be seen that current
distortion is relatively serious; that is, the current waveform
is not a smooth sine wave.

Figures 7(b), 7(c), and 8 show the steady-state response
and the current error convergence histories with CRC con-
troller and the proposed SHRC controller being plugged
into the DB controlled single-phase grid-connected inverter,
respectively. For comparability, both RC gains are 𝑘rc =

0.2. Figures 7(b) and 7(c) show the current distortions for
both CRC and SHRC controllers can be greatly improved.
Moreover, it can be clearly seen from Figure 8 that the
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current error convergence times for CRC and SHRC are
0.32 s and 0.16 s, respectively. Therefore, the current error
convergence rate of the proposed SHRC controller is nearly
two times faster than that of CRC controller (as indicated in
Section 3.3).

Therefore, the effectiveness of SHRC for single-phase
PWM grid-connected inverter system and its advantage
compared with CRC are verified.

6. Conclusions

This paper proposed an internal-model-principle-based
(IMP-based) specific harmonics RC (SHRC). Using the gen-
eral properties of IMP-based controller and the properties
of exponential function, it can be concluded that SHRC can
achieve zero-error tracking or perfect disturbance rejection
of specific periodic signal only including these specific
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Figure 8: Current tracking error histories with two RCs plugged into for single-phase grid-connected inverter system.

𝑛𝑘 ± 𝑚 order harmonic components at 𝑛/2 times faster error
convergence rate compared with conventional RC (CRC).

Two application examples of SHRC controlled three-
phase/single-phase grid-connected PWM inverters have
been given to show the effectives and promising advantages
of SHRC.The experimental results show that, compared with
CRC, SHRC offers three times (for three-phase inverter)
or two times (for single-phase inverter) faster current error
convergence rate and yields nearly the same current track-
ing accuracy. The proposed IMP-based SHRC provides a
high performance control solution to grid-connected PWM
inverters.
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