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An enhanced harmonics extraction algorithm based on Instantaneous Power (PQ) Theory is proposed for indirect current
controlled (ICC) three-level neutral point diode clamped (NPC) inverter-based shunt active power filter (SAPF). SAPF is famous in
current harmonics mitigation for its flexibility in dealing with dynamic state conditions. As for its controller, PQTheory has served
the major role in harmonics extraction algorithm due to its simple implementation features. However, it suffers from serious time
delay due to its dependency on sluggish numerical filters. Furthermore, the algorithm is mostly designed to suit the operation
of direct current controlled (DCC) SAPF which requires the knowledge of actual SAPF current (injection current). This leads
to inaccurate mitigation as the injection current does not possess the exact information on actual source current which suffers
from switching ripples problems. Therefore, two major modifications are introduced involving the development of mathematical
average algorithm to replace numerical filter for fundamental real power computation and the formation of mathematical current
relationship to change DCC to ICC based operation. The proposed algorithm is developed and evaluated in MATLAB/Simulink.
From the simulation results, significant improvement in terms of Total Harmonic Distortion (THD) and response time is presented
in comparison to conventional algorithm.

1. Introduction

The proliferation of nonlinear loads such as adjustable speed
drives, power converters, and switchedmode power supplies,
as well as other power electronics products has posted signif-
icant power quality problems in power distribution system.
These problems are commonly related to electrical equipment
breakdown caused by voltage, current, or frequency devia-
tions [1]. As one of the most hazardous power quality prob-
lems, current harmonics generated by the nonlinear loads
cause equipment overheating, voltage quality degradation,
excessive transmission power losses, and malfunction of sen-
sitive devices [2, 3]. Moreover, they also decrease overall sys-
tem efficiency and worsen power factor (PF) performances.
Therefore, it is crucial to mitigate the harmonics level of

a power system. Shunt active power filter (SAPF) [4, 5]
is designed specifically for this purpose. Additionally, it
also provides reactive power compensation meant for power
factor correction.

Most SAPFs utilize a standard two-level inverter con-
figuration in their design. However, multilevel inverters
have recently proven to possess significant advantages over
conventional two-level inverters [6, 7]. Their ability to pro-
duce stepwise output with higher voltage level reduces the
harmonics contents of the output signals and simultaneously
minimizes the power losses. However, in the context of APFs,
the multilevel inverters employed are mostly restricted to
three-level [8, 9] due to complexity in controller design
which involves larger number of switching states and greater
severity of voltage imbalance to the capacitors as the number
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of level increases. In three-level neutral point diode clamped
(NPC) inverter, voltage across the split capacitors has to be
maintained as half of the overall DC-Bus voltage.

The effectiveness of SAPFs in power quality mitigation
strictly depends on their control strategies. Specifically,
the controller comprises three main algorithms, namely,
harmonics extraction algorithm, voltage control algorithm,
and current control or switching algorithm. Among these
algorithms, the harmonics extraction algorithm is deemed to
be the most crucial part that leads SAPF to achieve its opti-
mal performance [10, 11]. Accurate and efficient harmonics
extraction leads to proper and fast reference current genera-
tionwhich further controls the SAPF to generate the required
injection current for harmonics mitigation.

In recent years, various research works on this particular
algorithm have been reported in the literature including
Synchronous Reference Frame (SRF) [12, 13], Instantaneous
Power (PQ) Theory [11, 14–18], DQ-axis with Fourier (DQF)
[19], Fast Fourier Transform (FFT) [20], Synchronous Detec-
tion (SD) [21, 22], wavelet-based approach [23], and Artificial
Neural Network (ANN) [24, 25]. Among all the existing
algorithms, PQ Theory has advantages over the others such
as simple design, increased speed, and fewer calculations,
making it more likely to be implemented practically.

However, the latest trend in PQ Theory algorithm is
still applying numerical filters such as low pass filter (LPF)
[14, 16–18], both LPF and high pass filter (HPF) [11], and
band reject filter (BRF) [15] to detect the desired real power
signal for reference current generation. The dependency
on these sluggish numerical filters is the main factor that
limits the harmonics extraction performance which in turn
degrades the overall harmonics mitigation result. Moreover,
the performance of numerical filters strictly depends on their
tuned cutoff frequency where the tuning is normally realized
through tedious approach. Furthermore, a good trade-off
between cutoff frequency and the order of filter is difficult
to be attained, but it is required to ensure optimum perfor-
mance.

Besides that, another weakness of the conventional PQ
Theory algorithm is related to the characteristic of its gen-
erated reference current. To date, the nonsinusoidal reference
current ismainly derived from the extracted current harmon-
ics [11, 14–18] and thus forces the SAPF to operate based on
direct current controlled (DCC) scheme [26–28] where the
knowledge of actual SAPF injection current is required in
generating the desired PWM switching signals to control the
switching activities of SAPF for harmonics mitigation.

From the literature [4, 28, 29], it is revealed that switching
activities of SAPF produces ripples in the source current. In
the field of harmonics mitigation, it is important to address
switching ripples problems as the THD performance of the
mitigated source current is degraded. A DCC scheme which
operates based on comparison of measured injection current
with its nonsinusoidal reference current counterpart does
not possess accurate information on the characteristic of the
actual source current. Therefore, even if the source current
is polluted by switching ripples, the DCC scheme will not
be able to mitigate the ripples due to the lack of necessary
information.

Although indirect current controlled (ICC) scheme
which operates based on the comparison of the actual source
current with its sinusoidal reference current counterpart [26–
29] has been proven to overcome the weakness of DCC
scheme, there is still no work on PQ Theory which has been
conducted together with ICC scheme. In fact, it is the charac-
teristic of conventionalPQTheory algorithm itself thatmakes
it not suitable to be applied in ICC scheme.

On top of that, the key parameters that determine
the performance of SAPF are the THD value, PF, and
dynamic response. Basically, the previous literatures [11, 16–
18] reported that SAPF which operates based on PQ Theory
successfully performed within the limit (THD < 5%) set by
IEEE Standard 519-2014 [30] with PF close to unity. Mean-
while, the best response time achieved is within 0.05 s which
corresponds to 2.5 cycles of 50Hz signal [11, 16]. However,
further improvement can still be done especially in reducing
the unnecessary delay resulting from inefficient harmonics
extraction algorithm which will surely improve the dynamic
performance of SAPF.

Therefore, this paper presents an enhanced version of PQ
Theory algorithm known as Enhanced PQ with average algo-
rithm that suits the operation of ICCbased SAPF inwhich the
reference current is derived from fundamental active current
instead of the current harmonics. Moreover, a mathematical
average algorithm is proposed to overcome the drawbacks
of the sluggish numerical filters. The design concept and
the effectiveness of the proposed algorithm are verified
using MATLAB/Simulink. For performance comparison, the
conventionalPQTheory algorithm is developed, and both the
algorithms are tested under steady and dynamic state condi-
tions.

The rest of the paper is organized as follows. In Section 2,
the proposed SAPF with its control strategies is explained.
In Section 3, the details of the proposed current harmonics
extraction algorithm are presented with clear illustration.
In Section 4, simulation results are presented and discussed
showing the effectiveness of the proposed algorithm in com-
parison to the conventional algorithm.The paper ends with a
brief conclusion in Section 5 by summarizing the significant
contributions of this work.

2. Proposed SAPF with Control Strategies

The proposed SAPF connected at point of common coupling
(PCC) between three-phase source and nonlinear load and its
control strategies are shown in Figures 1 and 2, respectively. A
three-phase three-level NPC inverter is employed to function
as the SAPF, and the nonlinear load consists of a bridge recti-
fier which is considered as the worst source of harmonics in
electrical system [31, 32].

Meanwhile, the controller is composed of harmonics
extraction algorithm,DC-Bus voltage control algorithm, syn-
chronizer algorithm, neutral point voltage control algorithm,
and current control (switching) algorithm.

The proposed controller is designed to perform the
following functions.

(1) Fundamental Real Power Detection. The source volt-
age V
𝑆
and load current 𝑖

𝐿
are sensed to obtain their



Mathematical Problems in Engineering 3

RC/RL
loadRectifier

Three-phase
source

NPC inverter

PCC

+
_

+
_

Z

Line
inductor

Limiting
inductor

iS iL Ll

iinj idc

Lf
Vdc

Vdc1

Vdc2

Cdc1

Cdc2

D1

D2

S1

S2

S3

S4

Figure 1: The proposed SAPF connected at PCC.
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Figure 2: The proposed SAPF controller showing the harmonics extraction algorithm and all the other associated algorithms.

corresponding real power 𝑃. The fundamental com-
ponent of the calculated real power is then detected
and reconverted back to fundamental active current
𝑖
1𝐿
.

(2) DC-Bus Voltage Regulation. Instantaneous DC cur-
rent 𝑖dc is calculated and drawn by the proposed SAPF
to maintain DC-Bus voltages (𝑉dc, 𝑉dc1, and 𝑉dc2) at
desired level.

(3) Reference Current Generation. The proposed con-
troller utilizes both 𝑖

1𝐿
and 𝑖dc to generate the refer-

ence source current signal 𝑖
𝑆,ref.

(4) Minimization of Neutral Point Voltage Deviation.The
differences between 𝑉dc1 and 𝑉dc2 are taken to gen-
erate an incremental time interval Δ𝑡 which adjusts
the time distribution of the switches. This approach
ensures equal inflow and outflow of the current at the
neutral point Z, thus reducing the deviation.

(5) Regulation of Instantaneous Current. The source cur-
rent 𝑖
𝑆
is regulated through proper switching activities

of SAPF controlled by the generated switching signals
𝑆
1−4

.
Based on Figure 1, it is clear that the current expression

before connecting SAPF can be written as

𝑖
𝑆
= 𝑖
𝐿
= 𝑖
1𝐿

+ 𝑖
𝐻
, (1)

where 𝑖
𝐻
is the current harmonics generated due to nonlin-

earity characteristic of nonlinear loads. Under the presence
of nonlinear loads, the source current 𝑖

𝑆
is polluted by the

addition of 𝑖
𝐻
and causes it to displace away from V

𝑆
.

The installation of parallel connected SAPF at PCC as the
proposed current harmonics mitigation as well as reactive
power compensation strategy has introduced additional sig-
nal meant to mitigate the effect of 𝑖𝐻. The mitigation process
is accomplished by injecting the required injection current 𝑖inj
to cancel 𝑖

𝐻
during operating state of SAPF and drawing the

necessary 𝑖dc to regulate the switching losses during nonoper-
ating state of SAPF. Therefore, the new current expression is
now written as

𝑖
𝑆
= 𝑖
1𝐿

+ 𝑖
𝐻
+ 𝑖dc − 𝑖inj (2)
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Figure 3: The conventional PQTheory algorithm operating with DCC scheme.

which can be further simplified as

𝑖
𝑆
= 𝑖
1𝐿

+ 𝑖dc (3)

when 𝑖inj is made equivalent to 𝑖𝐻.
According to (3), the mitigated 𝑖𝑆 is presumed to have

recovered its pure sinusoidal shape and is in phase with V
𝑆
.

This paper focuses mainly on harmonics extraction
algorithm. A synchronizer is utilized to provide sinusoidal
referencing signal to the voltage control algorithm governed
by self-charging technique [33, 34]. Meanwhile, the switch-
ing control is realized through 25 kHz Space Vector PWM
(SVPWM) [8, 35–38] switching algorithmwith the help from
the neutral point voltage control algorithm [38–40] adjusting
the switching time according to the behaviour of the instan-
taneous DC-Bus voltages.

3. Proposed Enhanced PQ with
Average Algorithm

In order to provide better understanding of the proposed
algorithm and at the same time show proper comparison,
the details of the existing algorithm, namely, conventional PQ
Theory algorithm, are first presented serving as a benchmark
for improvement. Next, with reference to the conventional
PQ Theory algorithm, the proposed algorithm known as
Enhanced PQwith average algorithm is elaborated highlight-
ing the improvements made.

3.1. Conventional PQTheory Algorithm. The overall harmon-
ics extraction process flow based on conventional PQTheory
is shown in Figure 3. Basically, the extraction process is real-
ized through a series of mathematical calculations of Instan-
taneous Power in a balanced three-phase system. The calcu-
lations are conducted in 𝛼-𝛽 coordinates where all the three-
phase signals involved are first translated into 𝛼-𝛽 domain via
a mathematical transformation represented by matrix [𝑀]

given as

[𝑀] = √
2

3

[

cos 𝜃1 (𝑡) cos 𝜃
2 (𝑡) cos 𝜃

3 (𝑡)

sin 𝜃
1 (𝑡) sin 𝜃

2 (𝑡) sin 𝜃
3 (𝑡)

] , (4)

where

𝜃ph (𝑡) = 𝜃 (𝑡 −

2𝜋

3

(ph − 1)) , ph = 1, 2, 3 (5)

and 𝜃(𝑡) is an angular arbitrary function representing the
phase angle of each signal.

Consequently, the PQ Theory applies this matrix to
transform the three-phase voltages and currents into their
respective representation in 𝛼-𝛽 coordinates by means of
Clarke-transformation [41] which can be expressed as the
following matrix relation:

[

V𝛼
V
𝛽

] = √
2

3

[
[

[

1 −

1

2

−

1

2

0

√3

2

−

√3

2

]
]

]

[
[

[

V
𝑎

V
𝑏

V
𝑐

]
]

]

, (6)

[

𝑖
𝛼

𝑖𝛽

] = √
2

3

[
[

[

1 −

1

2

−

1

2

0

√3

2

−

√3

2

]
]

]

[
[

[

𝑖
𝑎

𝑖
𝑏

𝑖𝑐

]
]

]

, (7)

where V
𝑎, V𝑏, and V𝑐 and 𝑖𝑎, 𝑖𝑏, and 𝑖𝑐 are the three-phase

voltages and currents, respectively.
In 𝛼-𝛽 coordinates, the complex power 𝑆 can be repre-

sented as
𝑆 = 𝑃 + 𝑗𝑄 = V

𝛼𝛽
𝑖
∗

𝛼𝛽
= (V
𝛼
− 𝑗V
𝛽
) (𝑖
𝛼
+ 𝑗𝑖
𝛽
)

= (V
𝛼
𝑖
𝛼
+ V
𝛽
𝑖
𝛽
) + 𝑗 (V

𝛼
𝑖
𝛽
− V
𝛽
𝑖
𝛼
) ,

(8)

where 𝑃 and 𝑄 represent the instantaneous real and reactive
power, respectively, and ∗ represent a complex conjugate.

Hence, the instantaneous real power 𝑃 is given by

𝑃 = (V
𝛼
𝑖
𝛼
+ V
𝛽
𝑖
𝛽
) . (9)

Meanwhile, the instantaneous reactive power 𝑄 is given
by

𝑄 = (V
𝛼
𝑖
𝛽
− V
𝛽
𝑖
𝛼
) . (10)

Equations (9) and (10) can be rewritten as

[

𝑃

𝑄

] = [

V
𝛼

V
𝛽

−V
𝛽

V
𝛼

][

𝑖𝛼

𝑖
𝛽

] . (11)
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Figure 4: The proposed Enhanced PQ with average algorithm operating with ICC scheme.

However, under the influences of nonlinear loads, the
actual 𝑃 and𝑄 values are polluted by additional disturbances
resulting in the formation of new Instantaneous Power
relationship given as

[

𝑃

𝑄

] = [

𝑃dc + 𝑃ac

𝑄dc + 𝑄ac
] , (12)

where 𝑃dc and 𝑃ac represent the fundamental (dc) and dis-
torted (ac) components of instantaneous real power, respec-
tively. Similar relation holds for reactive powers, 𝑄dc and
𝑄ac.

For the purpose of harmonics extraction, only 𝑃ac is
required to generate the current harmonics 𝑖

𝐻
𝛼𝛽

. The 𝑃ac
components are obtained by removing the 𝑃dc component
from the original𝑃 value.This approach can be represented as
follows:

𝑃ac = 𝑃 − 𝑃dc. (13)

Previously, the fundamental component 𝑃dc detection
is mostly accomplished by using Butterworth-type tuned
numerical LPF [11, 14, 17, 42]. However, the tuning of cutoff
frequency and the selection of filter’s order are quite difficult
tasks. Generally, LPF with higher cutoff frequency provides
a fast dynamic response, but some unwanted components
remain (as ripples) in the filtered signal while lower cutoff
frequency provides a smoother filtered signal (less ripples)
but slow dynamic response. On the other hand, a low order
LPF provides fast dynamic response but poor filtering effect
(more ripples). Meanwhile, high order LPF has a good filter-
ing effect (less ripples), but it suffers from longer time delay
[13, 42].Therefore, a good trade-off between cutoff frequency
and order of filter is crucial for optimum performance, but
this is a tough decision to be made.

From the literature, in order to achieve a balance between
dynamic response and filtering performance, the best cutoff
frequency is reported to be in the range of 5Hz to 35Hz [11, 13,
14], and meanwhile the order of filter is limited to the second
order as the higher order filter imposes great computational
burden to the controller [13, 17, 42]. However, no matter how
good the trade-off has been done to the numerical LPF, it

is still not a promising solution to achieve fast and smooth
filtering performance.

Once the 𝑃dc component is subtracted from the original
𝑃 value, (11) can be rewritten as

[

𝑃ac

𝑄

] = [

V
𝛼 V𝛽

−V
𝛽

V
𝛼

][

𝑖
𝐻
𝛼

𝑖
𝐻
𝛽

] , (14)

where 𝑖
𝐻
𝛼

and 𝑖
𝐻
𝛽

represent the current harmonics compo-
nents in 𝛼-𝛽 coordinates.

From (14), the inverse matrix is taken to generate
the required current harmonics in 𝛼-𝛽 coordinates and is
expressed as follows:

[

𝑖𝐻
𝛼

𝑖
𝐻
𝛽

] =

1

det (𝑃𝑄)

[

V
𝛼

−V
𝛽

V𝛽 V𝛼
][

𝑃ac

𝑄

] , (15)

where det(𝑃𝑄) = V
𝛼

2
+ V
𝛽

2.
Inverse Clarke-transformation as shown in (16) is then

performed to transform 𝑖
𝐻
𝛼𝛽

in𝛼-𝛽 coordinates back to three-
phase current harmonics 𝑖

𝐻
𝑎𝑏𝑐

which is then used to derive the
required reference injection current 𝑖inj,ref. Consider

[
[
[

[

𝑖
𝐻
𝑎

𝑖
𝐻
𝑏

𝑖
𝐻
𝑐

]
]
]

]

= √
2

3

[
[
[
[
[
[

[

1 0

−

1

2

√3

2

−

1

2

−

√3

2

]
]
]
]
]
]

]

[

𝑖
𝐻
𝛼

𝑖𝐻
𝛽

] . (16)

The reference injection current is derived based on the
following equation:

𝑖inj,ref = 𝑖
𝐻
𝑎𝑏𝑐

+ 𝑖dc. (17)

The nonsinusoidal 𝑖inj,ref forces the subsequent switching
signals 𝑆

1−4
to be generated based on DCC scheme which

operates by requiring the measurement of actual injection
current 𝑖inj.

3.2. Proposed Modifications. Based on Figure 4, it is clear
that two major modifications are applied to the conventional
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PQ Theory algorithm to implement the Enhanced PQ with
average algorithm.

The first modification is implemented aiming at over-
coming two major drawbacks of tuned numerical LPF which
includes tedious tuning workload and significant delay in
𝑃dc detection. For this purpose, a mathematical average
algorithm is proposed which replaces the tuned numerical
LPF in 𝑃dc detection. The proposed mathematical average
algorithm is given as

𝑃dc = 𝑃average =
1

𝑇

∫

𝑇

0

𝑃𝑑𝑡, (18)

where 𝑃average is the average value of 𝑃 and 𝑇 is the period of
the signal.

The mathematical average algorithm eliminates the need
of filtering, thus removing the tuning workload as well as the
possibility of inaccurate and inefficient 𝑃dc detection due to
improper tuning.

Next, the second modification is implemented aiming at
solving the switching ripples problems, existing in source
current which cannot be eliminated through DCC based
operation. For this purpose, PQ Theory algorithm that suits
ICC based operation is proposed. In order to realize this
modification, the characteristic of the generated reference
current needs to be changed. Instead of deriving the reference
current from 𝑖

𝐻
𝑎𝑏𝑐

, the proposed algorithm makes it possible
to derive the reference current from fundamental active
current 𝑖

1𝐿
𝑎𝑏𝑐

.
The fundamental active current 𝑖

1𝐿
𝑎𝑏𝑐

is made available by
modifying the output of 𝑖

𝐻
𝑎𝑏𝑐

generated from the conventional
PQ Theory algorithm through an additional mathematical
expression given as

𝑖
1𝐿
𝑎𝑏𝑐

= 𝑖
𝐿
𝑎𝑏𝑐

− 𝑖
𝐻
𝑎𝑏𝑐

, (19)

where 𝑖
𝐿
𝑎𝑏𝑐

is the load current and 𝑖
𝐻
𝑎𝑏𝑐

is the current
harmonics that resulted from (16).

The reference source current 𝑖𝑆,ref is now derived based
on (3). The sinusoidal 𝑖𝑆,ref enables the subsequent switching
signals 𝑆1−4 to be generated based on the measurement
of 𝑖𝑆 instead of 𝑖inj. In other words, it changes the DCC
based operation to ICC based operation. In contrast to
DCC based operation, ICC based operation which possesses
the exact information on switching ripples, existing in the
source current, eliminates any unnecessary problem caused
by switching activities of SAPF.

Therefore, operating under ICC scheme is capable of
ensuring the current harmonics to efficiently be mitigated,
resulting in lower THD value of source current.

4. Simulation Results

The proposed three-phase three-level NPC inverter-based
SAPF utilizing the Enhanced PQ with average algorithm
as the proposed harmonics extraction algorithm is tested
and evaluated in MATLAB/Simulink. Simulation work is
conducted under both steady and dynamic state conditions
which involve two types of nonlinear loads. The first non-
linear load is constructed using a three-phase uncontrolled

Table 1: The proposed parameters for SAPF.

Parameter Value
Voltage source 400Vrms, 50Hz
DC-Bus capacitor 3300 𝜇F (each)
DC-Bus reference voltage 880V
Limiting inductor 5mH
Switching frequency 25 kHz
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Figure 5: Fundamental real power 𝑃dc detected by each harmonics
extraction algorithm for capacitive load.

bridge rectifier feeding a 50Ω resistor and 2200𝜇F capacitor
connected in parallel (capacitive), while the second nonlinear
load is developed using similar rectifier feeding a series
connected 30Ω resistor and 50mH inductor (inductive).
Furthermore, the conventional PQ Theory algorithm is also
tested for comparison purpose. The details of the proposed
parameters are summarized in Table 1.

Under steady state condition, three key parameters are
used in analyzing the performance of each harmonics extrac-
tion algorithm which includes percentage of ripple power,
THD value, and power factor.The percentage of ripple power
% RP is a newly proposed parameter and is defined as the
ratio of peak-to-peak fundamental real power 𝑃dc,pp to the
desired fundamental real power 𝑃dc,desired as given in the
following equation:

% RP =

𝑃dc,pp

𝑃dc,desired
× 100. (20)

Meanwhile, under dynamic state condition, the perfor-
mance parameters involved are undershoot, overshoot, and
response time. For this analysis, two dynamic state conditions
are created by changing the nonlinear load from capacitive to
inductive and from inductive to capacitive loads, respectively.

4.1. Steady State Condition. Figures 5 and 6 show the perfor-
mance of each harmonics extraction algorithm in detecting
the fundamental real power 𝑃dc for capacitive and inductive
loads, respectively. Both algorithms detect the fundamental
real power well, but they differ in terms of percentage of
ripple power. The proposed Enhanced PQ with average algo-
rithm provides accurate fundamental real power detection
without any ripple for both nonlinear loads. In contrast, the
conventional PQ Theory algorithm produces fundamental
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Figure 6: Fundamental real power 𝑃dc detected by each harmonics
extraction algorithm for inductive load.
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Figure 7: Three-phase simulation waveforms for source voltage
V
𝑆
, load current 𝑖

𝐿
, injection current 𝑖inj, and source current 𝑖

𝑆

resulted from the proposed Enhanced PQ with average algorithm
for capacitive load.

real power with ripple powers of 10W (% RP = 0.17%) and
1.5W (% RP = 0.02%) for capacitive and inductive loads,
respectively.

The findings prove that the proposed mathematical aver-
age algorithm is able to detect the desired fundamental real
power component with higher accuracy compared to the
tuned numerical LPF.

On the other hand, Figures 7 and 8 show the three-phase
waveforms of source voltage V𝑆, load current 𝑖𝐿, injection
current 𝑖inj, and source current 𝑖𝑆 that resulted from the
proposed Enhanced PQ with average algorithm for capaci-
tive and inductive loads, respectively. Meanwhile, the THD
values of source current 𝑖𝑆 mitigated by SAPF utilizing each
harmonics extraction algorithm are summarized in Table 2.

Both algorithms successfully control the SAPF to remove
the generated current harmonics resulting in THD value
below 5%which complies with the limit set by IEEE Standard
519-2014 [30]. However, the proposed Enhanced PQ with
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Figure 8: Three-phase simulation waveforms for source voltage
V
𝑆
, load current 𝑖

𝐿
, injection current 𝑖inj, and source current 𝑖

𝑆

resulted from the proposed Enhanced PQ with average algorithm
for inductive load.
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Figure 9: Fundamental real power 𝑃dc detected by each harmonics
extraction algorithm for dynamic state condition of capacitive to
inductive load.

average algorithm shows superior performance in reduc-
ing the switching ripples existing in the source current 𝑖𝑆

by achieving a lower THD value for both capacitive and
inductive loads compared to the conventional PQ Theory
algorithm. Furthermore, the mitigated source current 𝑖𝑆

seems to work in phase with the source voltage V𝑆 for both
nonlinear loads which lead to almost unity power factor.

4.2. Dynamic State Condition. Figures 9 and 10 show the
dynamic behaviour of each harmonics extraction algorithm
in detecting the fundamental real power 𝑃dc for dynamic
state conditions of capacitive to inductive and inductive to
capacitive loads, respectively.

For capacitive to inductive load, the proposed Enhanced
PQ with average algorithm shows the best performance with
response time of 0.025 s and no overshoot. Meanwhile, the
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Table 2: THDs of mitigated source current obtained from each harmonics extraction algorithm for capacitive (RC) and inductive (RL) loads.

Harmonics extraction algorithm
Total Harmonic Distortion, THD (%)

Phase A Phase B Phase C
RC RL RC RL RC RL

Before connecting SAPF
N/A 62.30 26.07 62.30 26.07 62.30 26.07

After connecting SAPF
Conventional 𝑃𝑄Theory 2.10 1.24 2.08 1.25 2.12 1.24
Enhanced 𝑃𝑄 with average 1.56 1.01 1.52 0.96 1.60 1.02
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Figure 10: Fundamental real power𝑃dc detected by each harmonics extraction algorithm for dynamic state condition of inductive to capacitive
load.
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Figure 11: Phase A simulation waveforms for dynamic state condition of capacitive to inductive load for (a) source voltage V
𝑆
, (b) load

current 𝑖
𝐿
, and (c) source current 𝑖

𝑆
resulted from conventional PQTheory algorithm, and (d) source current 𝑖

𝑆
resulted from Enhanced PQ

with average algorithm.

conventional PQ Theory algorithm performs poorly with
response time of 0.12 s and high overshoot of 150W.

Similarly, for inductive to capacitive load, the proposed
Enhanced PQwith average algorithm also shows the best per-
formance with response time of 0.025 s and no undershoot.
Meanwhile, the conventional PQTheory algorithm performs
poorly with response time of 0.12 s and high undershoot of
150W.

The findings prove that, in terms of fundamental real
power detection, the proposed algorithm shows superior
dynamic performance by achieving a response time 4.8 times
faster than the conventional algorithm.

On the other hand, Figures 11 and 12 show the dynamic
behaviour of each harmonics extraction algorithm in cur-
rent harmonics mitigation for dynamic state conditions of

capacitive to inductive and inductive to capacitive loads,
respectively.

For both dynamic state conditions, the proposed
Enhanced PQ with average algorithm shows the best
performance with response time of 0.02 s. Meanwhile, the
conventional PQ Theory algorithm performs poorly with
response time of 0.05 s.

Thus, in terms of current harmonics mitigation, SAPF
with the proposed algorithm shows superior dynamic perfor-
mance by achieving a response time 2.5 times faster than the
conventional algorithm.

Furthermore, in order to study the effectiveness of the
proposed SAPF, performance evaluation in terms of DC-Bus
voltage control and neutral point voltage deviation control is
also conducted.
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Figure 12: Phase A simulation waveforms for dynamic state condition of inductive to capacitive load for (a) source voltage V
𝑆
, (b) load

current 𝑖
𝐿
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with average algorithm.
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Figure 13: Simulation waveforms of (a) overall DC-Bus voltage 𝑉dc, (b) upper capacitor voltage 𝑉dc1, (c) lower capacitor voltage 𝑉dc2, and (d)
neutral point voltage deviation (𝑉dc1 − 𝑉dc2), for dynamic state condition of capacitive to inductive load.

Figures 13 and 14 show the simulation results obtained for
the overall DC-Bus voltage 𝑉dc, the split capacitor voltages
(𝑉dc1 and 𝑉dc2), and neutral point voltage deviation (𝑉dc1 −
𝑉dc2) for dynamic state conditions of capacitive to inductive
and inductive to capacitive loads, respectively.

The results show that all the DC-Bus voltages (𝑉dc, 𝑉dc1,
and 𝑉dc2) of the proposed SAPF are properly controlled at
desired value with response time of 0.3 s for both dynamic
state conditions. Moreover, voltages across each split capaci-
tor (𝑉dc1 and 𝑉dc2) are successfully maintained as half of the
overall DC-Bus voltage 𝑉dc with the minimal neutral point
voltage deviation. The findings prove the effectiveness of the
DC-Bus voltage control algorithm and neutral point voltage
control algorithm applied in the proposed SAPF.

From all the simulation results obtained in both steady
and dynamic state conditions, the improvements achieved
by the proposed Enhanced PQ with average algorithm have

revealed significant roles of applying the mathematical aver-
age algorithm and modifying the characteristic of generated
reference current to suit ICCbased operation.The implemen-
tation of the proposed algorithm has significantly improved
the performances of the proposed SAPF.

By providing accurate and fast fundamental real power
detection together with the ability to generate sinusoidal
reference current, significant improvements in terms of THD
value and dynamic response in current harmonics mitigation
are achieved.The THD value recorded by using the proposed
algorithm is in better range that is within 0.96% to 1.60%
as compared to the conventional algorithm which performs
within the range of 1.24% to 2.12%. Most importantly, by
using the proposed algorithm, the response time of two
and half cycles (0.05 s) in harmonics mitigation which is
achieved previously by using the conventional algorithm is
now significantly reduced to one cycle (0.02 s).
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Figure 14: Simulation waveforms of (a) overall DC-Bus voltage 𝑉dc, (b) upper capacitor voltage𝑉dc1, (c) lower capacitor voltage𝑉dc2, and (d)
neutral point voltage deviation (𝑉dc1 − 𝑉dc2), for dynamic state condition of inductive to capacitive load.

In addition, the successful control of all the DC-Bus
voltages at desired value together with minimal neutral point
voltage deviation has further verified the design concept and
the effectiveness of the proposed SAPF in current harmonics
mitigation.

5. Conclusion

This paper has presented an Enhanced PQTheory algorithm
which is applicable in ICC based SAPF. The following points
summarize the major contributions of this work.

(1) Mathematical average algorithm is proposed to
replace sluggish numerical filter in fundamental com-
ponent detection. It provides accurate and fast detec-
tion ability and at the same time eliminates the needs
of dull and tedious tuning workload.

(2) A mathematical current relationship is added to the
proposed algorithm which provides the ability to
generate sinusoidal reference current. By using this
approach, the PQ Theory algorithm can now be
implemented in ICC based SAPF which was previ-
ously only applicable in DCC based SAPF. Conse-
quently, such technique indirectly improves the THD
value of the mitigated source current through the
elimination of switching ripples.

The analysis in both steady and dynamic state con-
ditions is conducted to evaluate the performance of the
proposed algorithm. Moreover, comparative evaluation with
the conventional algorithm is also conducted to verify the
improvement achieved by the proposed algorithm. In steady
state condition, the proposed algorithm is not only able to
control the SAPF in mitigating the current harmonics with

lower THD value for both capacitive and inductive nonlinear
loads, but also able to eliminate ripples that remained in the
detected fundamental component. On the other hand, sig-
nificant improvement can be observed during dynamic state
conditions where the proposed algorithm has successfully
performed with fast response time, no undershoot, and no
overshoot.

The comprehensive findings of this work clearly show the
advantages of the proposed Enhanced PQ with average algo-
rithm over the conventional PQTheory algorithm especially
in dealing with dynamic state conditions.
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