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Many applications show that semisupervised community detection is one of the important topics and has attracted considerable
attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and
fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is
accomplished by using voltage drops. The complexity of the proposal is 𝑂(|𝑉| + |𝐸|) for the sparse network with |𝑉| vertices and
|𝐸| edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community.
The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible.
Furthermore, this algorithm is easily applied to graph-based machine learning methods.

1. Introduction

From the point of view of mathematics, many real-world
systems in nature and society can be effectively modeled as
complex networks or graphs. Specifically, the entities of the
system are represented by the vertices and the interactions
between the entities are represented by the edges. Examples
include social relationships, spreading of viruses anddiseases,
the World Wide Web, author cooperation networks, citation
networks, and biochemical networks. It has been shown
that many real-world networks have a structure of modules
or communities, where the nodes within a community are
higher connected to each other than the nodes among com-
munities. The community structures play an important role
in the functional properties of complex network, and finding
such a structure could be of significant practical importance.

Identifying community structure in special networks has
a considerable merit of practice because it gives us insights to
the structure-functionality relationship. In the past decades,
plenty of techniques have been proposed to detect the com-
munity structure hidden in networks. The more typical algo-
rithms for community detection can be found in [1]. Very
recently, Chen et al. [2] defined the antimodularity as a quan-
titative measure of anticommunity partitioning on a network

and showed the reliability of antimodularity as a measure-
ment of the quality of an anticommunity partitioning. A
vertices similarity probability model to find community
structure without the prior knowledge of the type of complex
network structure was presented [3]. By studying the com-
munity structure in Chinese character network, Zhang et al.
[4] found that community structure was always considered as
one of the most significant features in complex networks, and
it played an important role in the topology and function of
the networks. Palla et al. [5] revealed that complex network
models exhibited an overlapping community structure, also
called fuzzy community. These complicated structures actu-
ally make it harder to appropriately construct algorithms to
uncover them. Along this way, researchers have made great
contributions to the community detection [6–10].

The methods mentioned above belong to unsupervised
community detection methods since the topological infor-
mation of the network is used only and its background
knowledge is ignored. In fact, some prior information is of
great value in identifying the community structure. Based on
the discussion of an equivalence of the objective functions
of the symmetric nonnegative matrix factorization and the
maximum optimization of modularity density, Ma et al.
[11] introduced a semisupervised clustering algorithm for
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community structure detection. In [12], Silva and Zhao pre-
sented a technique for semisupervised classification tasks, by
using the modularity measure of complex networks, orig-
inally designed for unsupervised learning tasks. Zhang [13,
14] developed a method that implicitly encoded the pairwise
constraints by modifying the adjacency matrix of the net-
work, which could also be regarded as the denoising process
of the consensusmatrix of the community structures. A novel
semisupervised community detection algorithm was pro-
posed based on the discrete potential theory [15]. It effectively
incorporated individual labels, the labels of corresponding
communities, to guide the community detection process for
achieving better accuracy. Although these existing semisu-
pervised community detection methods can improve the
community identification accuracy, some of them have lim-
itations in high time complexity. Therefore, it is worthwhile
to introduce the novel algorithm to identify community
structures in complex network rapidly.

The application of discrete potential theory to detect
community in network can be traced back to Wu and
Huberman’s work [16].They presented amethod that allowed
for the discovery of communities within graphs of arbitrary
size in times that scale linearly with their size. Their method
was based on notions of voltage drops across networks
that were both intuitive and easy to solve regardless of the
complexity of the graph involved. Zhang et al. [17] applied
it to directed networks; they presented a new mechanism for
the local organization of directed networks and designed the
corresponding link prediction algorithm. Wang and Zhang
[18] came up with a semisupervised clustering method based
on generalized point charge models for text data classifica-
tion. Liu et al. [15] recently proposed a linear time algorithm
to find the community in network based on discrete potential
theory. As data sets get larger and larger, it is still necessary to
develop the efficient semisupervised learning methods.

Motivated by Wu and Huberman’s work [16] and Liu’s
method [15], in this paper, we present a simple and fast
semisupervised algorithm for detecting the community in
complex network by discrete potential theory and voltage
drops. The complexity of the proposed algorithm is 𝑂(|𝑉| +
|𝐸|) for the sparse network with |𝑉| vertices and |𝐸| edges.
Similar to the membership degree in fuzzy 𝑐-means algo-
rithm, the voltage value of each vertex in network implies the
relationship between this vertex and community. The main
contributions of the proposal are as follows: (1) the proposed
algorithm is a simple and fast semisupervised approach to
discover community structures in complex network. (2) The
proposal gets rid of the limitation of positive definite matrix
which is needed to solve a linear system by conjugate gradient
decent algorithm. To some extent, this approach remedies the
deficiency of Liu et al.’s work [15]. (3) The unsupervised Wu-
Huberman algorithm is extended to semisupervised learning
case. The experimental results demonstrate the effectiveness
of the proposed algorithm.

2. The Graph and Discrete Potential Method

The graph can be mathematically represented as 𝐺 = (𝑉, 𝐸),
where 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is the set of vertices and 𝐸 ⊂ 𝑉 ×𝑉

denotes the set of edges. Generally, the graph can be expressed
by its adjacent matrix 𝐴, whose elements 𝐴

𝑖𝑗
are equal to

1 if V
𝑖
points to V

𝑗
and 0 otherwise. We denote 𝑑

𝑖
as the

degree of vertex V
𝑖
. The degree matrix 𝐷 is a diagonal matrix

containing the vertex degree 𝑑
𝑖
(𝑖 = 1, 2, . . . , 𝑛) of a graph on

the diagonal. Then the Laplacian matrix 𝐿 can be defined as

𝐿 = 𝐷 − 𝐴. (1)

Denote 𝑥𝑠
𝑖
as the potential of vertex V

𝑖
in the electrostatic

field generated by vertices with label 𝑠. Assign the potentials
of all labeled verticeswith labels other than 𝑠 to zero and the 𝑠-
labeled vertices to have a unit potential.The process of poten-
tial transmission for each electrostatic field is a circuit theory
problem and can bemodeled by combinatorial Dirichlet [15].
By using the Laplacianmatrix 𝐿, a combinatorial formulation
of the Dirichlet integral is in the form [15, 19]

𝐷 [𝑥] =
1

2
𝑥
𝑇
𝐿𝑥, (2)

where 𝑥 is the potentials of all vertices minimizing (2).
Reassigning the order of all vertices of the graph and putting
the labeled vertices forward, (2) can be rewritten into

𝐷[𝑥] =
1

2
[𝑥
𝑇

𝐿
, 𝑥
𝑇

𝑈
] [

𝐿
𝐿

𝐵

𝐵
𝑇
𝐿
𝑈

][
𝑥
𝐿

𝑥
𝑈

]

=
1

2
(𝑥
𝑇

𝐿
𝐿
𝐿
𝑥
𝐿
+ 2𝑥
𝑇

𝑈
𝐵
𝑇
𝑥
𝐿
+ 𝑥
𝑇

𝑈
𝐿
𝑈
𝑥
𝑈
) ,

(3)

where 𝑥
𝐿
and 𝑥

𝑈
are two vectors whose elements represent

the potentials of labeled vertices and unlabeled vertices,
respectively. Setting the derivative of𝐷[𝑥] with respect to 𝑥

𝑈

equal to zero, one can obtain a system of linear equations

𝐿
𝑈
𝑥
𝑈
= −𝐵
𝑇
𝑥
𝐿
, (4)

where 𝑥
𝑈
is a |𝑉

𝑈
| dimensional vector whose elements are

unknown quantities needing to be solved. If the graph is
connected, or if every connected component contains a seed,
then (4) will be nonsingular.

For each label 𝑠, a system of linear equations can be
established as

𝐿
𝑈
𝑥
𝑠
= −𝐵
𝑇
𝑝
𝑠
. (5)

If one assigns a unit potential to the labeled vertices with
label 𝑠 and zero to other labeled vertices, it will generate an
electrostatic field. The potentials of unlabeled vertices can be
obtained by the solution of (5). By comparing the potentials
of each unlabeled vertex, its label is assigned the same as the
labeled vertex corresponding to the greatest potential. Thus
the community structure is detected.

From the perspective of discrete potential theory, the
solution to (5) can be interpreted as a circuit theory. Based on
the three fundamental equations of circuit theory, Kirchhoff ’s
Current Law, Ohm’s Law, and Kirchhoff ’s Voltage Law, one
can also get an equivalent system of (5) [15, 19].

In [15], the solutions of (5) have been obtained by con-
jugate gradient decent algorithm, and a novel semisuper-
vised community detection algorithm was proposed. Several
experimental results demonstrate the effectiveness of their
approach.
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3. The Proposed Algorithm

It should be noted that the coefficientmatrix𝐿
𝑈
in (5)must be

a symmetric positive definitematrixwhile solving the nonho-
mogeneous linear equations (5) by conjugate gradient decent
algorithm.Obviously, Laplacianmatrix𝐿 is not a positive def-
inite matrix since every row of the Laplacian matrix sums to
zero, 0 is always its eigenvalue, and the corresponding eigen-
vector is (1, 1, . . . , 1). This fact compels us to develop a new
method to detect communities in network while considering
the network as an electric circuit. In [16], Wu and Huberman
introduced an unsupervised method to solve the system like
(5) to discover the communities in complex network in linear
time. Since there is no class information in advance, they
employed bipartite strategy and some superb skills for the
case of multiple communities. In this work, we extend their
work to the case of semisupervised community detection.

In what follows, we would like to present a novel method
to find community structure in complex networks by the
process of voltage transmission.

For a given network, we suppose each edge to be a resistor
with the same resistance. One attaches all the labeled vertices
with label 𝑠 to anode of a battery and other labeled vertices
to negative pole so that they have fixed voltages, say 1 and
0. Based on these assumptions, the network can be viewed
as an electric circuit with current flowing through each edge
(resistor). By solving Kirchhoff equations, one can obtain
the voltage value of each unlabeled vertex which of course
should be within (0, 1). In this case, the voltage value of each
vertex can be thought of as the membership degree similar
as in FCM algorithm, which reflects clearly the relationship
between a vertex and the 𝑠th community. In turn, we can
get 𝑘 voltages of a vertex for the different labels if there are
𝑘 classes. In semisupervised learning methods, it is required
that at least one sample must be labeled in each class. This
indicates that the class parameter 𝑘 is known previously.

Physically, if node V
𝑖
connects to 𝑚 neighbors V

1
, V
2
, . . . ,

V
𝑚
in an electric circuit, the Kirchhoff equation [20] tells us

that the total current flowing into V should sum up to zero;
that is,

𝑚

∑

𝑗=1

𝐼
𝑗
=

𝑚

∑

𝑗=1

𝑉
𝑗
− 𝑉
𝑖

𝑅
= 0, (6)

where 𝐼
𝑗
is the current flowing from V

𝑗
to V and 𝑉

𝑗
is the

voltage at neighbor node V
𝑗
.

It is easy to rewrite (6) into the following form:

𝑉
𝑖
=
1

𝑚

𝑚

∑

𝑗=1

𝑉
𝑗
. (7)

That is to say, the voltage of a node is the average of those
voltages of its neighbors.

Suppose the number of communities to be 𝑘; then the
label set 𝐾 = {1, 2, . . . , 𝑘}. In addition, we also assume that
there must be at least one labeled vertex in each community.
Divide the vertex set 𝑉 into two parts,𝑉

𝐿
= {(V
1
, 𝑦
1
), (V
2
, 𝑦
2
),

. . . , (V
𝑙
, 𝑦
𝑙
)} (labeled vertices), where 𝑦

𝑖
∈ 𝐾 is the label of

vertex V
𝑖
and 𝑉

𝑈
= {V
𝑙+1
, . . . , V

𝑛
} (unlabeled vertices) such

that 𝑉
𝐿
∩ 𝑉
𝑈
= Ø. One also defines set 𝑉𝑠

𝐿
= {V
𝑖
| V
𝑖
with

label 𝑠} = {V
𝑖
| V
𝑖
∈ 𝑉
𝐿
, 𝑦
𝑖
= 𝑠}. Denote 𝑉𝑠

𝑖
as the voltage of

vertex V
𝑖
in the electrostatic field generated by vertices with

label 𝑠 and𝑁(V
𝑖
) as the set of neighbors of V

𝑖
.

If we reassign the order of all vertices of the graph and put
the labeled vertices forward and labeled vertices with label 𝑠
first, following (6), one can get the system:

𝑉
𝑠

𝑖
= 1, for 𝑖 = 1, 2, . . . , 𝑟, (8)

𝑉
𝑠

𝑖
= 0, for 𝑖 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑙, (9)

𝑉
𝑠

𝑖
=
1

𝑑
𝑖

∑

V𝑗∈𝑁(V𝑖)
𝑉
𝑠

𝑗
=
1

𝑑
𝑖

∑

𝑗

𝑉
𝑠

𝑗
𝐴
𝑖𝑗
,

for 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑛.

(10)

Equation (10) is a linear system with 𝑛 − 𝑙 variables and can
be put into a symmetrical form as follows:

𝑉
𝑠

𝑖
=
1

𝑑
𝑖

𝑛

∑

𝑗=𝑙+1

𝑉
𝑠

𝑗
𝐴
𝑖𝑗
+
1

𝑑
𝑖

𝐴
𝑖1
+ ⋅ ⋅ ⋅ +

1

𝑑
𝑖

𝐴
𝑖𝑟
,

for 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑛.

(11)

Define

𝑉
𝑠
= (

𝑉
𝑠

𝑙+1

.

.

.

𝑉
𝑠

𝑛

),

𝐵 =(

(

𝐴
𝑙+1𝑙+1

𝑑
𝑙+1

⋅ ⋅ ⋅
𝐴
𝑙+1𝑛

𝑑
𝑙+1

.

.

.
.
.
.

𝐴
𝑛𝑙+1

𝑑
𝑛

⋅ ⋅ ⋅
𝐴
𝑛𝑛

𝑑
𝑛

)

)

,

𝐶 =(

(

𝐴
𝑙+11

+ ⋅ ⋅ ⋅ + 𝐴
𝑙+1𝑟

𝑑
𝑙+1

.

.

.

𝐴
𝑛1
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑟

𝑑
𝑛

)

)

,

(12)

and then the matrix form of Kirchhoff equation is

𝑉
𝑠
= 𝐵𝑉 + 𝐶, (13)

which has the solution

𝑉
𝑠
= (𝐼 − 𝐵)

−1
𝐶. (14)

Generally, it will take𝑂((𝑛−𝑙)3) time to solve this system.
Wu-Huberman algorithm [16] skillfully avoids this difficulty
by solving (8)–(10) for 𝑟 = 1 and 𝑙 = 2. This method seems
naturally to be a semisupervised learning method. We now
extend it to the case of semisupervised learning.

Specifically, we first set 𝑉𝑠
𝑖
= 1, for V

𝑖
∈ 𝑉
𝑠

𝐿
, and 𝑉𝑠

𝑖
= 0,

for V
𝑖
∈ 𝑉 − 𝑉

𝑠

𝐿
.
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Starting from𝑁(V
𝑖
) (V
𝑖
∈ 𝑉
𝑠

𝐿
), one consecutively updates

the voltages of V
𝑖
∈ 𝑉
𝑈
to

𝑉
𝑠

𝑖
=
1

𝑑
𝑖

∑

V𝑗∈𝑁(V𝑖)
𝑉
𝑠

𝑗
=
1

𝑑
𝑖

∑

𝑗

𝑉
𝑠

𝑗
𝐴
𝑖𝑗
. (15)

The updating process adopts breadth-first search algorithm
and it will end when we get voltages for all vertices in 𝑉

𝑈
.

This process is called a round.One spends an amount of𝑂(𝑑
𝑖
)

time calculating neighbor voltage of vertex V
𝑖
and |𝑉| time

setting initial voltages; therefore the complexity in one round
is𝑂(|𝑉|+|𝐸|). After repeating the updating process for a finite
number of rounds, one will reach an approximate solution of
(14) within a certain precision which only depends upon the
number of iteration rounds.

UnlikeWu and Huberman’s method [20], we do not need
to compute the ideal voltage gap and know roughly the size
of each community. As a result, we get a (𝑛 − 𝑙)-dimensional
voltage vector. The component 𝑉𝑠

𝑖
reflects the relationship of

vertex V
𝑖
and 𝑠th community. For each label 𝑠 in label set𝐾 =

{1, 2, . . . , 𝑘}, we repeat this process.Therefore, for each vertex
V
𝑖
, we obtain a voltage vector (𝑉1

𝑖
, 𝑉
2

𝑖
, . . . , 𝑉

𝑘

𝑖
). The element

𝑉
𝑗

𝑖
can be considered as themembership degree which vertex

V
𝑖
belongs to the 𝑗th community. The vertex V

𝑖
is within the

𝑗th community if 𝑉𝑗
𝑖
= max𝑉𝑠

𝑖
, 1 ≤ 𝑠 ≤ 𝑘. That is to say,

largest voltage of each vertex indicates to which community
the vertex V

𝑖
should belong.

4. Experiments

To validate the proposed algorithm, one would like to test
it on four real networks and three benchmarks which are
widely used to test the validity of various community division
methods. The experimental platform is based on Windows
7 Ultimate Service Pack 1 with Intel® Core™ i5-3470 CPU
3.20GHz, 4.00GB memory, ×64 Operating system, and Java
1.8 Eclipse RCP Luna sr1.

4.1. Three Evaluation Indices of Clustering. To assess the
quality of partition, we here use the 𝐹-measure, 𝑃-measure,
andmodularity𝑄 to quantify the cluster results.The 𝐹-meas-
ure is a harmonic combination of the precision and recall
values used in information retrieval [21].

If 𝑛
𝑖
is the number of the members of class 𝑖, and 𝑛

𝑖𝑗
is

the number of the members of class 𝑖 in cluster 𝑗, then the
precision 𝑃

𝑖𝑗
and recall 𝑅

𝑖𝑗
can be defined as

𝑃
𝑖𝑗
=
𝑛
𝑖𝑗

𝑛
𝑗

,

𝑅
𝑖𝑗
=
𝑛
𝑖𝑗

𝑛
𝑖

.

(16)

𝐹
𝑖𝑗
is denoted by

𝐹
𝑖𝑗
=
2 × 𝑃
𝑖𝑗
× 𝑅
𝑖𝑗

𝑃
𝑖𝑗
+ 𝑅
𝑖𝑗

. (17)

The corresponding 𝐹-measure (FM) of the whole cluster-
ing result is defined as

FM = ∑

𝑖

𝑛
𝑖

𝑁
max
𝑗

𝐹
𝑖𝑗
, (18)

where𝑁 is the total number of the members in the data set.
In general, the high value of 𝐹-measure indicates the

better cluster result.
Thepurity of a cluster represents the fraction of the cluster

corresponding to the largest class of data assigned to that
cluster; thus the purity of cluster 𝑗 is defined as

𝑃
𝑗
=

1

𝑛
𝑗

max
𝑖

𝑛
𝑖𝑗
. (19)

The purity of the whole clustering result is defined as

PM = ∑

𝑗

𝑛
𝑗

𝑁
𝑃
𝑗
. (20)

In general, the larger the purity value is, the better the clus-
tering result is.

In order to quantify the validity of community division of
a complex network and to optimize the chosen splitting, we
use, following [22], the concept of modularity. It is defined
as follows: given a network division, Let 𝑒

𝑖𝑗
be the fraction

of edges in the network that connect vertices in group 𝑖 to
those in group 𝑗, and let 𝑎

𝑖
= ∑
𝑗
𝑒
𝑖𝑗
. Then the modularity𝑄 is

defined as

𝑄 = ∑

𝑖

(𝑒
𝑖𝑖
− 𝑎
𝑖
)
2

. (21)

It measures the fraction of edges that fall between commu-
nities minus the expected value of the same quantity in a
random graphwith the same community division. Obviously,
the larger 𝑄 corresponds to the ideal community structure.

4.2. Experiment on Four Real Networks. Testing an algorithm
essentially means analyzing a network with a well-defined
community structure and recovering its communities. In
this subsection, four classical complex networks with known
community structures are selected to test the introduced
algorithm. The description of these four networks can be
found everywhere [1, 11, 16, 23]. Taking Zachary Karate
Club network with two communities, for example, we first
choose randomly one node in each community and label it.
Afterwards, the algorithm can work on this network and a
community division is detected. The values of FM, PM, and
𝑄 can be computed according to the obtained partition. It is
possible that the community division may be changed with
the different selection of initial labeled notes. To evaluate the
validity of the proposal objectively, we calculate the average
values of three indices by choosing randomly 10 groups of
initial labeled notes. Along this way, we also compute three
indices values by adding the number of labeled notes in each
community. In Table 1, we list the average values of three
indices by selecting randomly 10 groups of different labeled
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Table 1: The average values of indices for four real networks.

Network Index Label number
1 2 3 4 5 6 7 8 9 10

Dolphins
FM 0.8473 0.9571 0.9783 0.9902 0.9919 0.9952 0.9968 0.9903 0.9968 0.9936
PM 0.8484 0.9613 0.979 0.9903 0.9919 0.9952 0.9968 0.9903 0.9968 0.9936
𝑄 0.2476 0.338 0.3634 0.3757 0.3743 0.3805 0.3773 0.3743 0.3788 0.3774

Football
FM 0.8503 0.9179 0.9561 0.9667 0.9845 0.9913 0.9914 0.9939 0.9957 1
PM 0.867 0.9235 0.9574 0.9669 0.9843 0.9913 0.9913 0.9939 0.9957 1
𝑄 0.5544 0.5738 0.5763 0.5744 0.5657 0.5628 0.5608 0.5612 0.5582 0.554

Zachary
FM 0.764 0.8112 0.9409 0.9369 0.9615 0.9764 0.9853 0.9853 0.9882 0.9882
PM 0.7235 0.7941 0.9412 0.9382 0.9618 0.9765 0.9853 0.9853 0.9882 0.9882
𝑄 0.1655 0.2162 0.352 0.3449 0.3574 0.3642 0.3686 0.3705 0.3691 0.3704

Polbooks
FM 0.7003 0.772 0.8541 0.8588 0.8805 0.8825 0.898 0.8994 0.9021 0.9249
PM 0.7095 0.7762 0.8676 0.8629 0.88 0.8838 0.8934 0.8971 0.8943 0.921
𝑄 0.2732 0.3703 0.4593 0.4704 0.4581 0.472 0.4688 0.4632 0.4772 0.4623

Table 2: The average run time of the proposed algorithm for four real networks.

Network Label number
1 2 3 4 5 6 7 8 9 10

Dolphins 0.7015 0.2953 0.239 0.161 0.1156 0.0812 0.0812 0.0672 0.0562 0.0515
Football 1.4094 0.6734 0.4562 0.3048 0.228 0.1826 0.1343 0.1107 0.0843 0.064
Zachary 0.1174 0.0704 0.0455 0.0312 0.0283 0.0171 0.0172 0.0109 0.0095 0.0093
Polbooks 1.7469 0.8718 0.5392 0.3938 0.2783 0.2688 0.2202 0.189 0.1735 0.1408

notes and the label number (number of labeled nodes in each
community) varies from 1 to 10.

From Table 1, it is easy to see that we can detect an ideal
community division for these four networks by the proposed
algorithm when we label 3 nodes in each community. The
accuracy of network partition is greater than or equal to 94%
except polbooks network. Three indices values are ascending
or varying slightly with the increasing of labeled nodes.These
results also show that one can detect a good network partition
by labeling a small quantity of nodes in each community. For
football network, we can get the same partition accuracy as
in [15] while the number of the labeled vertices randomly
selected is from 1 to 4.

In Table 2, the average run times of the proposed algo-
rithm for four real networks are presented. It is shown that the
run times decrease with the increase of labeled nodes. This
is reasonable because the number of nodes that need to be
divided is reduced.

Figures 1 and 2 show the variety of run time of the pro-
posed algorithm and the values of three indices for dolphins
network and karate network, respectively.

4.3. Experiment on Three Benchmarks. For testing com-
munity detection algorithms on graphs with overlapping
communities, several artificial networks or benchmarks are
introduced. Among them, the most famous benchmark for
community detection is a class of networks introduced by
Girvan andNewman (GN) [24]. Each network has 128 nodes,
divided into four communities with 32 nodes. The average

degree of the network is 16 and the nodes have approximately
the same degree, as in a random graph.

In what follows, we apply the proposed algorithm to
detect the communities on this benchmark. For each fixed
number of labeled nodes, one also selects randomly 10 groups
of different initial labeled nodes to compute the average
values of three indices. The benchmark can be thought of
as the network with apparent community structure if mixing
parameter 𝜇 < 0.5. From Table 3, one can see that four com-
munities in this benchmark are detected accurately when
mixing parameter 𝜇 < 0.25 and the number of labeled nodes
is equal to or greater than 4. If we take 𝜇 = 0.5 and label
10 nodes in each community, 90% of nodes in this benchmark
can be partitioned correctly. When 𝜇 > 0.5, this benchmark
is with overlapping community structures. Although the
partition accuracy becomes higher and higher with the
increasing of number of labeled nodes, we can not find ideal
communities in this network. Particularly, our algorithm fails
to divide it into four groups when 𝜇 = 1 and number of
labeled nodes in each groups is less than 10.

Assuming that both the degree and the community
size distributions are power laws, Lancichinetti et al. [25]
designed a more general benchmark for testing community
detection algorithms on graphs. Some parameters used in this
benchmark are explained as follows:

𝑁: number of nodes,
𝑘: average degree,
max 𝑘: maximum degree,
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Figure 1: Dolphins network.
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Figure 2: Zachary network.

𝜇: mixing parameter,
𝑡
1
: minus exponent for the degree sequence,

𝑡
2
: minus exponent for the community size distribu-

tion,
min 𝑐: minimum for the community sizes,
max 𝑐: maximum for the community sizes,
on: number of overlapping nodes,
om: number of memberships of the overlapping
nodes,
𝐶: [average clustering coefficient] not mandatory.

In this benchmark, 𝑁, 𝑘, max 𝑘, and 𝜇 have to be specified.
For the others, the program can use default values: 𝑡

1
= 2;

𝑡
2
= 1; on = 0; om = 0; min 𝑐 and max 𝑐 will be chosen close

to the degree sequence extremes.
If we set parameters 𝑁 = 128, 𝑘 = 16, max 𝑘 = 16,

min 𝑐 = 32, and max 𝑐 = 32, a kind of Girvan-Newman
benchmark will be obtained.

To test the validity of our algorithm on large network, we
apply the proposed algorithm to this benchmark with param-
eters 𝑁 = 10

5, 𝑘 = 20, max 𝑘 = 10
4, and 𝑡

2
= 1. The mix-

ing parameter 𝜇 is varied from 0.1 to 0.6. For each fixed 𝜇, one
takes 𝑡

1
= 2 and 𝑡

1
= 3, respectively. Unlike the GN bench-

mark, the community size is power laws in this network.
Therefore, it is proper to label nodes in each community in
terms of node proportion. The minimal proportion which
we will take is 10% because of the requirement that there
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Table 3: The average values of indices on GN benchmark.

𝜇 Index Label number
1 2 3 4 5 6 7 8 9 10

0.0625
FM 1 1 1 1 1 1 1 1 1 1
PM 1 1 1 1 1 1 1 1 1 1
𝑄 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875 0.6875

0.1250
FM 1 1 1 1 1 1 1 1 1 1
PM 1 1 1 1 1 1 1 1 1 1
𝑄 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

0.1875
FM 0.9733 1 1 1 1 1 1 1 1 1
PM 0.9735 1 1 1 1 1 1 1 1 1
𝑄 0.5262 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625

0.2500
FM 0.9264 0.9734 0.9977 1 1 1 1 1 1 1
PM 0.9266 0.9734 0.9977 1 1 1 1 1 1 1
𝑄 0.4135 0.4686 0.4973 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.3125
FM 0.8592 0.8994 0.941 0.9789 0.993 0.9984 1 0.9992 0.9992 0.9992
PM 0.8601 0.9 0.9414 0.9789 0.993 0.9984 1 0.9992 0.9992 0.9992
𝑄 0.3112 0.3417 0.3819 0.4163 0.4311 0.4359 0.4375 0.4369 0.4368 0.4368

0.3750
FM 0.7277 0.8017 0.8659 0.8973 0.9514 0.9679 0.9796 0.9899 0.9946 0.9953
PM 0.7336 0.8031 0.8664 0.8976 0.9516 0.968 0.9797 0.9899 0.9945 0.9953
𝑄 0.2146 0.2411 0.2735 0.2965 0.3373 0.3498 0.3598 0.3668 0.3704 0.372

0.4375
FM 0.5788 0.6648 0.761 0.8031 0.8475 0.8907 0.913 0.9388 0.9501 0.9654
PM 0.5922 0.6695 0.7617 0.8039 0.8492 0.8914 0.9133 0.9391 0.95 0.9656
𝑄 0.1495 0.1614 0.1882 0.2119 0.2271 0.2495 0.2648 0.2757 0.2822 0.2923

0.5000
FM 0.4698 0.5567 0.6344 0.6806 0.7386 0.7615 0.8168 0.8546 0.8771 0.9054
PM 0.4781 0.5695 0.6383 0.682 0.7391 0.7625 0.818 0.8554 0.8773 0.9062
𝑄 0.1173 0.1265 0.1298 0.1456 0.1614 0.1701 0.1822 0.1931 0.2021 0.2135

0.5625
FM 0.41 0.4697 0.5389 0.5613 0.6142 0.6576 0.6784 0.7318 0.7464 0.7826
PM 0.4086 0.4766 0.5406 0.5641 0.618 0.6594 0.682 0.7344 0.7469 0.7828
𝑄 0.1142 0.1021 0.1133 0.1128 0.1194 0.1278 0.136 0.1401 0.1377 0.1509

0.6250
FM 0.3528 0.3844 0.434 0.4679 0.4989 0.5401 0.5776 0.5963 0.636 0.6725
PM 0.3469 0.3891 0.4352 0.4719 0.5031 0.5422 0.5805 0.5984 0.6375 0.6726
𝑄 0.125 0.099 0.1047 0.1099 0.1123 0.1075 0.1105 0.1144 0.1186 0.118

0.6875
FM 0.3559 0.3519 0.3789 0.4089 0.4179 0.462 0.4791 0.4971 0.5191 0.5641
PM 0.3352 0.3406 0.3812 0.4078 0.4211 0.4656 0.4828 0.4984 0.5195 0.5656
𝑄 0.1068 0.1042 0.1076 0.108 0.1116 0.1131 0.1183 0.1209 0.1142 0.1172

0.7500
FM 0.3547 0.3421 0.3459 0.3408 0.3613 0.3808 0.3933 0.4233 0.4498 0.4758
PM 0.3211 0.3234 0.3406 0.3445 0.3633 0.3805 0.393 0.4227 0.4508 0.475
𝑄 0.1012 0.1033 0.1064 0.1107 0.1206 0.1168 0.1148 0.1123 0.1106 0.1136

0.8125
FM 0.3297 0.3361 0.3107 0.323 0.3209 0.3415 0.3522 0.3618 0.3959 0.4166
PM 0.3203 0.3148 0.3047 0.3141 0.3164 0.336 0.3484 0.3609 0.3961 0.418
𝑄 0.1219 0.1035 0.1109 0.1065 0.1043 0.109 0.121 0.1119 0.1082 0.1042

0.8750
FM 0.3461 0.3324 0.3307 0.3255 0.3166 0.3255 0.3176 0.337 0.3417 0.3657
PM 0.3156 0.3172 0.318 0.3187 0.3109 0.3172 0.3141 0.3352 0.3406 0.3649
𝑄 0.1028 0.1044 0.108 0.1081 0.1151 0.1188 0.1158 0.1145 0.1055 0.1041

0.9375
FM 0.3314 0.3252 0.3442 0.3266 0.327 0.3187 0.3125 0.3107 0.3199 0.337
PM 0.307 0.3133 0.3289 0.318 0.3195 0.3156 0.3102 0.3125 0.3211 0.3391
𝑄 0.099 0.1073 0.1027 0.097 0.1086 0.1052 0.1029 0.1037 0.0981 0.1048

1.0000
FM 0.3286 0.3312 0.3455 0.3359 0.3318 0.3237 0.3136 0.3096 0.306 0.3257
PM 0.3109 0.3156 0.3321 0.3297 0.325 0.318 0.3102 0.3062 0.3078 0.3242
𝑄 0.1139 0.1018 0.0981 0.1067 0.102 0.1076 0.096 0.1002 0.1034 0.0967
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Table 4: The mean values of indices on power law benchmarks.

Network Index Label proportion (%)
10 20 30 40 50

pw-0.1-2-1
FM 0.9585 0.9627 0.9707 0.9739 0.9795
PM 0.958 0.9622 0.9703 0.9736 0.9792
𝑄 0.8152 0.8155 0.8204 0.8233 0.8256

pw-0.1-3-1
FM 0.9602 0.9658 0.9709 0.9755 0.98
PM 0.9524 0.9594 0.9657 0.9718 0.9775
𝑄 0.789 0.7987 0.807 0.8148 0.8231

pw-0.2-2-1
FM 0.8968 0.9247 0.9332 0.9514 0.9579
PM 0.8956 0.9225 0.9318 0.9499 0.9568
𝑄 0.6756 0.6861 0.6922 0.701 0.7016

pw-0.2-3-1
FM 0.8923 0.9125 0.9241 0.9362 0.9465
PM 0.8711 0.8953 0.9097 0.9252 0.9383
𝑄 0.6079 0.6323 0.6478 0.6635 0.6772

pw-0.3-2-1
FM 0.8102 0.8582 0.8841 0.9066 0.9264
PM 0.8125 0.8537 0.8798 0.9025 0.9231
𝑄 0.5312 0.5539 0.5602 0.5739 0.5828

pw-0.3-3-1
FM 0.7064 0.7521 0.7933 0.8245 0.8574
PM 0.6776 0.7228 0.7651 0.7995 0.8369
𝑄 0.3901 0.4159 0.4466 0.4707 0.4988

pw-0.4-2-1
FM 0.7013 0.7532 0.81 0.8386 0.8712
PM 0.7083 0.7537 0.8059 0.8354 0.8675
𝑄 0.4218 0.4383 0.4562 0.4719 0.4814

pw-0.4-3-1
FM 0.7405 0.8253 0.8679 0.8994 0.9226
PM 0.7125 0.7957 0.8401 0.8747 0.9025
𝑄 0.351 0.4014 0.4291 0.4512 0.4698

pw-0.5-2-1
FM 0.5425 0.6709 0.7346 0.7663 0.8152
PM 0.5603 0.671 0.7335 0.764 0.8119
𝑄 0.2966 0.3432 0.3619 0.3702 0.385

pw-0.5-3-1
FM 0.5021 0.6245 0.6955 0.7542 0.8059
PM 0.4752 0.5846 0.6519 0.7112 0.7689
𝑄 0.2017 0.2365 0.2601 0.2851 0.3123

pw-0.6-2-1
FM 0.4258 0.5589 0.6464 0.7004 0.7551
PM 0.4394 0.5607 0.6423 0.6964 0.7496
𝑄 0.1988 0.2389 0.2642 0.2802 0.2882

pw-0.6-3-1
FM 0.3891 0.5211 0.612 0.6895 0.7537
PM 0.3665 0.4811 0.5632 0.6383 0.7084
𝑄 0.1494 0.1739 0.191 0.2112 0.2309

exists one labeled node at least in each community and the
fact that there are small size communities in this network.
Applying the proposed algorithm on this benchmark by
labeling randomly of two groups of different initial nodes,
one obtains some results reported in Table 4. There are
nearly 90% of nodes which can be classified correctly in this
network while 𝜇 < 0.2 and 10% nodes in each community
are labeled. In this case, there is no distinct variety of three
indices values with the increasing of label proportion. This
fact indicates that one can detect a good community division
on the network with apparent community structure although
a few nodes are labeled. The values in each column are

descending with the increasing of mixing parameter 𝜇. This
shows that a good network partition will not be found by
the proposed algorithm for the network which communities
overlap seriously.

Figure 3 presents the comparison of run time of our
algorithm on two benchmarks with different parameters and
label nodes numbers or label proportions. The increasing of
labeled nodes number or label proportions implies that the
number of unlabeled nodes in benchmarks is descending,
and therefore it needs less and less time to partition network
into groups.

We now present our experimental results on the LFR
benchmark and further compare our proposal with GN algo-
rithm [24], spectral clustering algorithm [1], NMF algorithm
[20], and SNMF-SS algorithm [11] by a normalized mutual
information index (NMI).

The LFR benchmark is designed by Lancichinetti et al.
[25] and widely employed to test the performance of com-
munity structure identification. It allows user to specify
distributions for both the community sizes and the degree
distribution and then generates vertices and communities
by sampling from those distributions. The mix parameter 𝜇
represents the average ratio of intracommunity adjacencies
to total adjacencies. The large 𝜇 corresponds to the network
with apparent community structure. In this paper, the input
parameters of the LFR benchmark are the same for our
algorithm and the comparative algorithms. For the different
values of 𝜇 ∈ {0.50, 0.6, 0.7, 0.8, 0.9}, we generated 50 instan-
ces for each of LFR benchmark graphs whose node degree
is taken from a power law distribution with exponent 2 and
community size from a power law distribution with exponent
1. Each graph has 1000 vertices, average degree of 15, maxi-
mum degree of 50, maximum for the community sizes of 50,
andminimum for the community sizes of 5.The definition of
NMI can be found everywhere [11, 15, 26].

FromFigure 4, we can see that the values ofNMI obtained
by our algorithm are bigger than those gotten by the other
four algorithms. The peak value of our approach is 0.732 at
𝜇avg = 0.9. This value is bigger than the one 0.7 computed by
SNMF-SS algorithm.Because the decrease of𝜇means that the
LFRbenchmark iswith the obscure community structure, it is
difficult to detect communities correctly for five algorithms. It
is reasonable that the NMI values obtained by five algorithms
become smaller and smaller as 𝜇 decreases. The NMF
algorithm seems to be stable since it has a small decrease
speed. The performance of our proposal decreases greatly
while𝜇 is greater than 0.6.This fact implies that our algorithm
can not apply the networks with nonapparent community
structure. However, compared with other four algorithms,
our algorithm can gain the best performance.

5. Conclusions

In this paper, we propose a semisupervised community detec-
tion algorithm for partitioning network into groups. This
approach amalgamates the discrete potential theory andWu-
Huberman algorithm. The complexity 𝑂(|𝑉| + |𝐸|) of the
introduced approach indicates that it can be applied to detect



Mathematical Problems in Engineering 9

0

1

M
ea

n 
ru

n 
tim

e (
s)

0.0000
0.0625
0.1250
0.1875
0.2500

0.3125
0.3750
0.4375
0.5000

0.5625
0.6250
0.6875
0.7500

0.8125
0.8750
0.9375
1.0000

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

2 3 4 5 6 7 8 9 101
Label number

(a) GN benchmark

pw-0.1-2-1
pw-0.1-3-1
pw-0.2-2-1
pw-0.2-3-1

pw-0.3-2-1
pw-0.3-3-1
pw-0.4-2-1
pw-0.4-3-1

pw-0.5-2-1
pw-0.5-3-1
pw-0.6-2-1
pw-0.6-3-1

0

200

400

600

800

1000

1200

1400

1600

1800

M
ea

n 
ru

n 
tim

e (
s)

10 30 40 5020
Label proportion

(b) Power law benchmark

Figure 3: The comparison of run time of our algorithm on two benchmarks.

Our algorithm
SNMF-SS algorithm
Spectral clustering

NMF algorithm
GN algorithm

0

0.2

0.4

0.6

0.8

1

N
M

I

0.50.60.9 0.70.8
Average 𝜇

Figure 4: The comparative results of five algorithms on the LFR
benchmark.

community on large network. The validity of our proposal
is demonstrated by applying it to four real networks and
three benchmarks.The experimental results show that a good
community division of a complex network is obtained by
labeling a small quantity of nodes in each community. How-
ever, it is difficult to classify correctly the networkwith heavily
overlapping communities or obscure community structure
by our method. This fact can be seen from the experimental
result on LFR benchmark. Therefore, it is worthwhile to
further introduce new and fast algorithm to deal with this
case.
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[17] Q.-M. Zhang, L. Lü, W.-Q. Wang, Y.-X. Zhu, and T. Zhou,
“Potential theory for directed networks,” PLoS ONE, vol. 8, no.
2, Article ID e55437, 2013.

[18] F.Wang and C. Zhang, “Semisupervised learning based on gen-
eralized point charge models,” IEEE Transactions on Neural
Networks, vol. 19, no. 7, pp. 1307–1311, 2008.

[19] L. Grady, “Randomwalks for image segmentation,” IEEE Trans-
actions on Pattern Analysis andMachine Intelligence, vol. 28, no.
11, pp. 1768–1783, 2006.

[20] S. Zhang, R.-S. Wang, and X.-S. Zhang, “Identification of
overlapping community structure in complex networks using
fuzzy c-means clustering,” Physica A: Statistical Mechanics and
its Applications, vol. 374, no. 1, pp. 483–490, 2007.

[21] C. Luo, Y. Li, and S.M. Chung, “Text document clustering based
on neighbors,”Data&Knowledge Engineering, vol. 68, no. 11, pp.
1271–1288, 2009.

[22] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol. 69,
no. 2, Article ID 026113, 2004.

[23] D. W. Zhang, F. D. Xie, Y. Zhang, F. Y. Dong, and K. Hirota,
“Fuzzy analysis of community detection in complex networks,”
Physica A: StatisticalMechanics and its Applications, vol. 389, no.
22, pp. 5319–5327, 2010.

[24] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 99, no.
12, pp. 7821–7826, 2002.

[25] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,” Physical
Review E, vol. 78, no. 4, Article ID 046110, 2008.

[26] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Compar-
ing community structure identification,” Journal of Statistical
Mechanics, vol. 406, Article ID P09008, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


