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In this paper, a MIMO PI design procedure is proposed for linear time invariant (LTI) systems with multiple time delays. The
controller tuning is established in two stages and guarantees performances for set-point changes, disturbance variations, and
parametric uncertainties. In the first stage, an iterative linear matrix inequality (ILMI) approach is extended to design PI controllers
for systems with multiple time delays without performance guarantee, a priori. The second stage is devoted to improve the closed-
loop performances by minimizing sensitivity functions. Simulations results carried out on the unstable distillation column, the
stable industrial scale polymerization (ISP) reactor, and the non-minimum phase 4-tank benchmark prove the efficiency of the
proposed approach. A comparative analysis with the conventional internal model control (IMC) approach, a multiloop IMC-PI
approach, and a previous ILMI PID approach proves the superiority of the proposed approach compared to the related ones.

1. Introduction

PID controllers have been at the heart of control engineering
practice for several decades [1, 2]. They are widely used in
industrial applications as no other controllers match simple
control structure, fewer tuning parameters, and robustness
against uncertainties. However, until now, a high percentage
of PID control systems seem to be badly tuned and many
difficulties occur essentially when the multi-input multi-
output systems are considered [3–5]. One major reason may
be explained by coupling interactions between the different
loops and mainly the negligence of uncertain and immeasur-
able dead times. Tuning multiloop PID controllers for LTI
systems with multiple time delays [6–9] is then considered
until now as a challenging problem in control theory. In
this framework, the internal model control (IMC) method is
considered as the most conventional and effective approach
for PID controller design while taking into account time
delays [10–12]. The design of MIMO IMC-PID controllers is
based on a series of SISO controllers using IMC interaction
measures between the different loops. This method becomes

very hard when the number of inputs/outputs increases.
Even more, its implementation may fail when the interaction
measures between the different loops are so high. The last
difficulty represents the main disadvantage of this method
and an alternative solution was proposed by Vu and Lee [13]
to solve such a problem. Unfortunately, this result remains
applicable only when the first-order MIMO systems are
considered.

On the other hand, iterative linear matrix inequalities
(ILMIs) are known to be powerful tools to solvemultivariable
control problems. Particularly, ILMI approaches were already
used to design PID controllers for LTI systems without delays
[14–18]. The basic idea was based on transforming the PID
controller into an equivalent static output feedback (SOF) sta-
bilization one by augmenting, using some new state variables,
the dimension of the controlled system. Unfortunately, such
controllers are known by their bad performances compared
to those designed via IMC approaches (when applicable).

As Loop Shaping (LS) techniques [19, 20] are well
known for their abilities to improve the closed-loop system
performances by minimizing the signal transmission from
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load disturbances and measurement noise to input and
output process or in terms of requirements on the sensitivity
functions and/or complementary sensitivity functions [21–
23], this paper suggests using this concept for improving the
MIMO PI controller performances computed via ILMIs. The
proposed approach overcomes the problems introduced by
the well known IMC method when the fully cross-coupled
multivariable systems are considered. Its implementation
requires two steps: in the first step, the ILMI method
proposed by Zheng et al. [14], appropriate for systemswithout
delays, is extended for the design of PI controller for multiple
time delay systems. As such approach generally gives bad
performances, a second stage is then launched in order
to improve the performances of the closed-loop system by
shaping the already designed PI controller by minimizing the
sensitivity function of the system.

To illustrate the effectiveness and the performances of
the proposed approach, three examples of multiple time
delay systems including unstable, stable, and non-minimum
systems are considered. A comparative analysis with related
approaches is also given to prove the superiority of the
proposed approach.

The paper is organized as follows: The problem formu-
lation is stated in Section 2. Model reduction of the MIMO
system with multiple time delays is detailed in Section 3.
Section 4 is devoted to the main results. Section 5 shows the
validity of the proposed approach where a comparative study
with related approaches using typical examples for set-point
tracking, disturbance rejection, and parametric uncertainties
scenarios is considered.

2. Problem Statement

Consider a nominal multivariable LTI system with multiple
time delays described by𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴1𝑥 (𝑡 − 𝜏1) + 𝐵0𝑢 (𝑡 − 𝜏2)+ 𝐵1𝑢 (𝑡 − 𝜏3) ,𝑦 (𝑡) = 𝐶𝑥 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, and 𝑦(𝑡) ∈ R𝑝 are the state
vector, the control vector, and the output vector, respectively.𝐴0 ∈ R𝑛×𝑛, 𝐴1 ∈ R𝑛×𝑛, 𝐵0 ∈ R𝑛×𝑚, 𝐵1 ∈ R𝑛×𝑚, and𝐶 ∈ R𝑝×𝑛 are known constantmatrices. 𝜏1, 𝜏2, and 𝜏3 are time
delays.

The objective is to design a finite dimensional PI con-
troller described by

𝑢 (𝑡) = 𝐹1𝑒 (𝑡) + 𝐹2 ∫𝑡
0
𝑒 (𝑡) 𝑑𝑡, (2)

where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡), 𝑟(𝑡) ∈ R𝑝, is the set-point vector
and 𝐹1, 𝐹2 ∈ R𝑚×𝑝 are proportional and time integral gain
matrices, respectively, that stabilize the system (1) to the set-
point vector.

Let 𝐺(𝑠) ∈ R𝑝×𝑚 be the general transfer matrix of the
delayed system (1), computed as described in [24], and𝐾(𝑠) =

[𝐾𝑖𝑗(𝑠)] ∈ R𝑚×𝑝 the transfer matrix of the PI controller given
by 𝐾𝑖𝑗 (𝑠) = 𝐹1𝑖𝑗 + 𝐹2𝑖𝑗𝑠 , (3)

where 𝐾𝑖𝑗(𝑠) is the 𝑖𝑗th element of the transfer matrix 𝐾(𝑠),𝐹1𝑖𝑗 is the proportional gain of the 𝑖𝑗th element of 𝐾(𝑠), and𝐹2𝑖𝑗 is the integral gain of the 𝑖𝑗th element of𝐾(𝑠),
For such PI controller there are 2 × 𝑚 × 𝑝 parameters to

be tuned for a plant with𝑚 inputs and 𝑝 outputs.
The last control problem is very complex since system (1)

is a MIMO infinite dimensional system. To be relaxed, the
control problem will be organized in two subproblems.

2.1. Subproblem 1: Design a Finite Dimensional PI Controller
for Just SOF Stabilization. In this stage, the infinite dimen-
sional system (1) will be reduced to the finite dimensional sys-
tem (4)-(5) whereas the PI controller (2) will be transformed
into the SOF controller (6) described, respectively, bẏ̃𝑧 = 𝐴̃𝑧̃ + 𝐵̃𝑢, (4)𝑦̃ = 𝐶̃𝑧̃, (5)𝑢 = 𝐹̃𝑦̃, (6)

where 𝑧̃(𝑡) ∈ R𝑛
󸀠

, 𝑢(𝑡) ∈ R𝑚, and 𝑦̃(𝑡) ∈ R𝑝
󸀠

are the
sate vector, the control vector, and the output vector of the
approximated system, respectively. 𝐴̃ ∈ R𝑛

󸀠×𝑛󸀠 , 𝐵̃ ∈ R𝑛
󸀠×𝑚,

and 𝐶̃ ∈ R𝑝
󸀠×𝑛󸀠 are matrices related to the approximated

system to be computed using the approximation method and
the SOF transformation and 𝐹̃ ∈ R𝑚×𝑝

󸀠

and is the SOF
feedback gain matrix, to be designed under the following
assumptions.

Assumption 1. The set-point vector 𝑟(𝑡) in (2) is assumed to
be null (𝑟(𝑡) = 0).
Assumption 2. 𝜏1, 𝜏2, and 𝜏3 are assumed to be uncertain but
constant delays.

Assumption 3. The PI controller (2) is well-posed.

Assumption 4. The finite dimensional closed-loop dynamicṡ̃𝑧 = (𝐴̃ + 𝐵̃𝐹̃𝐶̃)𝑧̃ with a realization (𝐴̃, 𝐵̃, 𝐶̃) is stabilizable via
SOF controller.

To this end, the PI design procedure is proposed in
Section 4.1.

2.2. Subproblem 2: Set-Point Stabilization and Output Distur-
bance Attenuation by Minimizing Sensitivity Functions. The
objective of the subproblem 2 is to design a shaped controller
described by 𝐾sh (𝑠) = 𝑉1 (𝑠) 𝐾 (𝑠) 𝑉2 (𝑠) (7)
that improves the closed-loop response considering a shaped
system described by𝐺sh (𝑠) = 𝑉1 (𝑠) 𝐺 (𝑠) 𝑉2 (𝑠) , (8)
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Figure 1: Modeling a delayed variable via a distributed parameter
system.

where 𝑉1(𝑠) ∈ R𝑝×𝑝 and 𝑉2(𝑠) ∈ R𝑚×𝑚 are a pre-
and postcompensators to be chosen in order to satisfy, in
closed-loop, performance specifications such as set-point
stabilization and load disturbance rejection.

Themost crucial part of the design procedure is to find the
appropriate weighting matrices𝑉1(𝑠) and𝑉2(𝑠). Note that the
shape of the weights is determined by the closed-loop design
specifications. Once the desired loop shape is achieved, the
final controller 𝐾fin(𝑠) to be applied to the nominal transfer
matrix 𝐺(𝑠) is then constructed. To this end, a Loop Shaping
design procedure is proposed in Section 4.2.

3. Model Reduction of the MIMO System with
Multiple Time Delays

Each delayed variable can be modeled as a distributed
parameter system described by a partial differential equation
as follows [25]: 𝜕𝜓 (𝑧, 𝑡)𝜕𝑡 = −1𝜏 𝜕𝜓 (𝑧, 𝑡)𝜕𝑧 (9)

with the boundary condition

V (𝑡) = 𝜓 (0, 𝑡) (10)

and the output equations:

V (𝑡 − 𝜏) = 𝜓 (1, 𝑡) , (11)

where 𝑡 and 𝑧 are time and pseudospace variables, respec-
tively. As shown by Figure 1, V(𝑡), 𝜓(𝑧, 𝑡), and V(𝑡 − 𝜏) are the
input, the state variable, and the output of the delay block,
respectively. 𝜏 is a constant time delay.

For numerical simulation or control design purposes, an
infinite dimensional system is generally reduced to a finite
dimensional system by using an approximation method.
Within the framework of weighted residuals methods, the
orthogonal collocation method is applied in this paper to
approximate the partial differential equations described by
relation (9) augmented by boundary conditions (10)-(11) for
its simplicity since it avoids integration [26].

The principle of the orthogonal collocation method is to
search a finite dimensional approximation for the distributed
parameter variable 𝜓(𝑧, 𝑡) in the following form [27]:

𝜓∗ (𝑧, 𝑡) = 𝑁∑
𝑖=0

𝑐𝑖 (𝑡) 𝐿𝑁𝑖 (𝑧) , (12)

where 𝜓∗ denotes the approximation of 𝜓(𝑧, 𝑡); 𝑁 is the
order reduction; 𝑐𝑖(𝑡) are unknown time-varying coefficients
chosen such that the approximated solution is the exact one
at the collocation points such that𝑐𝑖 (𝑡) = 𝜓∗ (𝑧𝑖, 𝑡) = 𝜓 (𝑧, 𝑡)󵄨󵄨󵄨󵄨𝑧=𝑧𝑖 , ∀𝑖 ∈ {0, . . . , 𝑁} (13)

and 𝐿𝑁𝑖 (𝑧) are the𝑁th order Lagrange interpolation polyno-
mials; that is:

𝐿(𝑁)𝑖 (𝑧) fl 𝑁∏
𝑗=0
̸=𝑖

𝑧 − 𝑧𝑗𝑧𝑗 − 𝑧𝑖 , (14)

where 𝑧0, 𝑧1, . . . , 𝑧𝑁 ∈ [0, 1] are the collocation points of
the method. In this paper, the internal collocation points
are considered as the zeros of the (𝑁 + 2)th order Jacobi
polynomial defined for 𝑖 = 1, . . . , 𝑁 + 2 by Lefèvre et al. [27]
as follows: 𝑝(𝑝,𝑞)𝑁 = (𝑧 − 𝑔(𝑝,𝑞)𝑁 ) 𝑝(𝑝,𝑞)𝑁−1 − ℎ(𝑝,𝑞)𝑁 𝑝(𝑝,𝑞)𝑁−2 (15)

with 𝑝(𝑝,𝑞)0 = 1 and where coefficients ℎ(𝑝,𝑞)𝑁 and 𝑔(𝑝,𝑞)𝑁 are
defined as follows:

ℎ(𝑝,𝑞)𝑁 fl

{{{{{{{{{{{
(𝑁 − 1) (𝑁 + 𝑝 − 1) (𝑁 + 𝑞 − 1) (𝑁 + 𝑝 + 𝑞 − 1)(2𝑁 + 𝑝 + 𝑞 − 1) (2𝑁 + 𝑝 + 𝑞 − 2)2 (2𝑁 + 𝑝 + 𝑞 − 3) , if 𝑁 > 2,(𝑝 + 1) (𝑞 + 1)(𝑝 + 𝑞 + 2)2 (𝑝 + 𝑞 + 3) , if 𝑁 = 2,

𝑔(𝑝,𝑞)𝑁 fl

{{{{{{{{{{{{{{{
0, otherwise,12 (1 − 𝑝2 − 𝑞2(2𝑁 + 𝑝 + 𝑞 − 1)2 − 1) , if 𝑁 > 1,𝑞 + 1𝑝 + 𝑞 + 2 , if 𝑁 = 1,

(16)

where 𝑝 and 𝑞 are two constant parameters affecting the
position of the collocation points.

By applying delay variable approximation on each delayed
variable of the vectors 𝑥(𝑡 − 𝜏1), 𝑢(𝑡 − 𝜏2), and 𝑢(𝑡 − 𝜏3), the
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following 3(𝑁 + 1) finite dimensional equations can be then
obtained from the partial differential equation (9), [28]:𝜓̇1 (𝑡) = − 1𝜏1𝐴1𝜓1 (𝑡) + 1𝜏1𝐵1𝑥 (𝑡) ,𝜓̇2 (𝑡) = − 1𝜏2𝐴2𝜓2 (𝑡) + 1𝜏2𝐵2𝑢 (𝑡) ,𝜓̇3 (𝑡) = − 1𝜏3𝐴3𝜓3 (𝑡) + 1𝜏3𝐵3𝑢 (𝑡) ,

(17)

augmented by the following outputs:𝑥 (𝑡 − 𝜏1) = 𝜓1 (1, 𝑡) = 𝐶1𝜓1 (𝑡) ,𝑢 (𝑡 − 𝜏2) = 𝜓2 (1, 𝑡) = 𝐶2𝜓2 (𝑡) ,𝑢 (𝑡 − 𝜏3) = 𝜓3 (1, 𝑡) = 𝐶3𝜓3 (𝑡) , (18)

where for 𝑘 = 1, 2, 3, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are computed as given in [28].
Let consider Cauchy’s formula for the interpolation error

defined by Lefèvre et al. [27] as follows:𝑒𝑁 (𝑧, 𝑡) = 𝜓 (𝑧, 𝑡) − 𝜓∗ (𝑧, 𝑡) (19)

and assume that the unknown solution 𝜓(𝑧, 𝑡) is sufficiently
continuously differentiable; we have then𝑒𝑁 (𝑧, 𝑡) = 𝑤 (𝑧) 𝜓 (𝑧)(𝑁+1) (𝜂 (𝑧) , 𝑡)(𝑁 + 1)! , (20)

where 𝑤(𝑧) fl ∏𝑁𝑗=0(𝑧 − 𝑧𝑗) and 𝜂(𝑧) ∈ [−1, +1].
Hence, we try to choose the interior collocation points𝑧1, . . . , 𝑧𝑁−1 that minimize the interpolation error (19).With-

out any a priori knowledge on the behavior of the exact
solution, this problem reduces to finding 𝑧1, . . . , 𝑧𝑁−1 such
that 𝜓(𝑧) is minimal.

By considering the case study of the Chebyshev poly-
nomials belonging to the family of Jacobi polynomials, and,
corresponding to the values of the parameters 𝑝 = 𝑞 = −1/2,
the corresponding minimal norm is given by Lefèvre et al.
[27] as follows:󵄩󵄩󵄩󵄩𝑒𝑁󵄩󵄩󵄩󵄩∞ ≤ 󵄩󵄩󵄩󵄩󵄩𝜓 (𝑧)𝑁+1 (𝜂 (𝑧) , 𝑡)󵄩󵄩󵄩󵄩󵄩∞(𝑁 + 1)!2𝑁−2 . (21)

Through the result (21), we demonstrate that the interpolation
error for a variable delay approximation is always bounded
for the parameters 𝑝 = 𝑞 = −1/2.
4. Main Results

4.1. PI Controller Design via ILMIs. In the following, the SOF
transformation of the PI controller of the delayed system (1)
will be detailed. Using (18), the system (1) can be written as
follows: 𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴1𝐶1𝜓1 (𝑡) + 𝐵0𝐶2𝜓2 (𝑡)+ 𝐵1𝐶3𝜓3 (𝑡) ,𝑦 (𝑡) = 𝐶𝑥 (𝑡) . (22)

Let now 𝑧̃𝑇 = [𝑧̃1𝑇 𝑧̃2𝑇] , (23)

where: 𝑧̃1 = [𝑥 (𝑡) 𝜓1 (𝑡) 𝜓2 (𝑡) 𝜓3 (𝑡)] ∈ R4𝑛,𝑧̃2 (𝑡) = ∫𝑡
0
𝑦 (𝑡) 𝑑𝑡 (24)

and let: 𝑦̃ = [𝑦̃1 𝑦̃2]𝑇 = 𝐶̃𝑧̃, (25)

where: 𝑦̃1 = 𝑦 = 𝐶𝑥 = [𝐶 0 0 0 0] 𝑧̃,𝑦̃2 = ∫𝑡
0
𝑦 (𝑡) 𝑑𝑡 = [0 0 0 0 𝐼] 𝑧̃. (26)

The state space of a new augmented system controlled via an
SOF controller is then deduced as follows:̇̃𝑧 = 𝐴̃𝑧̃ + 𝐵̃𝑢,𝑦̃ = 𝐶̃𝑧̃,𝑢 = 𝐹̃𝑦̃, (27)

where:

𝐴̃ =(((((
(

𝐴0 𝐴1𝐶1 𝐵0𝐶2 𝐵1𝐶3 01𝜏1𝐵1 − 1𝜏1𝐴1 0 0 00 0 − 1𝜏2𝐴2 0 00 0 0 − 1𝜏3𝐴3 0𝐶 0 0 0 0
)))))
)∈ R𝑛󸀠×𝑛󸀠 ,

𝐵̃ =(((((
(

001𝜏2𝐵21𝜏3𝐵30
)))))
)
∈ R𝑛󸀠×𝑚,

𝐶̃ = [𝐶̃1𝑇 𝐶̃2𝑇]𝑇 ∈ R𝑝󸀠×𝑛󸀠 ,𝐶̃1 = [𝐶 0 0 0 0] ∈ R𝑝×𝑛󸀠 ,𝐶̃2 = [0 0 0 0 𝐼𝑝×𝑝] ∈ R𝑝×𝑛󸀠 .

(28)

Taking into account (27), the control law (2) under
Assumption 1 can be written as follows:𝑢 = − (𝐹1𝑦̃1 + 𝐹2𝑦̃2) . (29)
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On the other hand, we have from (27) the following:𝑢 = − (𝐹̃1𝑦̃1 + 𝐹̃2𝑦̃2) = 𝐹̃𝑦̃. (30)

We can deduce that once thematrix 𝐹̃ = [−𝐹̃1 −𝐹̃2] ∈ R𝑚×𝑝󸀠
is designed the closed-loop system (4)–(6) is asymptotically
stable. Considering analogy between (29) and (30), the
original PI gains can be recovered as follows:[𝐹1 𝐹2] = [𝐹̃1 𝐹̃2] . (31)

Theorem 5. The multivariable LTI system with multiple time
delays (1) is stabilizable via SOF if and only if there exist a
constant matrix 𝐹̃ = [−𝐹̃1 −𝐹̃2] ∈ R𝑚×𝑝

󸀠

and a symmetric
positive definite matrix𝑋 = 𝑋𝑇 > 0,𝑋 ∈ R𝑛󸀠×𝑛󸀠 satisfying the
following matrix inequality:𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝑋𝐵̃𝐵̃𝑇𝑋 + (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇 (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)< 0 (32)

such that 𝐹1 = 𝐹̃1,𝐹2 = 𝐹̃2. (33)

Proof.

Sufficiency. Note that(𝐴̃ + 𝐵̃𝐹̃𝐶̃)𝑇𝑋 + 𝑋(𝐴̃ + 𝐵̃𝐹̃𝐶̃)≤ (𝐴̃ + 𝐵̃𝐹̃𝐶̃)𝑇𝑋 + 𝑋(𝐴̃ + 𝐵̃𝐹̃𝐶̃) + 𝐶̃𝑇𝐹̃𝑇𝐹̃𝐶̃= 𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝑋𝐵̃𝐵̃𝑇𝑋+ (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇 (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃) < 0.
(34)

FromLyapunov’s theory, the closed-loop system∑𝑐 : ̇̃𝑧 = (𝐴̃+𝐵̃𝐹̃𝐶̃)𝑧 is then asymptotically stable.

Necessity. Suppose that ∑𝑐 is asymptotically stable for some𝐹̃. Then there exists𝑋 = 𝑋𝑇 > 0 such that(𝐴̃ + 𝐵̃𝐹̃𝐶̃)𝑇𝑋 + 𝑋(𝐴̃ + 𝐵̃𝐹̃𝐶̃) < 0. (35)

It is easy to find that there exists a scalar 𝜌 > 0 such that(𝐴̃ + 𝐵̃𝐹̃𝐶̃)𝑇𝑋 + 𝑋(𝐴̃ + 𝐵̃𝐹̃𝐶̃) + 1𝜌2 𝐶̃𝑇𝐹̃𝑇𝐹̃𝐶̃ < 0; (36)

that is,𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝜌2𝑋𝐵̃𝐵̃𝑇𝑋+ (𝜌𝐵̃𝑇𝑋 + 1𝜌𝐹̃𝐶̃)𝑇 (𝜌𝐵̃𝑇𝑋 + 1𝜌𝐹̃𝐶̃) < 0,𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝜌2𝑋𝐵̃𝐵̃𝑇𝑋+ (𝜌𝐵̃𝑇𝑋 + 1𝜌𝐹̃𝐶̃)𝑇 (𝜌𝐵̃𝑇𝑋 + 1𝜌𝐹̃𝐶̃) < 0.
(37)

Obviously, (37) is equivalent to𝜌2𝐴̃𝑇𝑋 + 𝜌2𝑋𝐴̃ − 𝜌4𝑋𝐵̃𝐵̃𝑇𝑋+ (𝜌2𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇 (𝜌2𝐵̃𝑇𝑋 + 𝐹̃𝐶̃) < 0. (38)

By substituting 𝜌2𝑋with𝑋 in (38), we obtain inequality (32).
Condition (33) is already proved in (31).

Due to the term −𝑋𝐵̃𝐵̃𝑇𝑋, (32) cannot be simplified to
an LMI. Similarly to SOF control problem described in [14–
16], an ILMI algorithm can be addressed to solve the Bilin-
ear Matrix Inequality (BMI) in (32). To accommodate the−𝑋𝐵̃𝐵̃𝑇𝑋 term, an additional design variable𝑌 is introduced.
Because (𝑌−𝑋)𝑇𝐵̃𝐵̃𝑇(𝑌−𝑋) ≥ 0 for any 𝑌 > 0 and𝑋 for the
same dimension, we obtain𝑌𝑇𝐵̃𝐵̃𝑇𝑋 + 𝑋𝑇𝐵̃𝐵̃𝑇𝑌 − 𝑌𝑇𝐵̃𝐵̃𝑇𝑌 ≤ 𝑋𝑇𝐵̃𝐵̃𝑇𝑋. (39)

By combining (32) and (39), a sufficient condition for the
existence of SOF gain matrix 𝐹̃ is obtained such that𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝑌𝐵̃𝐵̃𝑇𝑋 − 𝑋𝐵̃𝐵̃𝑇𝑌 + 𝑌𝐵̃𝐵̃𝑇𝑌+ (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇 (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃) < 0. (40)

Considering the𝛼/2 stabilizability via SOF concept [29], if the
matrix inequality (40) has a solution (𝑋 > 0, 𝐹̃), then there
exist a real number 𝛼 ≥ 0 and a fixed matrix 𝑌 > 0 such that𝐴̃𝑇𝑋 + 𝑋𝐴̃ − 𝑌𝐵̃𝐵̃𝑇𝑋 − 𝑋𝑇𝐵̃𝐵̃𝑇𝑌 + 𝑌𝑇𝐵̃𝐵̃𝑇𝑌+ (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇 (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃) − 𝛼𝑋 < 0. (41)

Based on the idea that all eigenvalues of 𝐴̃ + 𝐵̃𝐹̃𝐶̃ are
shifted progressively towards the left-half-plane through the
reduction of 𝛼, we may close in on the feasibility of (32) [29].
Using Schur complement, inequality (41) is equivalent to the
following matrix inequality:

[[[𝐴̃
𝑇𝑋 + 𝑋𝐴̃ − 𝑌𝐵̃𝐵̃𝑇𝑋 − 𝑋𝑇𝐵̃𝐵̃𝑇𝑌 + 𝑌𝑇𝐵̃𝐵̃𝑇𝑌 − 𝛼𝑋 (𝐵̃𝑇𝑋 + 𝐹̃𝐶̃)𝑇(𝐵̃𝑇𝑋 + 𝐹̃𝐶̃) −𝐼 ]]] < 0. (42)
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The previous inequality (42) points to an iterative approach
to solve 𝐹̃ and 𝑋 > 0; namely, if 𝑌 is fixed in (42), then it
reduces to an LMI problem in the unknowns 𝛼, 𝐹̃ and𝑋.

The following is a constructive ILMI algorithm for PI
control of LTI MIMO with multiple delays systems, and the
explanations are given in Remark 7.

Algorithm 6.

Step 1. Define the orthogonal collocation method parameters𝑁, 𝑝, and 𝑞.
Step 2. Transform the infinite dimensional system (1) to a
finite dimensional system (17)-(18) by computing matrices𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, 𝐶1, 𝐶2, and 𝐶3.
Step 3. Design the SOF transformation to give the system’s
state space realization (𝐴̃, 𝐵̃, 𝐶̃). If it does proceed to Step 4.

Step 4. Set 𝑖 = 1 and choose 𝑌1 = 𝐼𝑛󸀠 + 𝜀1 where 𝜀1 ≥ 0.
Step 5. Solve the following optimization problem for 𝑋𝑖, 𝐹̃,
and 𝛼𝑖:

OP1: Minimize 𝛼𝑖 subject to the following LMI con-
straints:[[ Σ1𝑖 (𝐵̃𝑇𝑋𝑖 + 𝐹̃𝐶̃)𝑇𝐵̃𝑇𝑋𝑖 + 𝐹̃𝐶̃ −𝐼 ]] < 0, 𝑋𝑖 > 0, (43)

whereΣ1𝑖 = 𝐴̃𝑇𝑋𝑖+𝑋𝑖𝐴̃−𝑌𝑖𝐵̃𝐵̃𝑇𝑋𝑖−𝑋𝑖𝐵̃𝐵̃𝑇𝑌𝑖+𝑌𝑖𝐵̃𝐵̃𝑇𝑌𝑖−𝛼𝑖𝑋𝑖.
Denote by 𝛼∗𝑖 the minimized value of 𝛼𝑖.
Step 6. If 𝛼∗𝑖 ≤ 0, the feedback matrix gains are 𝐹1 = 𝐹̃1 and𝐹2 = 𝐹̃2. Stop. Otherwise, go to Step 7.

Step 7. Solve the following optimization problem for 𝑋𝑖 and𝐹̃.
OP2: Minimize tr(𝑋𝑖) subject to LMI constraints (43)

with 𝛼𝑖 = 𝛼∗𝑖 , where tr stands for the trace of a square matrix.
Denote by 𝑋∗𝑖 the optimal 𝑋𝑖. The feedback matrix gains are𝐹1 = 𝐹̃1 and 𝐹2 = 𝐹̃2.
Step 8. If ‖𝑌𝑖𝐵̃ − 𝑋∗𝑖 𝐵̃‖ < 𝛿, where 𝛿 is a prescribed tolerance,
go to Step 9; otherwise, set 𝑖 fl 𝑖 + 1, 𝑌𝑖 = 𝑋∗𝑖 and go to
Step 5.

Step 9. It cannot be decided by this algorithm whether SOF
problem is solvable. Stop.

Remark 7. Due to the bad performances generated by initial
data selection in ILMI algorithms [14, 15], 𝑌1 = 𝐼𝑛󸀠 + 𝜀1 is
proposed in this paper where 𝜀1 > 0, yielding to a feasible
solution.

4.2. Improving Closed-Loop Performances. In this section,
a modified approach of Loop Shaping technique [19] will
be introduced to design the multiloop PI controller as
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Figure 2: Block diagram of the controlled system.

described in subproblem 2. Figure 2 shows the block diagram
of the controlled system where 𝑟, 𝑦, 𝑢, 𝑢𝐺, 𝑒, 𝑑 and 𝑑𝑖 denote
the set-point vector, the output vector, the control signal
vector, the process control signal vector, the error vector, the
output disturbance vector, and the input disturbance vector,
respectively.

Let us define the input loop transfer matrix, 𝐿 𝑖, and the
output transfer matrix, 𝐿𝑜, respectively, as follows [20]:𝐿 𝑖 = 𝐾𝐺,𝐿𝑜 = 𝐺𝐾. (44)

The input sensitivity matrix is defined as the transfer matrix
from 𝑑𝑖 to 𝑢𝐺 such as 𝑆𝑖 = (𝐼 + 𝐿 𝑖)−1 ,𝑢𝐺 = 𝑆𝑖𝑑𝑖 (45)

and the output sensitivity matrix is defined as the transfer
matrix from 𝑑 to 𝑦 such that𝑆𝑜 = (𝐼 + 𝐿𝑜)−1 ,𝑦 = 𝑆𝑜𝐺𝑑𝑑. (46)

The input and output complementary sensitivity matrices are
defined as follows:𝑇𝑖 = 𝐼 − 𝑆𝑖 = 𝐿 𝑖 (𝐼 + 𝐿 𝑖)−1 ,𝑇𝑜 = 𝐼 − 𝑆𝑜 = 𝐿𝑜 (𝐼 + 𝐿𝑜)−1 . (47)

It is easy to see that the closed-loop system, if it is internally
stable, satisfies the following equations:𝑦 = 𝑇𝑜𝑟 + 𝑆𝑜𝐺𝑑𝑖 + 𝑆𝑜𝐺𝑑𝑑, (48)𝑢 = 𝐾𝑆𝑜𝑟 − 𝐾𝑆𝑜𝐺𝑑𝑑 − 𝑇𝑖𝑑𝑖, (49)𝑒 = 𝑆𝑜 (𝑟 − 𝐺𝑑𝑑) − 𝑆𝑜𝐺𝑑𝑖, (50)𝑢𝐺 = 𝐾𝑆𝑜𝑟 − 𝐾𝑆𝑜𝐺𝑑𝑑 + 𝑆𝑖𝑑𝑖. (51)

Equation (48) shows that the effects of the disturbance 𝑑
on the plant output 𝑦 can be made “small” by making the
output sensitivity function 𝑆𝑜 small, as 𝐺𝑑 is fixed. Similarly,
(50) shows the effect of the set-point 𝑟 to the error 𝑒 by
making 𝑆𝑜 as small as possible. The notion of smallness
for a transfer matrix in a certain range of frequencies can
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Figure 3: Block diagram of a controlled shaped system.

be made explicit using frequency dependent singular values
particularly minimizing 𝜎(𝑆𝑜) where 𝜎 is the maximum
singular value. Similarly to the conventional Loop Shaping
design [19, 20], shaping the open-loop nominal system
corresponds to shaping the loop gain 𝐺𝐾 using the pre-
and postcompensators 𝑉1(𝑠) and 𝑉2(𝑠). The new shaped
control system is shown in Figure 3. It is obvious that a well
designed control system should meet, at least, the following
requirements: (1) stability, (2) set-point tracking, and (3)
output disturbance attenuation. Let us then define the input
loop transfer matrix, 𝐿 𝑖sh, and the output transfer matrix,𝐿𝑜sh, as 𝐿 𝑖sh = 𝐾sh𝐺sh,𝐿𝑜sh = 𝐺sh𝐾sh. (52)

The input sensitivity matrix is defined as the transfer matrix
from 𝑑𝑖 to 𝑢𝐺 as follows:𝑆𝑖sh = (𝐼 + 𝐿 𝑖sh)−1 ,𝑢𝐺 = 𝑆𝑖sh𝑑𝑖 (53)

and the output sensitivity matrix is defined as the transfer
matrix from 𝑑 to 𝑦 as follows:𝑆𝑜sh = (𝐼 + 𝐿𝑜sh)−1 ,𝑦 = 𝑆𝑜sh𝐺𝑑𝑑. (54)

The input and output complementary sensitivity matrices are
defined as 𝑇𝑖sh = 𝐼 − 𝑆𝑖sh = 𝐿 𝑖sh (𝐼 + 𝐿 𝑖sh)−1 ,𝑇𝑜sh = 𝐼 − 𝑆𝑜sh = 𝐿𝑜sh (𝐼 + 𝐿𝑜sh)−1 . (55)

It is easy to see that the closed-loop system, if it is internally
stable, satisfies the following equations:𝑦 = 𝑇𝑜sh𝑟 + 𝑆𝑜sh𝐺sh𝑑𝑖 + 𝑆𝑜sh𝐺𝑑𝑑, (56)𝑢 = 𝐾sh𝑆𝑜sh𝑟 − 𝐾sh𝑆𝑜sh𝐺𝑑𝑑 − 𝑇𝑖sh𝑑𝑖, (57)𝑒 = 𝑆𝑜sh (𝑟 − 𝐺𝑑𝑑) − 𝑆𝑜sh𝐺sh𝑑𝑖, (58)𝑢𝐺 = 𝐾sh𝑆𝑜sh𝑟 − 𝐾sh𝑆𝑜sh𝐺𝑑𝑑 + 𝑆𝑖sh𝑑𝑖. (59)

As𝐺𝑑 is fixed, from (56) and (58), good set-point tracking and
output disturbance attenuation would require the maximum
singular value of the output sensitivity matrix of the shaped
system 𝜎(𝑆𝑜sh) be made small such as𝜎 (𝑆𝑜sh) = 𝜎 ((𝐼 + 𝐺sh𝐾sh)−1) = 1𝜎 (𝐼 + 𝐺sh𝐾sh)≤ 1𝜎 (𝐺sh𝐾sh) . (60)

It should be indicated that improving the closed-loop shaped
systemperformances over those of the nominal systemwould
require 𝜎(𝑆𝑜sh) be made smaller than 𝜎(𝑆𝑜), particularly in
the low frequency range where 𝑑 is usually significant. As𝐺(𝑠) and 𝐾(𝑠) are fixed by subproblem 1, 𝑉1(𝑠) and 𝑉2(𝑠)
play a key role in the Loop Shaping design procedure. Thus,
synthesis of the shaped controller𝐾sh is reduced to choose an
appropriate𝑉1(𝑠) and𝑉2(𝑠) in order to guarantee closed-loop
performances, under the following:

min𝜎 (𝑆𝑜sh) (61)

such that 𝜎 (𝑆𝑜sh) < 𝜎 (𝑆𝑜) . (62)

Figure 4 synthesizes the Loop Shaping design procedure
proposed in this paper where the proposed Loop Shaping
design procedure is stated below:

Algorithm 8.

Step 1. Consider the PI controller designed via Algorithm 6.
Assume that the closed-loop system performances are not
well performed and define the control objectives for the
desired closed-loop system responses (good disturbance
rejection, steady state error minimization).

Step 2. Choose a precompensator 𝑉1(𝑠) and a postcompen-
sator 𝑉2(𝑠) such that the singular values of the nominal plant𝐺(𝑠) are shaped to give a desired open-loop shape (high low
frequency gain and low high frequency gain).

Step 3. For the shaped plant 𝐺sh(𝑠), if the control objectives
and constraint (62) are satisfied then go to Step 4. Else adjust𝑉1(𝑠) and 𝑉2(𝑠) and go to Step 2.
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Figure 4: Loop Shaping design procedure.

Step 4. Synthesize a final feedback controller 𝐾fin(𝑠) for the
nominal plant 𝐺(𝑠) by𝐾fin (𝑠) = 𝐾sh (𝑠) 𝑉1 (𝑠) , (63)

where 𝐾sh(𝑠) is given in (7). For tuning purpose, we always
choose 𝑉2(𝑠) = 𝐼; then𝐾fin (𝑠) = 𝑉1 (𝑠) 𝐾 (𝑠) 𝑉1 (𝑠) . (64)

Step 5. Verify that the desired closed-loop system responses
are met. If yes stop. Else adjust 𝑉1(𝑠) and 𝑉2(𝑠) and go to
Step 2.

Remark 9. If𝐺(𝑠) is a nonsquarematrix such as 𝑝 > 𝑚 or 𝑝 <𝑚, then it is obvious that the proposed algorithm does not

hold. Some minor modifications are required to tackle this
problem. In fact, compatible dimensions for the shaped plant𝐺sh(𝑠) and the shaped controller 𝐾sh(𝑠) require taking 𝑉1(𝑠),𝑉2(𝑠),𝐺(𝑠), and𝐾(𝑠)with the same dimension (max (𝑝,𝑚))×(max (𝑝,𝑚)). Thereby, the dimensions of 𝐺sh(𝑠) and 𝐾sh(𝑠)
are chosen to be equal to (max (𝑝,𝑚))× (max (𝑝,𝑚)) and the
proposed Loop Shaping design procedure still holds.

Remark 10. Note that the final PI controller designed in
Algorithm 8 is related to the PI controller designed in
Algorithm 6. Indeed, 𝐾fin(𝑠), given by relation (64), is
designed, on one hand, using the full MIMO PI controller𝐾(𝑠) given by relation (3) computed via Algorithm 6, and,
on the other hand, using weighting functions 𝑉1(𝑠) properly
designed following Algorithm 8.
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Remark 11. It must be noted that there are severe limitations
when the conventional Loop Shaping design procedure is
used for MIMO systems as discussed in [20]. Among these
limitations, it may still be much harder to find a stabilizing𝐾sh if 𝐺sh for non-minimum phase or unstable systems.
However, this paper succeeds in overcoming these limitations
thanks to the first stage of the design procedure that guaran-
tees internally stable closed-loop.

5. Application

In this section, simulation results will be performed using
three typical examples: the distillation column (unstable
system), the ISP reactor (stable system), and the 4-tank
process (non-minimum phase system). Furthermore, we will
illustrate the superiority of the proposed approach over
related ones for set-point tracking, disturbance rejection, and
parametric uncertainties scenarios. The comparative study
will be established between the following approaches:

(i) The proposed PI controller designed via the Algo-
rithms 6 and 8.

(ii) The PI controller designed via Algorithm 6.
(iii) The PID controller designed in [14].
(iv) IMC-PI controller approach [13]
(v) The conventional IMC-PID approach [10]

Sedumi and Yalmip Toolbox [30] are used to solve ILMIs. To
evaluate the closed-loop performances, the Integral Absolute
Error (IAE) and the Total Variation (TV) criteria are con-
sidered. They are defined, respectively, by Vu and Lee [13] as
follows:

IAE = ∫𝑇
0
|𝑒 (𝑡)| 𝑑𝑡,

TV = 𝑇∑
𝑘=1

|𝑢 (𝑘 + 1) − 𝑢 (𝑘)| , (65)

where 𝑇 is finite time chosen for the integral approach steady
state value and 𝑒(𝑡) is defined as the total error between the
set-points and the outputs.

For the different simulations, unit step changes in the set-
points and disturbances are made to the 1st and 2nd loops.
Furthermore, the robustness of the controller is evaluated
by considering a perturbation uncertainty of ±10% in the
important parameters, particularity, gains, and delays of the
process.

Just for the second example, we will prove that the
most conventional multiloop IMC-PID control approach
proposed by Economou and Morari [10] fails and that the
multiloop IMC-PI proposed by Vu and Lee [13] has less
TV performances. This last approach will not be tested on
the third example since it is only appropriate for first-order
systems.

For systems with given transfer matrix, the passage
from the matrix transfer to a minimal state space model is
established using Gilbert method detailed in [31].

For the orthogonal collocation method, optimal param-
eters are chosen such as 𝑁 = 3 and 𝑝 = 𝑞 = −1/2. The
different performances singular values are plotted by means
of 1/𝜎(𝑆) and 1/𝜎(𝑆sh) by noting that max 1/𝜎(𝑆sh) is equal to
min𝜎(𝑆sh).

To prove the validity of the transformation between the
state space representation and the corresponding transfer
matrix and the approximation of the delayed system, let us
introduce the following errors: let 𝑒1 be the error between
the unit step response to the state space representation (1)
and the corresponding transfermatrix of the LTIMIMOwith
multiple time delays 𝐺(𝑠). 𝑒2 is defined as the total error
between the delayed system (1) outputs and the approximated
ones by model (4)-(5) using the orthogonal collocation
method.

Remark 12. Due the bad performances obtained via the PID
controller designed via the approach given in [14], an additive
filter is joined to the derivative action to attenuate noises.
Thus, the transfer matrix of the PID controller with filter
considered is described by

𝐾PID, 𝑓 (𝑠) = 𝐹1,PID + 𝐹2,PID𝑠 + 𝐹3,PID × 𝑠𝜏𝑑𝑠 + 1 ,𝜏𝑑 > 0. (66)

It should be noted that the PID controller with filter (66) is
applied to stable and non-minimum phase systems. Due to
bad simulation results performed for the unstable system, the
PID controller with filter is not considered.

5.1. Example 1:The Distillation Column System. Consider the
typical example of the distillation column described in [6, 32,
33] belonging to the class ofMIMOunstable plants with input
delays; its transfer matrix model is described by Mete et al.
[32] as follows:

𝐺 (𝑠) = [[[[[
3.0400𝑒−𝜏2𝑠𝑠 −278.2000𝑒−𝜏3𝑠𝑠 (𝑠 + 6) (𝑠 + 30)0.0520𝑒−𝜏2𝑠𝑠 206.6000𝑒−𝜏3𝑠(𝑠 + 6) (𝑠 + 30)

]]]]] . (67)

Applying a column decomposition method [31] for (67), the
state space representation (1) can be deduced as follows:

𝐴0 =(0 0 0 00 0 0 00 0 −6 00 0 0 −30),
𝐵0 =(1 00 00 00 0),
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𝐵1 =(0 00 10 10 1),𝐶 = (3.0400 −1.5400 1.9300 0.38000.0520 1.1400 −1.4300 0.2800)
(68)

for 𝜏2 = 0.5 h and 𝜏3 = 0.6 h.
Using the orthogonal collocation method, the following

matrices are obtained for model (4)-(5):

𝐴2 = 𝐴3
=(10.3923 1.1547 −1.1547 0.8038−4.6188 −0.0000 4.6188 −31.1547 −1.1547 −10.3923 11.1962−1.4291 1.3333 −19.9043 19 ),

𝐵2 = 𝐵3 =(−11.1962 −11.19623 3−0.8038 −0.80381 1 ),
𝐶2 = 𝐶3 = (0 0 0 10 0 0 1) .

(69)

By solvingAlgorithm 6with𝑋1 = 𝐼14+0.0010 and 𝛿 = 0.1000
yielding to 𝛼 = 1.5000, the following PI gains are obtained:

𝐹1 = (0.1945 0.29530.1946 0.2955) ,𝐹2 = (0.0432 0.00060.0429 0.0006) . (70)

Thus, the PI controller transfer matrix is given by

𝐾 (𝑠) = [[[[
0.1945𝑠 + 0.0432𝑠 0.2953𝑠 + 0.0006𝑠0.1946𝑠 + 0.0429𝑠 0.2955𝑠 + 0.0006𝑠 ]]]] . (71)

Figure 5 illustrates the validity of the passage between the
transfer matrix model (67) and the state space representation
(1) and also the validity of the approximated model (4)-(5)
obtained via the orthogonal collocation method.
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Figure 5: Models validation of the distillation column.

Table 1: Comparative analysis of controller’s performances: the
distillation column case study.

Tuning method Set-point Disturbance
IAE TV IAE TV

Proposed 175.16 19.82 453.14 19.77
PI controller 494.05 1.810 1366.10 6.69

Figure 6 proves that the PI design procedure satisfies
the desired specifications for a precompensator 𝑉1(𝑠) and
postcompensator 𝑉2(𝑠) chosen as follows:

𝑉1 (𝑠) = [[[1.8000
𝑠 + 1𝑠 + 1.0400 00 2 𝑠 + 1𝑠 + 1.0200]]] ,𝑉2 (𝑠) = [1 00 1] .

(72)

To boost the low frequency gain and give almost zero steady
state error,𝑉1(𝑠) is chosen accordingly as an approximated PI
precompensator.

The resulting performance indices for the proposed mul-
tivariable controller and the one computed by ILMI method
for the nominal and perturbed system cases are summarized
in Tables 1 and 2. The proposed controller affords better
performances especially for the second output and better
disturbance rejection over PI controller as shown by Figures
8 and 9. As listed in Tables 1 and 2, the controller settings
of the proposed method provide superior performances
by the smallest total IAE for both case studies: set-point
changes, disturbances changes, and parametric uncertainties.
Acceptable TV indices are also shown by the proposed
method for this process.
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Figure 6: Singular values of 𝐺, 𝐺sh, 1/𝑆𝑜, and 1/𝑆𝑜sh for the distillation column.

Table 2: Robustness analysis under ±10% in the gain and delay: the distillation column with input delays.

Tuning method
The distillation column with input delays (+10%) The distillation column with input delays

(−10%)
Set-point Disturbance Set-point Disturbance

IAE TV IAE TV IAE TV IAE TV
Proposed 166.17 60.42 453.14 19.77 189.34 11.97 371.23 15.83
PI controller 457.45 1.82 1366.10 6.69 537.84 1.80 1118 5.18

5.2. Example 2: The Industrial Scale Polymerization (ISP)
Reactor. Consider the ISP reactor system described by its
transfer matrix given by Chien et al. [34] as follows:

𝐺 (𝑠) = [[[[[
22.8900𝑒−𝜏2𝑠4.5720𝑠 + 1 −11.6400𝑒−𝜏3𝑠1.8070𝑠 + 14.6890𝑒−𝜏2𝑠2.1740𝑠 + 1 5.8000𝑒−𝜏3𝑠1.8010𝑠 + 1

]]]]] . (73)

Its minimal realization via Gilbert method gives the state
space model (1) where

𝐴0 =(−0.2187 0 0 00 −0.5534 0 00 0 −0.4600 00 0 0 −0.5552) ,
𝐵0 =(5.0065 00 02.1569 00 0),

𝐵1 =(0 00 −6.44160 00 3.2204 ) ,𝐶 = (1 1 0 00 0 1 1)
(74)

for 𝜏2 = 0.2 h and 𝜏3 = 0.4 h.
Let us first test for the previous system the conventional

IMC-PID approach proposed by Economou & Morari [10].
In this approach, the IMC interaction measure surfaces are
practical tools to assess the potential value of the multiloop
design. By their definitions, they must vary between 0 and 1
such that for the 𝑖th input/output pair of a particular system
configuration, the Row IMC interaction measure 𝑅𝑖 is the
quantity defined by𝑅𝑖 (𝑖𝜔) ≜ 11 + 𝑓∗𝑅𝑖 (𝑖𝜔) = ∑𝑗, 𝑗 ̸=𝑖 𝑔𝑖𝑗 (𝑖𝜔)∑𝑗 󵄨󵄨󵄨󵄨󵄨𝑔𝑖𝑗 (𝑖𝜔)󵄨󵄨󵄨󵄨󵄨 , 0 ≤ 𝜔 < ∞ (75)
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Table 3: Interaction measures of the ISP reactor via the IMC-PID approach [10].

Pairing IMC interaction measure𝑅𝑖 𝐶𝑖(𝑢1, 𝑦1) = (1, 1) 𝑅𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨 𝐶𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔21󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔21󵄨󵄨󵄨󵄨(𝑢2, 𝑦2) = (2, 2) 𝑅𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔21󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔21󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨 𝐶𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨(𝑢2, 𝑦1) = (1, 2) 𝑅𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨 𝐶𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔12󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨(𝑢1, 𝑦2) = (2, 1) 𝑅𝑖(𝑖𝜔) = 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑔21󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔22󵄨󵄨󵄨󵄨 𝐶𝑖(𝑖𝜔) = |𝑔11||𝑔11| + |𝑔21|
whereas, for the same input/output pair and configuration,
the complementary quantity 𝐶𝑖 is defined by

𝐶𝑖 (𝑖𝜔) ≜ 11 + 𝑓∗𝐶𝑖 (𝑖𝜔) = ∑𝑗 ̸=𝑖 𝑔𝑗𝑖 (𝑖𝜔)∑𝑗 󵄨󵄨󵄨󵄨󵄨𝑔𝑗𝑖 (𝑖𝜔)󵄨󵄨󵄨󵄨󵄨 , 0 ≤ 𝜔 < ∞. (76)

The following scenarios are expected:

(i) 0.5 < 𝑅𝑖, 𝐶𝑖 < 1.0 corresponds to significant
interactions between themultiple loops and an overall
poor performances of the multiloop structure are
expected.

(ii) 0 < 𝑅𝑖, 𝐶𝑖 ≤ 0.5 corresponds to good pairing and
SISO controllers can be designed for each loop and
granting good performances.

For the ISP reactor, the transfer function matrix (73) can be
written as follows:

𝐺 (𝑠) = [𝑦𝑢] = [[[[[
22.8900𝑒−0.2𝑠4.5720𝑠 + 1 −11.6400𝑒−0.4𝑠1.8070𝑠 + 14.6890𝑒−0.2𝑠2.1740𝑠 + 1 5.8000𝑒−0.4𝑠1.8010𝑠 + 1

]]]]]= [𝑔11𝑒−𝜃11 𝑔12𝑒−𝜃12𝑔21𝑒−𝜃21 𝑔22𝑒−𝜃22] .
(77)

From (75) and (76), we compute the IMC interactions
measure for each pairing as summarized in Table 3. Figure 10
shows the IMC interaction measure for 𝑢1 controlling 𝑦1 and𝑢2 controlling 𝑦2 for the original pairing whereas reverse
pairing is shown as the IMC interaction measure for 𝑢1
controlling 𝑦2 and 𝑢2 controlling 𝑦1. As it can be observed
by the IMC measure interaction, the original pairing as the
reverse pairing cannot guarantee good performances that is
why such an approach fails.

Let us now apply the extended IMC-PI controller
approach proposed by Vu and Lee [13] for the class of
TITO multidelay processes with first-order plus delay time

Table 4: Multiloop PI controller design of the ISP reactor via the
IMC-PI approach [13].

Loop 𝐾𝐶𝑖 𝐾𝐼𝑖
1 0.4211 0.1068
2 0.1320 0.1121

(FOPDT) systems. From the ISP reactor and referring to [13],
the following data are deduced:𝐾11 = 22.8900,𝐾12 = −11.6400,𝐾21 = 4.6890,𝐾22 = 5.8000,𝑇11 = 4.5720,𝑇12 = 1.8070,𝑇21 = 2.1740,𝑇22 = 1.8010,𝜃11 = 0.2000,𝜃12 = 0.4000,𝜃21 = 0.2000,𝜃22 = 0.4000,𝜆1 = 0.0900,𝜆2 = 0.6900,𝐾𝑒𝑖 = −0.4111,𝑇𝑒𝑖 = −2.1800.

(78)

The steady state relative gain array of the ISP reactor isΛ 𝑖𝑖(0) = 0.7087 < 1, which proves that the closed-loop gain
is greater than the open-loop gain. The ISP reactor system
does not then exhibit open-loop diagonal dominance. The
diagonal PI-multi-loop controller parameters𝐾𝐶𝑖 and𝐾𝐼𝑖 for
each loop 𝑖, 𝑖 = 1, 2 are then designed and given by Table 4.
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Figure 7: Input and output sensitivity matrices of the shapedmodel
for the distillation column.

Table 5: Comparative analysis of the controller’s performances: the
ISP reactor case study.

Tuning method Set-point Disturbance
IAE TV IAE TV

Proposed 20.24 10.74 123.08 2.66
PI 174.42 1.97 224.96 1.33
PID [14] 440.57 4.93 417.66 1.48
IMC-PI [13] 3.97 1.98 49.05 9.13

We have also verified that the two outputs converge to the set-
points in response to a unit step.

For 𝜏2 = 0.2 h and 𝜏3 = 0.4 h, the reduced model (4)-
(5) is obtained via the collocation method. Figure 11 proves
the validity of models (1) and (4)-(5). By solving Algorithm 6
using the parameters 𝑌1 = 𝐼18 + 0.0020 and 𝛿 = 0.1000 and
yielding 𝛼 = 0.7549, the following PI matrix gains are given:

𝐹1 = (0.2059 0.30610.2062 0.3060) ,𝐹2 = (0.0302 0.03320.0292 0.0335) . (79)

The transfer matrix of the related computed PI controller is
given by

𝐾 (𝑠) = [[[[
0.2059𝑠 + 0.0302𝑠 0.3061𝑠 + 0.0332𝑠0.2062𝑠 + 0.0292𝑠 0.3060𝑠 + 0.0335𝑠 ]]]] . (80)

By solving algorithm in [14], the PID feedback matrix gains
are given by

𝐹1,PID = (0.0187 0.29880.0192 0.2989) ,𝐹2,PID = (−0.0132 0.0812−0.0135 0.0812) ,𝐹3,PID = (0.0151 0.06610.0151 0.0660) .
(81)

Figure 12 proves that PI design procedure satisfies the desired
specifications for a precompensator 𝑉1(𝑠) and postcompen-
sator 𝑉2(𝑠) chosen as follows:

𝑉1 (𝑠) = [[[3.5000 ×
0.5000𝑠 + 1𝑠 + 1 00 3 × 0.1500𝑠 + 1𝑠 + 1 ]]] ,𝑉2 (𝑠) = [1 00 1] .

(82)

For a sequential unit step change in the set-points at𝑡 = 0 and 𝑡 = 600 h, one can see that the proposed
controller has the faster rising time and settling
response over other ILMI approaches as shown by
Figure 14. The disturbance model 𝐺𝑑 is taken as 𝐺𝑑 =[−4.2430𝑒−0.4𝑠/(3.4450𝑠 + 1) −0.6010𝑒−0.4𝑠/(1.9820𝑠 + 1)]𝑇
as in [34]. Unit step changes in the disturbance were also
made to the 1st and 2nd loops, respectively, as shown by
Figure 15. The resulting performance indices for the nominal
and perturbed system cases for various tuning methods are
given in Tables 5 and 6. The proposed MIMO PI controller
provides superior performances over PI controller and PID
controller designed via ILMI approaches by means of the
smallest total IAE. Acceptable TV values are also listed by
the proposed method.

5.3. Example 3:The 4-Tank Process. Consider the quadruple-
tank process for which one of the two transmission-zeros
of the linearized system dynamics can be moved between
the positive and negative real axis [35]. The corresponding
model with multiple delays is described in [36] by taking into
account transport delays between valves and tanks. Applying
the numerical values corresponding to the non-minimum
phase model found in [35], system (1) is given by

𝐴0 =(−0.1993 0 0 00 −0.1422 0 00 0 −0.1230 00 0 0 −0.0873) ,
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Table 6: Robustness analysis under ±10% parametric uncertainties: The ISP reactor case study.

Tuning method
ISP (+10%) ISP (−10%)

Set-point Disturbance Set-point Disturbance
IAE TV IAE TV IAE TV IAE TV

Proposed 19.75 8.72 120.67 2.90 21.28 9.27 127.46 2.54
PI 158.68 1.95 224.06 1.33 193.50 1.94 225.85 1.33
PID [14] 404.24 4.82 415.56 1.28 482.68 4.94 418.84 1.52
IMC-PI [13] 4.36 2.05 48.33 8.26 3.58 1.92 49.95 10.32

𝐴1 =(0 0 0.1230 00 0 0 0.08730 0 0 00 0 0 0 ),
𝐵0 =(0.0482 00 0.03500 00 0 ),
𝐵1 =( 0 00 00 0.07750.0559 0 ).

(83)

The measurement level signals 𝑦1 and 𝑦2 are 𝑘𝑐ℎ1 and 𝑘𝑐ℎ2
where 𝑘𝑐 = 0.5V/cm. The output matrix is then given by

𝐶 = (0.5000 0 0 00 0.5000 0 0) . (84)

Its transfer matrix is described by

𝐺 (𝑠)
= [[[[[

0.0241𝑒−𝑠𝜏2𝑠 + 0.1993 0.0047𝑒−𝑠(𝜏1+𝜏3)(𝑠 + 0.1995) (𝑠 + 0.1230)0.0024𝑒−𝑠(𝜏1+𝜏3)(𝑠 + 0.1422) (𝑠 + 0.0873) 0.0175𝑒−𝑠𝜏2𝑠 + 0.1422
]]]]] .

(85)

For simulation results, the constant delays are chosen as
follows: 𝜏1 = 5 s, 𝜏2 = 2 s, and 𝜏3 = 4 s.

To investigate the validity of the 4-tank process, the
different model errors are depicted in Figure 16. By solving
Algorithm 6 using the parameters 𝑌1 = 𝐼18 + 0.2050, 𝛿 =

0.1000, and yielding 𝛼 = 0.2500, the following PI gains are
given: 𝐹1 = (0.1569 0.15320.0236 0.0154) ,𝐹2 = (0.1569 0.15320.0236 0.0154) . (86)

Thus, the PI controller transfer matrix is given by

𝐾 (𝑠) = [[[[
0.1569𝑠 + 0.1569𝑠 0.1532𝑠 + 0.1532𝑠0.0236𝑠 + 0.0236𝑠 0.0154𝑠 + 0.0154𝑠 ]]]] . (87)

The feedback matrix gains designed by solving algorithm in
[14] are given by𝐹1,PID = (0.1562 0.15150.0231 0.0150) ,𝐹2,PID = (0.1562 0.15150.0231 0.0150) ,𝐹3,PID = (−3.7924 5.5584−3.7924 5.5584) .

(88)

Figure 17 shows that PI design procedure satisfies the desired
specifications for a precompensator 𝑉1(𝑠) and postcompen-
sator 𝑉2(𝑠) chosen as follows:

𝑉1 (𝑠) = [[[3 ×
2𝑠 + 1𝑠 + 1 00 3 × 3𝑠 + 1𝑠 + 1 ]]] ,𝑉2 (𝑠) = [1 00 1] .

(89)

The resulting performance indices for the proposed mul-
tivariable controller and those of other ILMI methods for
the nominal and perturbed system cases are summarized in
Tables 7 and 8. For a sequential unit step changes in the set-
point and disturbance, Figures 19 and 20 compare the closed-
loop time responses and controller output responses afforded
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Figure 8: Closed-loop responses and controller output responses to set-point changes for the distillation column.

Table 7: Comparative analysis of controller’s performances. The non-minimum phase 4-tank process.

Tuning method Set-point Disturbance
IAE TV IAE TV

Proposed 479.04 119.47 98.24 15.20
PI 4005.50 39.10 105.91 11.48
PID [14]. 4100.80 338.06 105.22 6.75
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Table 8: Robustness analysis under ±10% in the gain and delay: the non-minimum phase 4-tank process case study.

Tuning method
4-tank process (+10%) 4-tank process (−10%)

Set-point Disturbance Set-point Disturbance
IAE TV IAE TV IAE TV IAE TV

Proposed 418.26 120.51 99.43 15.84 510.06 98.66 94.85 13.21
PI 3678.10 37.14 106.96 11.99 4383.80 41.88 102.31 11.58
PID [14]. 3768.90 333.93 106.24 7.04 4482.50 339.06 101.65 5.76
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Figure 9: Closed-loop responses and controller output responses to unit step changes in the disturbance for the distillation column.
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Figure 10: IMC interaction measures for the ISP reactor: fail of the conventional IMC-PID approach.

by the proposed controller with those given by PI and PID
with filter controllers. The disturbance model 𝐺𝑑 is taken as
a perturbation uncertainty of +10% in the process gain and
time delay into the actual process, simultaneously. As listed
in Tables 7 and 8, the proposed MIMO PI controller settings
provide superior performance over PI and PID controllers
by means of the smallest total IAE. High TV values are

explained by non-minimum phase system characteristics for
this process.

Furthermore, noise rejection in high frequencies is also
known as an important requirement in a control system
design. In order to evaluate the effect of such noise on
the closed-loop performances of the most complex exam-
ples considered in this paper, simulation results have been
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Figure 12: Singular values of 𝐺, 𝐺sh, 1/𝑆𝑜, and 1/𝑆𝑜sh for the ISP reactor.
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Figure 13: Input and output sensitivity matrices of the shaped model for the ISP reactor.
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Figure 14: Closed-loop responses and controller output responses to set-point changes for the ISP reactor.

conducted taking into account of White Gaussian Noise
Measurements (WGNM) with a variation of 0.01 V and zero
mean. It is apparent from Figure 21 that the output responses
are not sensitive to WGNM whereas acceptable fluctuations
are however observed for the control inputs. Improving such
performances will be considered in future works.

Remark 13. Equations (56) and (59) show the effects of the
disturbances 𝑑 and 𝑑𝑖 on the output vector 𝑦 and the control

signal vector 𝑢𝐺, respectively. This can be obviously made
small by making the output sensitivity function 𝑆𝑜sh and
the input sensitivity function 𝑆𝑖sh small. In other words, a
good disturbance attenuation can be improved bymaking the
sensitivity functions 1/𝑆𝑜sh and 1/S𝑖sh decrease faster in low
frequencies. From Figures 7, 13, and 18, it is clear that this
principle is well managed for the three examples. Indeed, a
high frequency roll-off is shown over 0.01 rad/s and 1 rad/s
with 31 dB/decade, 20 dB/decade and 17.5 dB/decade for 1/𝑆𝑜sh
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Figure 15: Closed-loop responses and controller output responses to unit step changes in the disturbance for the ISP reactor.

and with 33.5 dB/decade, 20 dB/decade, and 18 dB/decade for1/𝑆𝑖sh for the considered unstable, stable, and non-minimum
phase systems, respectively.

5.4. Comparative Analysis. Previous results can be summa-
rized as follows:

(i) Even more the controller design procedure has not
considered decoupling principle of multivariable sys-
tems; the proposed approach provides generally supe-
rior performances by the smallest total IAE for the

set-point changes, disturbance changes and paramet-
ric uncertainties, over related approaches, for the
unstable distillation column, the ISP reactor, and the
4-tank process as summarized by Tables 1-2 and 5–8.
Low TV values are also shown for the ISP reactor.

(ii) The proposed method succeeds to synthesize a
MIMO PI controller for the ISP reactor when the
IMC-PID approach proposed by Economou and
Morari [10] fails due to high interactions measure for
the original and reverse pairings. Furthermore, the
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Figure 19: Closed-loop responses and controller output responses to set-point changes for the 4-tank process.

proposed controller settings give a much smoother
response for the disturbance rejection case with (TV
= 2.66, TV = 2.90 and TV = 2.54) over the IMC-PI
approach [13] with (TV = 9.13, TV = 8.26, TV = 10.32)
for both the nominal and the perturbed models.

(iii) The proposed method is applicable to the 4-tank pro-
cess where the IMC-PI approach [13] is not applicable
due to the presence of second-order functions in the

transfer matrix. The IMC-PI approach proposed by
Vu and Lee [13] is only applicable for FOPTD systems.

(iv) The proposed method is applicable to the unsta-
ble distillation column with input delays where the
IMC-PI approach proposed by Vu and Lee [13] is only
applicable for FOPTD systems and where the IMC-
PID approach proposed by Economou and Morari
[10] is limited to models with first or second orders.



Mathematical Problems in Engineering 23

0 100 200
−0.2
−0.1

0
0.1

8000 8100 8200
−0.1

0
0.1

8000 8100 8200
−0.2
−0.1

0.1
0

0 100 200
−0.2
−0.1

0
0.1

8000 8100 8200

0

1

0 10 200

0

1

8000 8100 8200

0

1

0 100 200

0

1

4000 80000 12000 16000
Time (s)

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Y
2

(V
)

12000 160004000 80000
−0.8

Time (s)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
U

2
(V

)

120004000 160000 8000
Time (s)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

U
1

(V
)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Y
1

(V
)

4000 8000 12000 160000
Time (s)

Proposed
PI
PID (with filter)

Proposed
PI
PID (with filter)

Figure 20: Closed-loop responses and controller output responses to unit step changes in the disturbance for the 4-tank process.

It should be pointed out that the unstable distillation
column holds third-order elements.

(v) For the 4-tank process, some large IAE and TV
values listed are due to non-minimum phase sys-
tem characteristics; it is obvious that non-minimum
zero dynamics cause performance deterioration of
the closed-loop system responses (initial undershoot,
overshoot and zero crossings) and then increase IAE
and TV performances indices.

6. Conclusion

This paper presents a MIMO PI controller design procedure
for LTI MIMO systems with multiple time delays by means
of ILMI and sensitivity functions. The proposed Loop Shap-
ing design procedure with minimizing sensibility functions
yields to optimized closed-loop system responses. The dis-
tillation column, the ISP reactor, and the 4-tank process as
benchmarks of unstable, stable, and non-minimum phase
systems are provided to illustrate the validity, effectiveness,
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and robustness of the proposed method. Considering dif-
ferent case studies (set-point tracking, disturbance rejec-
tion, and parametric uncertainties), a comparative analysis
between the proposed method and related ones showed
that the proposed method afforded the superior perfor-
mances both in the nominal and in the perturbed case
studies.
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