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The cohesive zone model (CZM) has been widely used for numerical simulations of interface crack growth. However, geometrical
andmaterial discontinuities decrease the accuracy and efficiency of theCZMwhen based on the conventional finite elementmethod
(CFEM). In order to promote the development of numerical simulation of interfacial crack growth, a new CZM, based on the
wavelet finite element method (WFEM), is presented. Some fundamental issues regarding CZMof interface crack growth of double
cantilever beam (DCB) testing were studied.The simulation results were compared with the experimental and simulation results of
CFEM. It was found that the new CZM had higher accuracy and efficiency in the simulation of interface crack growth. At last, the
impact of crack initiation length and elastic constants of material on interface crack growth was studied based on the new CZM.
These results provided a basis for reasonable structure design of composite material in engineering.

1. Introduction

Interface in the composite materials is the common surface
area of each connecting phase and it contributes to the
transmission of mechanical property. Numerous studies have
shown that failure often occurs along the interface; therefore,
the fracture behavior of interface crack growth attracted
considerable attention in recent years [1–4]. Numerical sim-
ulation is the main method for interface fracture analysis,
and it is also the key to the development of interface fracture
mechanics. At present, many scholars, both within the coun-
try and abroad, have carried out studies on the problem of
interface crack growth, by using different numerical methods
[5–9]. Although many numerical calculation methods for
interface crack growth have already been reported, as indi-
cated above, the number of papers that simulates interface
crack growth based on WFEM is limited.

In most of the finite element applications of the CZM, it
is natural thatWFEM is a new numerical calculation method
which has been gaining lot of interest in the last decade. It uses
the scaling function or the wavelet function as interpolation
function instead of the traditional polynomial, and its main
characteristics are as follows: lower undetermined coeffi-
cient, higher approximation accuracy, strong localization
performance, and multiresolution analysis. Regarding the

problem of crack growth, in terms of not changing mesh
dividing, the accuracy and efficiency of numerical calculation
can be improved by increasing the node information, and
it has better adaptive performance. Therefore, the method
has an application prospect in the aspect of numerical
simulation of crack growth. Zuo et al. [10] study static and free
vibration problems of laminated composite plates adopting
WFEM and higher-order plate theory, the effects of length-
to-thickness ratios, layer numbers, and fiber orientations
on the deflections and frequencies; the results showed that
WFEM provides better results and that it is accurate and
stable for free vibration analysis of laminated composite
plates. Xiang et al. [11] constructed plane plate element
using Hermite cubic spline wavelet for stress intensity factors
(SIFs) evaluation in cracked plate structures; numerical
simulation showed WFEM has better localization property.
Chen et al. [12] proposed a second generation WFEM for
diagnosing rotors with different crack location and size; the
experimental results denote that the proposed method has
higher identification precision. Chen et al. [13] proposed a
novel numerical algorithm of crack fault prognosis based
on WFEM and verified the effectiveness and accuracy of
the proposed method through experiments. In short, WFEM
has been successfully applied to various fields of engineering
numerical analysis [14–19].
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CZM is an effective approach for simulating fracture
events. In recent years, CZM was studied and some excellent
achievements have been obtained [20–23].

According to the current known researching achieve-
ment, the combination of WFEM with CZM for simulating
interface crack growth has not been studied. In this paper,
by combining the WFEM and cohesive model, the stiffness
matrix of wavelet cohesive interface element was derived.The
strain energy release rate (SERR) was calculated by using the
virtual crack closure technique (VCCT) [24, 25], the process
of crack growth was described by the nonlinear fracture
criterion [26], and the experimental results and simulation
results of CFEMwere compared. Finally, the impact of initial
length of interface crack and elastic modulus of material on
interface crack growth was studied.

2. B-Spline Wavelet on the Interval [0, 1]
In order to avoid the numerical oscillation phenomenon
of classical wavelet when solving boundary value problem,
American scholars Chui and Quak [27] presented the B-
spline wavelet on the interval (BSWI). The 0 scale𝑚th-order
BSWI functions and wavelets were given by Goswami et al.
[28]. For the needs of the following part, in this paper, the 0
scale 4th-order scaling functions and wavelets were given in
the following:

𝜙04,−3 (𝑥) = 16
{{{
6 − 18𝑥 + 18𝑥2 − 6𝑥3, 𝑥 ∈ [0, 1]
0, the rest,

𝜙04,−2 (𝑥) = 16
{{{{{{{{{{{

18𝑥 − 27𝑥2 + 212 𝑥3, 𝑥 ∈ [0, 1]
12 − 18𝑥 + 9𝑥2 − 32𝑥3, 𝑥 ∈ [1, 2]
0, the rest,

𝜙04,−1 (𝑥) = 16

{{{{{{{{{{{{{{{{{

9𝑥2 − 112 𝑥3, 𝑥 ∈ [0, 1]
−9 + 27𝑥 − 18𝑥2 + 72𝑥3, 𝑥 ∈ [1, 2]
27 − 27𝑥 + 9𝑥2 − 𝑥3, 𝑥 ∈ [2, 3]
0, the rest,

𝜙04,0 (𝑥) = 16

{{{{{{{{{{{{{{{{{{{{{

𝑥3, 𝑥 ∈ [0, 1]
4 − 12𝑥 + 12𝑥2 − 3𝑥3, 𝑥 ∈ [1, 2]
−44 + 60𝑥 − 24𝑥2 + 3𝑥3, 𝑥 ∈ [2, 3]
64 − 48𝑥 + 12𝑥2 − 𝑥3, 𝑥 ∈ [3, 4]
0, the rest.

(1)

The 0 scale 4th-order wavelet functions can be obtained
by the following function:

5040 × 𝜓04,𝑘 (𝑥) =
3∑
𝑖=0

𝑎𝑖𝑥𝑗, (2)

where 𝑎𝑖 is the corresponding coefficient to different𝑘 (−3, −2, −1, 0), and it can be obtained by LUT [29].

In order to have at least one inner wavelet, the following
condition must be satisfied:

2𝑗 ≥ 2𝑚 − 1, (3)

where𝑚 and 𝑗 are the order and scale of BSWI, respectively.
Since the 0 scale 𝑚th-order scaling and wavelet func-

tions have been obtained, the corresponding 𝑗 scale 𝑚th-
order of BSWI (BSWI𝑚𝑗) scaling functions 𝜙𝑗

𝑚,𝑘
(𝜉) and the

corresponding wavelet functions 𝜓𝑗
𝑚,𝑘
(𝜉) can be evaluated by

the following equations:

𝜙𝑗
𝑚,𝑘 (𝜀)

=
{{{{{{{{{

𝜙𝑚,𝑘 (2𝑗𝜉) , 𝑘 = −𝑚 + 1, . . . , −1
𝜙𝑚,2𝑗−𝑚−𝑘 (1 − 2𝑗𝜉) , 𝑘 = 2𝑗 − 𝑚 + 1, . . . , 2𝑗 − 1
𝜙𝑚,0 (2𝑗𝜉 − 𝑘) , 𝑘 = 0, . . . , 2𝑗 − 𝑚,

(4)

𝜓𝑗
𝑚,𝑘 (𝜉)

=
{{{{{{{{{

𝜓𝑚,𝑘 (2𝑗𝜉) , 𝑘 = −𝑚 + 1, . . . , −1
𝜓𝑚,2𝑗−2𝑚−𝑘+1 (1 − 2𝑗𝜉) , 𝑘 = 2𝑗 − 2𝑚 + 2, . . . , 2𝑗 − 𝑚
𝜓𝑚,0 (2𝑗𝜉 − 𝑘) , 𝑘 = 0, . . . , 2𝑗 − 2𝑚 + 1,

(5)

where 𝜉 is the independent variable of scaling and wavelet
functions on the interval [0, 1]. Therefore, the scaling func-
tions can be obtained in vector form as follows:

Φ = [𝜙𝑗𝑚,−𝑚+1 (𝜉) 𝜙𝑗𝑚,−𝑚+2 (𝜉) ⋅ ⋅ ⋅ 𝜙𝑗
𝑚,2𝑗−1

(𝜉)] , (6)

where 𝜙𝑗𝑚,−𝑚+1(𝜉), 𝜙𝑗𝑚,−𝑚+2(𝜉), . . . , 𝜙𝑗𝑚,2𝑗−1(𝜉) are the scaling
functions obtained from (4). The wavelet functions can also
be obtained in vector form:

𝜓 = [𝜓𝑗𝑚,−𝑚+1 (𝜉) 𝜓𝑗𝑚,−𝑚+2 (𝜉) ⋅ ⋅ ⋅ 𝜓𝑗
𝑚,2𝑗−𝑚

(𝜉)] , (7)

where 𝜓𝑗𝑚,−𝑚+1(𝜉), 𝜓𝑗𝑚,−𝑚+2(𝜉), . . . , 𝜓𝑗𝑚,2𝑗−𝑚(𝜉) are the wavelet
functions obtained from (5).

In order to construct the two-dimensional wavelet plane
plate element, the two-dimensional BSWI scaling function is
required. Through the tensor product, the two-dimensional
scaling functions are

Φ = Φ1 ⊗Φ2, (8)

where Φ1 = [𝜙𝑗𝑚,−𝑚+1(𝜉) 𝜙𝑗𝑚,−𝑚+2(𝜉) ⋅ ⋅ ⋅ 𝜙𝑗
𝑚,2𝑗−1

(𝜉)] is the
one row vector combined with the scaling functions for𝑚 at
the scale 𝑗 andΦ2 = [𝜙𝑗𝑚,−𝑚+1(𝜂) 𝜙𝑗𝑚,−𝑚+2(𝜂) ⋅ ⋅ ⋅ 𝜙𝑗

𝑚,2𝑗−1
(𝜂)]

is another row vector combined with the 𝑗 scale 𝑚th-order
scaling functions. ⊗ is the Kronecker symbol.

The two-dimensional wavelet functions are
Ψ
1 = Φ1 ⊗Ψ2,
Ψ
2 = Φ2 ⊗Ψ1,
Ψ
3 = Ψ1 ⊗Ψ2,

(9)

where Φ1 and Φ2 are the vector forms of scaling functions
andΨ1 andΨ2 are wavelet functions.
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3. Wavelet Cohesive Zone Model

The CZM is a simplified model of the interface layer. The
interface characteristics are described by the relationship
between the interface traction and the relative displacement
of upper and lower interface. The CZM is based on elastic-
plastic fracture mechanics and is an effective approach for
simulating fractures, which can potentially avoid the stress
singularity at the crack tip in linear elastic fracturemechanics,
and the crack interface stress and fracture energy can be
therefore obtained. As the research and development of CZM
evolves, two main CZMs have been proposed and have
already been used for the simulating of ductile and two-phase
material interface crack growth [30–32].

3.1. The Bilinear CZM. The relationship between normal
cohesive traction 𝑇𝑛 and normal displacement jump 𝛿𝑛 can
be expressed as

𝑇𝑛 = 𝐾𝑛𝛿𝑛 (1 − 𝐷𝑛) . (10)

The normal critical fracture energy values are computed
as

𝜑𝑐𝑛 = 12𝑇max
𝑛 𝛿𝑐𝑛, (11)

where 𝐾𝑛 is the normal cohesive stiffness 𝑇max
𝑛 /𝛿∗𝑛 , 𝑇max

𝑛 is
themaximumnormal cohesive traction, 𝛿∗𝑛 is the normal dis-
placement jump at the maximum normal cohesive traction,
and 𝛿𝑐𝑛 is the normal displacement jump at the completion
of debonding.𝐷𝑛 is the interface damage parameter and is an
irreversible quantity.The value of𝐷𝑛 ranges from 0 to 1; when𝐷𝑛 = 1, the interface is completely out of bond and is defined
as

𝐷𝑛 =
{{{{{{{{{{{

0, 𝛿𝑛 ≤ 𝛿∗𝑛
(𝛿𝑛 − 𝛿∗𝑛𝛿𝑛 )( 𝛿𝑐𝑛𝛿𝑐𝑛 − 𝛿∗𝑛 ) , 𝛿∗𝑛 < 𝛿𝑛 ≤ 𝛿𝑐𝑛
1, 𝛿𝑛 ≥ 𝛿𝑐𝑛,

(12)

where 𝛿𝑐𝑛 is the normal displacement jump at the completion
of debonding.

Figure 1 shows the relationship between interface normal
cohesive traction 𝑇𝑛 and normal displacement jump 𝛿𝑛. It
clearly shows that, with the increase of normal displacement
jump 𝛿𝑛, when the interface layer is detached, the interface
cohesive traction is increased, reaching amaximumvalue and
then decreasing to zero in the end.

When the normal displacement 𝛿𝑛 ≥ 𝛿𝑐𝑛, then 𝑇𝑛 = 0.The
interface has been completely detached andhas lost the ability
of load transferring; thus, the damage process of interface
layer can be simulated by this curve.

3.2. Wavelet CZM Interface Element. With the aim to con-
verge all difficulties in CZM numerical analyses, a method of
combining of WFEM with CZM has been proposed, where
wavelet CZM interface element is used to simulate the inter-
face separation process. In this paper, as an example, two-
dimensional wavelet interface elements were used to deduce
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Figure 1: The bilinear CZM.
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Figure 2: Wavelet interface elements.

the wavelet interface element stiffness matrix. By considering
the 𝑗 scale 𝑚th order of the BSWI scaling function as the
interpolation function, an interface element was constructed,
and its structure is presented in Figure 2. The element
contains 2(𝑛 + 1) nodes, and each node has two degrees of
freedom, which includes horizontal and vertical direction. In
applications, the upper nodes of interface initially coincide
with the lower nodes, which mean that the initial thickness
of interface element is 0.

The definition of the wavelet interface element nodes
displacement in the standard solution domain is as follows:

u𝑒 = [𝑢1𝑡 , 𝑢1𝑛, 𝑢2𝑡 , 𝑢2𝑛, . . . , 𝑢(𝑛+1)𝑡 , 𝑢2(𝑛+1)𝑛 ]𝑇 . (13)

The continuous displacement field of upper and lower
interface of wavelet interface element is

𝑢 = [𝑢−𝑡 , 𝑢−𝑛 , 𝑢+𝑡 , 𝑢+𝑛 ]𝑇 , (14)

where “+”, “−“ represent the upper and lower displacement
of wavelet interface element, respectively.

When using the interval B-splinewavelet scaling function
of the 𝑗 scale 𝑚th order as an interpolation function, the
displacement interpolation function is

𝑢 (𝜉) = 2
𝑗−1∑
𝑘=−𝑚+1

𝑎𝑗
𝑚,𝑘
𝜙𝑗
𝑚,𝑘 (𝜉) = Φa𝑒, (15)

where 𝜉 is the tangential coordinates along with the wavelet
interface element in the standard solution domain, the
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wavelet coefficient a𝑒 = [𝑎𝑗𝑚,−𝑚+1 𝑎𝑗𝑚,−𝑚+2 ⋅ ⋅ ⋅ 𝑎𝑗𝑚,2𝑗−1], and
the wavelets scaling function can be obtained in vector form
Φ = [𝜙𝑗𝑚,−𝑚+1(𝜉) 𝜙𝑗𝑚,−𝑚+2(𝜉) ⋅ ⋅ ⋅ 𝜙𝑗

𝑚,2𝑗−1
(𝜉)].

After matrix conversion, the displacement interpolation
function represented by the nodal displacement array is

𝑢 (𝜉) = Φ (R𝑒)−1 u𝑒 = N𝑒u𝑒, (16)

where the converted matrix R𝑒 =[Φ𝑇(𝜉1) Φ𝑇(𝜉2) ⋅ ⋅ ⋅ Φ𝑇(𝜉𝑛+1)]𝑇. The normal displacement
field is

𝛿 = (𝛿𝑡, 𝛿𝑛)𝑇 = [𝑢+𝑡 − 𝑢−𝑡 , 𝑢+𝑛 − 𝑢−𝑛 ]𝑇 = L ⋅ N𝑒 ⋅ u𝑒, (17)

where

L = [−1 1 0 0
0 0 −1 1] ;

N𝑒

=
[[[[[
[

𝑁𝑒1 0 𝑁𝑒2 0 ⋅ ⋅ ⋅ 𝑁𝑒𝑛−1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛+1 0 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0
0 𝑁𝑒1 0 𝑁𝑒2 ⋅ ⋅ ⋅ 0 𝑁𝑒𝑛−1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛+1 0 0 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 𝑁𝑒𝑛+1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛−1 0 ⋅ ⋅ ⋅ 𝑁𝑒2 0 𝑁𝑒1 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0 0 𝑁𝑒𝑛+1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛−1 ⋅ ⋅ ⋅ 0 𝑁𝑒2 0 𝑁𝑒1

]]]]]
]
.

(18)

The wavelet interface element stiffness matrix is

K = ∫𝐿
−𝐿

M ⋅ S ⋅ L ⋅ N𝑒𝑑𝜉, (19)

where

M = [𝑁𝑒1 0 𝑁𝑒2 0 ⋅ ⋅ ⋅ 𝑁𝑒𝑛−1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛+1 0 𝑁𝑒𝑛 0 𝑁𝑒𝑛−1 0 ⋅ ⋅ ⋅ 𝑁𝑒2 0 𝑁𝑒1 0
0 𝑁𝑒1 0 𝑁𝑒2 ⋅ ⋅ ⋅ 0 𝑁𝑒𝑛−1 0 𝑁𝑒𝑛 0 −𝑁𝑒𝑛+1 0 −𝑁𝑒𝑛 0 −𝑁𝑒𝑛−1 ⋅ ⋅ ⋅ 0 −𝑁𝑒2 0 −𝑁𝑒1]

𝑇

; (20)

additionally

S = [[[[
[

𝜕𝑇𝑡𝜕𝛿𝑡
𝜕𝑇𝑡𝜕𝛿𝑛𝜕𝑇𝑛𝜕𝛿𝑡
𝜕𝑇𝑛𝜕𝛿𝑛

]]]]
]

(21)

is the interface elasticity matrix; 𝑇𝑡 and 𝑇𝑛 are the tangential
and normal cohesive traction, respectively; 𝛿𝑡 and 𝛿𝑛 are the
tangential and normal displacement jump, respectively.

4. Numerical Examples

4.1. Interface Crack Growth Problem of DCB Testing. DCB
model is made of a steel plate of length 𝐿 = 150mm and
width𝐻 = 4mm and crack length 𝑎 = 15mm at the free end
of DCB; the SERRs are 𝐺IC = 600 J/m2, 𝐺IIC = 800 J/m2, and𝐺IIIC = 800 J/m2, and the properties of both DCB materials
and interfaces are presented in Table 1.

By taking advantage of two BSWI43 wavelet plane plate
elements to model the upper and lower solid beam, respec-
tively, and one wavelet cohesive interface element to model
the interface for the DCB, a wavelet finite element model of
crack growth was established, as demonstrated in Figure 3.

The process of interface crack growth was simulated by the
nonlinear fracture criterion.

When material 1 and material 2 are the same material,
Table 2 shows the relative error of the WFEM calculation
results compared to the CFEM calculation results, and it
indicated that the WFEM can obtain higher accuracy with
less elements and nodes and that it is suitable to solve the
problem of interface crack growth.

Figure 4 presents the changing trends of the interface
reaction forces as a function of time, for different elastic
moduli. As presented in Figure 4, for different elastic moduli,
the interface reaction forces experienced a hardening process
of gradually reaching their maximum value. The interface
cracks were propagated, during the hardening process, which
required the increase of external force of the interface, which,
subsequently, resulted into crack growth.

In order to study the impact of elastic modulus ratio
on interface crack growth, it is supposed that the interface
strength is lower than that of material 1 and material 2. The
interface crack was extended along the predefined interface,
and the elastic modulus of material 1 was 135MPa, while the
elastic modulus of material 2 was altered, without changing
other parameters. Regarding the wavelet interface element,
the variation rule of stress at the crack tip was obtained in
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Figure 3: Schematic for elements and nodes of DCB.

Table 1: Properties of material 1 and interface.

Material 1 Interface
𝐸1 = 120GPa, 𝐸2 = 𝐸3 = 10.5GPa 𝜎max = 2.4 × 105 Pa, 𝜏max = 4.2 × 105 Pa
V12 = V13 = 0.3, V23 = 0.51 𝐾𝑛 = 1 × 105 N/m, 𝐾𝑡 = 1 × 105 N/m𝐺12 = 𝐺13 = 5.25GPa, 𝐺23 = 3.48GPa 𝜑𝑐𝑛 = 𝜑𝑐𝑡 = 57.31Pa⋅m

Table 2: Comparison of different calculation methods.

Calculation method Element number Node number Strain energy release
rate/J/mm2 Relative error/%

Experimental values
[15] — — 258 ± 12 —

WFEM

2 wavelet plane plate
elements and

1 wavelet cohesive interface
element

180 243.60 5.58

CFEM 1400 PLANE183 and 140
INTER202 2750 230.43 10.85
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Figure 4: Reaction forces trends for different elasticmodulus values.

different elastic modulus ratio, as presented in Figure 5. It can
be concluded that the stress at the crack tip increases with

Elastic modulus ratio
Elastic modulus ratio Elastic modulus ratio

0.4 0.6 0.8 1 1.2 1.4 1.60.2
Time (s)

0

50

100

150

200

250

300

350

400

450

Elastic modulus ratio 801

St
re

ss
 at

 cr
ac

k 
tip

𝜎
(M

Pa
)

1 : 1
30 : 1 120 : 1

Figure 5: Stress at the crack tip under different elasticmodulus ratio.

the increase of elastic modulus ratio; the higher the elastic
modulus ratio is the faster the interface crack grows.

Figure 6 shows the effect of different initial crack length
values on the interface crack growth. As can be observed
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Figure 6: The variation law of cohesive traction and time for different initial crack length values.
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Figure 7: DCB interface crack growth model and its nonuniform material.

from Figure 6, the longer the initial crack length of DCB, the
more pronounced the cohesive traction of DCB will be. This
indicates that the longer the initial crack length is, the easier
the interface crack grows.

4.2. Interface Crack Growth Problem of Nonuniform Material
DCB. As presented in Figure 7, the geometrical dimensions
and materials parameters of nonuniform material DCB are
beam length 𝐿 = 300mm, beam height 𝐻 = 32mm,
the initial crack length 𝑎 = 30mm, elastic modulus 𝐸0 =2.0 × 1011 Pa, and Poisson ratio 𝜇 = 0.3. The corresponding
interface parameters are maximum normal traction 𝑇max =95MPa and normal separation displacement 𝛿𝑛 = 0.006mm.

Table 3 presents the interface stress at the crack tip of
DCB under different nonuniform material parameters 𝛽. It
can be observed by comparing the results of WFEM (484
DOFs) with CFEM (38400DOFs) thatWFEMandCFEMare
in good agreement. Therefore, good computational accuracy
and efficiency were further demonstrated. The relationship
between the corresponding laws of interface stress as a func-
tion of time, under different parameters 𝛽, is demonstrated in
Figure 8.The curves show that the cohesive traction increases
and the interface damage initiated when reaching the highest
point.Then, it was successively decreased to an approximately
constant value, which is consistent with interface damage
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Figure 8: The variation law of cohesive traction and time.

process. Also, it was demonstrated that the interface damage
initiated earlier, when the nonuniform parameter 𝛽 was at
higher values; therefore, the uniform changing ofmaterial for
DCB is beneficial for preventing crack growth.
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Table 3: Interface stress at the crack tip of nonuniform material DCB.

Nonuniform material parameters 𝛽 The interface stress at the crack tip/MPa
WFEM CFEM Relative error/%

0 145.41 148.79 2.32
2 145.26 148.13 1.98
4 124.42 128.49 3.27
6 126.23 130.21 3.15
8 131.79 135.19 2.58
10 179.36 182.92 1.98
12 188.05 194.32 3.33

5. Conclusions

The new CZM based on the WFEM was constructed and
the corresponding wavelet interface element stiffness matrix
was obtained by (17). The relative error of the WFEM,
when 3 elements and 360 nodes were employed with the
experimentalmean,was 5.58%,while that of theCFEM,when
1540 elements and 5500 nodes were employedwith the exper-
imental mean, was 10.85%, which indicated that the WFEM
can obtain higher accuracy with less elements and nodes and
it is suitable to solve the problem of interface crack growth.

The elastic modulus has a great impact on interface crack
growth. The higher the elastic modulus of the material, the
lower the required energy consumption of interface crack
growth, and the faster the crack growth.

The study on the impact of the elastic modulus ratio of
DCB on interface crack growth shows that, with the increase
of the elastic modulus ratio of DCB, the stress concentration
in interface crack tip increases, and interface crack is easier to
extend. Therefore, interface crack growth can be postponed
by adjusting the elastic modulus ratio. Also, the material
parameters for DCB changes uniformly, which can prevent
interface cracks from growing.

The study results of interface crack growth based on the
initial length of interface crack show that cohesive traction
decreases with the increase of initial length of interface crack;
therefore, the interface cracks get easier growth.
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