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A Chebyshev tensor product surface is widely used in image analysis and numerical approximation. This article illustrates an
accurate evaluation for the surface in form of Chebyshev tensor product. This algorithm is based on the application of error-free
transformations to improve the traditional Clenshaw Chebyshev tensor product algorithm. Our error analysis shows that the error
bound is 𝑢 + O(𝑢2) × cond(𝑃, 𝑥, 𝑦) in contrast to classic scheme 𝑢 × cond(𝑃, 𝑥, 𝑦), where 𝑢 is working precision and cond(𝑃, 𝑥, 𝑦)
is a condition number of bivariate polynomial 𝑃(𝑥, 𝑦), which means that the accuracy of the computed result is similar to that
produced by classical approach with twice working precision. Numerical experiments verify that the proposed algorithm is stable
and efficient.

1. Introduction

Chebyshev polynomials have been extended to almost all
mathematical and physical discipline, including spectral
methods, approximation theory, and representation of poten-
tials [1–4]. Bivariate Chebyshev polynomials have gained
attention of the computer vision researchers [5, 6]. Over the
years, researchers have focused on the implementation of
Chebyshev tensor product series in image analysis [5–7].The
Chebyshev tensor product series can be used to approxi-
mate an image, which is essentially regarded as a two-dimen-
sional spatial function [8]. Two separable univariate Cheby-
shev polynomials that are discrete and orthogonal can
approximate two-dimensional signal. Mukundan et al. [5]
introduce a new discrete Chebyshev tensor product based
on Chebyshev polynomials. This discrete Chebeshev tensor
product functions show the effectiveness as feature descrip-
tors. Rahmalan et al. [6] propose a novel approach based on
discrete orthogonal Chebyshev tensor product for an efficient
image compression. Recently, Omar et al. [7] propose a novel
method for fusing images using Chebyshev tensor product
series. All above need an image reconstruction from a finite

Chebyshev tensor product surface. Thus, developing fast and
reliable algorithms to evaluate the Chebyshev tensor product
series are of challenging interest [9]. The Clenshaw tensor
product algorithm (CTP) [10] is one of algorithms that are
used to evaluate Chebyshev tensor product series.

In order to get a high-precision approximation of an
image, it is essential to evaluate the series accurately. Partic-
ularly, we require higher level of accurate numeric results for
ill-conditioned cases. Li et al.’s double-double [11] (double-
double numbers are represented as an unevaluated sum of
a leading double and a trailing double) is a library used to
improve the accuracy of numerical computation. However,
the algorithm is time-consuming when an input image
becomes larger.

Error-free transformation studied by Ogita et al. [12]
is another direct possible method to improve the accuracy
apart from increasing the working precision. Compensated
algorithms to evaluate the univariate polynomials in different
basis have been proposed in [12–15]. Inspired by their work,
we extend the univariate compensated algorithm to tensor
product case using the compensated Clenshaw algorithm [16]
for evaluation of Chebyshev series [15]. We perform a com-
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pensated Clenshaw tensor product algorithm (for simplicity
we denote it by CompCTP algorithm) to evaluate the polyno-
mials expressed in Chebyshev tensor product form.The pro-
posed algorithm produces the same accuracy as using twice
working precision.

Since the image is fundamentally treated as two-dimen-
sional spatial function, we use general two-dimensional
function to illustrate our algorithm in the sequel. This paper
has the following layout. In Section 2, we introduce some
preliminaries and basic algorithms underlying our algorithm.
In Section 3, we propose the compensated algorithm to
compute surface in form of Chebyshev tensor product. In
Section 4, we analyze forward error bound of the algorithm.
In Section 5, a series of numerical experiments illustrate the
accuracy and efficiency of the proposed algorithm.

2. Preliminaries and
Error-Free Transformations

2.1. Basic Notations. At the present time, IEEE 64-bit floating
arithmetic standard is implemented, which is sufficiently
accurate for most scientific applications. Throughout the
paper, we presume that all the computations are performed
using IEEE-754 [17] standard in double precision so that
neither overflow nor underflow occurs.

We assume that the computations are produced in a
floating-point arithmetic which yields the models

fl (𝑥 op 𝑦) = (𝑥 op 𝑦) (1 + 𝜀1) = (𝑥 op 𝑦)1 + 𝜀2 ,
󵄨󵄨󵄨󵄨𝜀1󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝜀2󵄨󵄨󵄨󵄨 ≤ 𝑢,

(1)

where op ∈ {+, −, ×, /} and 𝑢 is the working precision. For
brevity we denote fl(𝑥 op 𝑦) = 𝑥 o 𝑦, o ∈ {⊕, ⊖, ⊗, ⊘}.
Besides, we denote 𝛾𝑛 fl 𝑛𝑢/(1 − 𝑛𝑢) = 𝑛𝑢 + O(𝑢2) [18] and
use 𝑎 and fl(𝑎) as the computed element of 𝑎.

Finally, we recall the Chebyshev polynomials and analo-
gous Chebyshev polynomials [15, 19]. The forms of Cheby-
shev polynomials and analogous Chebyshev polynomials
definite in the interval [−1, 1] with three term recurrence are
shown in (2) and (3), respectively.

𝑇0 (𝑥) = 1,
𝑇1 (𝑥) = 𝑥,

...
𝑇𝑛+1 (𝑥) = 2𝑥𝑇𝑛 (𝑥) − 𝑇𝑛−1 (𝑥) ,

(2)

𝑇̃0 (𝑥) = 1,
𝑇̃1 (𝑥) = 𝑥,

...
𝑇̃𝑛+1 (𝑥) = 2𝑥𝑇̃𝑛 (𝑥) + 𝑇̃𝑛−1 (𝑥) .

(3)

2.2. Error-Free Transformations. Rounding errors are an
unavoidable consequence of working in finite precision
arithmetic [18]. Error-free transformations (EFTs) are a
technology of the floating-point operation +, −, ×, which
transforms any pair of floating-point numbers (𝑎, 𝑏) into a
new pair (𝑥, 𝑦) with 𝑥 = fl(𝑎 op 𝑏) and 𝑎 op 𝑏 = 𝑥 + 𝑦
to obtain an accurate result. Two algorithms of EFTs are
Donald et al.’s TwoSum [20] (compensated summation of two
floating-point numbers) and Dekker’s TwoProd algorithm
[21] (compensated product of two floating-point numbers).

The Clenshaw algorithm [16] is a recursive method to
compute a linear combination of Chebyshev series 𝑝(𝑥) =∑𝑛𝑗=0 𝑐𝑗𝑇𝑗(𝑥). Reviewing work [15], the forward error bound
of Clenshaw algorithm satisfies (4).

Theorem1 (see [15]). Let𝑝(𝑥) = ∑𝑛𝑗=0 𝑐𝑗𝑇𝑗(𝑥) be a polynomial
at point 𝑥 and Clenshaw (𝑝, 𝑥) denote the numerical result of
Clenshaw algorithm; then

󵄨󵄨󵄨󵄨Clenshaw (𝑝, 𝑥) − 𝑝 (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑛−1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|) . (4)

Combining EFTs with Clenshaw algorithm, [15] pro-
poses a compensated Clenshaw algorithm (CompClenshaw
in Algorithms 3–7) to evaluate univariate finite Chebyshev
series. The algorithm shows a smaller forward error bound
than Clenshaw algorithm.

Theorem 2 (see [15]). Let 𝑝(𝑥) = ∑𝑛𝑗=0 𝑐𝑗𝑇𝑗(𝑥) be a finite
Chebyshev series. The forward error bound of compensated
Clenshaw algorithm (CompClenshaw)verifies󵄨󵄨󵄨󵄨CompClenshaw (𝑝, 𝑥) − 𝑝 (𝑥)󵄨󵄨󵄨󵄨

≤ 𝑢 󵄨󵄨󵄨󵄨𝑝 (𝑥)󵄨󵄨󵄨󵄨 + 𝛾23𝑛−1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|) . (5)

Since the element 𝛾23𝑛−1 is O(𝑢2), comparing to (4), Comp-
Clenshaw is more stable to get an accurate result.

3. Accurate Algorithm to Evaluate Chebyshev
Tensor Product Surface

In this section, we perform a compensated algorithm (Comp-
CTP) to evaluate Chebyshev tensor product series based on
EFTs. The technology is to extend compensated Clenshaw
algorithm to polynomials expressed in Chebyshev tensor
product. In order to extend Clenshaw algorithm to tensor
product case, we express the series as

𝑃 (𝑥, 𝑦) = 𝑚∑
𝑖=0

( 𝑛∑
𝑗=0

𝑎𝑖𝑗𝑇𝑗 (𝑦))𝑇𝑖 (𝑥)
fl
𝑚∑
𝑖=0

𝛼 (𝑖, 𝑦) 𝑇𝑖 (𝑥) .
(6)

Therefore, wewrite Clenshaw tensor product algorithm (CTP)
to evaluate the Chebyshev tensor product series with a nested
Clenshaw algorithm (Algorithm 1).
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function 𝑟𝑒𝑠 = CTP(𝑃, 𝑥, 𝑦) % assuming 𝑃 is the coefficients matrix of polynomial 𝑃(𝑥, 𝑦)𝛼 = 𝑧𝑒𝑟𝑜𝑠(1,𝑚)
for 𝑖 = 0 : 𝑚 do𝛼̂(𝑖) = Clenshaw(𝑃(𝑖, :), 𝑦)
end for𝛼̂(0) = Clenshaw(𝛼̂, 𝑥)
CTP(𝑃, 𝑥, 𝑦) = 𝑃̂(𝑥, 𝑦) = 𝑟𝑒𝑠 = 𝛼̂(0) % 𝑃̂(𝑥, 𝑦) is numerical result of 𝑃(𝑥, 𝑦) using Clenshaw algorithm

Algorithm 1: Clenshaw algorithm for evaluation of Chebyshev tensor product surface.

function [𝑟𝑒𝑠𝑐𝑜𝑚𝑝,𝑟𝑒𝑠𝑜𝑟𝑔, 𝑒𝑟𝑟] = CompCTP(𝑃, 𝑥, 𝑦)𝛼 = 𝑧𝑒𝑟𝑜𝑠(1, 𝑚)
for 𝑖 = 0 : 𝑚 do[𝛼̂(𝑖), 𝑒1(𝑖)] = CompClenshaw(𝑃(𝑖, :), 𝑦)
end for[𝛼̂(0), 𝑒2] = CompClenshaw(𝛼̂, 𝑥)𝑒3 = Clenshaw(𝑒1, 𝑥)𝑒𝑟𝑟 = 𝑒2 ⊕ 𝑒3𝑟𝑒𝑠𝑜𝑟𝑔 = 𝑃̂(𝑥, 𝑦) = 𝛼̂(0)
CompCTP(𝑃, 𝑥, 𝑦) = 𝑟𝑒𝑠𝑐𝑜𝑚𝑝 = 𝑟𝑒𝑠𝑜𝑟𝑔 ⊕ 𝑒𝑟𝑟

Algorithm 2: Compensated Clenshaw algorithm for evaluation of
Chebyshev tensor product surface.

Substituting CompClenshaw for Clenshaw, we put for-
ward a compensated Clenshaw tensor product algorithm
to improve CTP algorithm. We call the compensated CTP
algorithm as CompCTP (Algorithm 2).

According to Algorithm 2, combining
𝑚∑
𝑖=0

𝛼̂ (𝑖) 𝑇𝑖 (𝑥) = 𝑃̂ (𝑥, 𝑦) + 𝑒2,
𝛼 (𝑖) = 𝛼̂ (𝑖) + 𝑒1 (𝑖) , 0 ≤ 𝑖 ≤ 𝑚,

𝑒3 = 𝑚∑
𝑖=0

𝑒1 (𝑖) 𝑇𝑖 (𝑥) , 0 ≤ 𝑖 ≤ 𝑚,
(7)

we have

𝑃̂ (𝑥, 𝑦) + 𝑒2 = 𝑚∑
𝑖=0

(𝛼 (𝑖) − 𝑒1 (𝑖)) 𝑇𝑖 (𝑥)
= 𝑚∑
𝑖=0

𝑛∑
𝑗=0

𝑎𝑖𝑗𝑇𝑖 (𝑥) 𝑇𝑗 (𝑥) − 𝑚∑
𝑖=0

𝑒1 (𝑖) 𝑇𝑖 (𝑥)
= 𝑚∑
𝑖=0

𝑛∑
𝑗=0

𝑎𝑖𝑗𝑇𝑖 (𝑥) 𝑇𝑗 (𝑥) − 𝑒3;
(8)

that is

𝑃 (𝑥, 𝑦) = 𝑃̂ (𝑥, 𝑦) + 𝑒, (9)

where 𝑒 = 𝑒2 + 𝑒3, 𝑒1(𝑖) is the theoretical error produced by𝛼̂(𝑖) = Clenshaw(𝑃(𝑖, :), 𝑦) at 𝑖th step, and 𝑒2 is the theoretical
error generated by 𝛼̂(0) = Clenshaw(𝛼̂(𝑖), 𝑥).

Based on previous analysis, we apparently know that 𝑒 =𝑒2 ⊕ 𝑒3 is the approximation of 𝑒. So the result of CompCTP
algorithm 𝑃(𝑥, 𝑦) = 𝑃̂(𝑥, 𝑦) ⊕ 𝑒 is more accurate than the
floating-point result 𝑃̂(𝑥, 𝑦) of Algorithm 1.

4. Error Analysis of CompCTP Algorithm

In this section, we carry out an error bound of ComCTP
algorithm for Chebyshev tensor product surface. Firstly, we
consider the error bound of the CTP algorithm. According to
Theorem 1, we deduct theTheorem 3.

Theorem 3. Let us consider a Chebyshev tensor product
surface 𝑃(𝑥, 𝑦) = ∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦) and suppose that3(𝑚 + 𝑛)𝑢 < 1, where 𝑢 is the working precision. Then the
value 𝑃̂(𝑥, 𝑦) computed in floating-point arithmetic through
Algorithm 1 satisfies

󵄨󵄨󵄨󵄨󵄨𝑃̂ (𝑥, 𝑦) − 𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨
≤ 𝛾3(𝑚+𝑛)−2 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) . (10)

Proof. Suppose 𝑃̂𝑦(𝑥) fl ∑𝑚𝑖=0 𝑝𝑖(𝑦)𝑇𝑖(𝑥), where 𝑝𝑖(𝑦) is the
numerical result of Clenshaw algorithm by ∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑗(𝑦) at𝑖th step. UsingTheorem 1, we obtain

󵄨󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦) − 𝑃̂ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦) − 𝑃̂𝑦 (𝑥)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑃̂𝑦 (𝑥) − 𝑃̂ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨
≤ 𝑚∑
𝑖=0

󵄨󵄨󵄨󵄨𝑇𝑖 (|𝑥|)󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=0

𝑎𝑖𝑗𝑇𝑗 (𝑦) − 𝑝𝑖 (𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∑
𝑖=0

𝑝𝑖 (𝑦) 𝑇𝑖 (𝑥) − 𝑃̂ (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝛾3𝑛−1 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)
+ 𝛾3𝑚−1 𝑚∑

𝑖=0

󵄨󵄨󵄨󵄨𝑝𝑖 (𝑦)󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|)
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[𝑝, V𝑎𝑐𝑡, 𝑐𝑎𝑐𝑡] = GenPolyCTP(𝑚, 𝑛, 𝑥, 𝑦, V, 𝑐𝑒𝑥𝑝)
% V—the expected evaluation of the polynomial;
% 𝑐𝑒𝑥𝑝—the expected condition number;
% 𝑥, 𝑦—the coordinates;
% V𝑎𝑐𝑡—the actual evaluation of the polynomial;
% 𝑐𝑎𝑐𝑡—the actual condition number;𝑎𝑖,𝑗 = 0, for 𝑖 = 0 : 𝑚, 𝑗 = 0 : 𝑛;𝑛𝑢𝑚 = (𝑚 + 1) ∗ (𝑛 + 1);𝑑2 = 𝑐𝑒𝑖𝑙(𝑛𝑢𝑚/2);
V𝑏 = log2(𝑐𝑒𝑥𝑝 ∗ 𝑎𝑏𝑠(V));𝐼 = 𝐽 = 𝑧𝑒𝑟𝑜𝑠(1, 𝑛𝑢𝑚);𝑝𝑒𝑟𝑚 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑛𝑢𝑚);
Change 𝑝𝑒𝑟𝑚 to coordinates (𝐼, 𝐽),
where (𝐼(𝑖), 𝐽(𝑖)) is a random coefficient of the surface in accord with 𝑝𝑒𝑟𝑚(𝑖) in some sort order;𝑎𝐼(1),𝐽(1) = (2 ∗ 𝑟𝑎𝑛𝑑 − 1)/𝑇𝐼(1)(𝑥)𝑇𝐽(1)(𝑦);𝑎𝐼(2),𝐽(2) = (2 ∗ 𝑟𝑎𝑛𝑑 − 1) ∗ 2V𝑏/𝑇𝐼(2)(𝑥)𝑇𝐽(2)(𝑦);
for 𝑖 = 3 : 𝑑2 do𝑎𝐼(𝑖),𝐽(𝑖) = (2 ∗ 𝑟𝑎𝑛𝑑 − 1) ∗ 2V𝑏∗𝑟𝑎𝑛𝑑/𝑇𝐼(𝑖)(𝑥)𝑇𝐽(𝑖)(𝑦);
end for
log2V = log2(𝑎𝑏𝑠(V));𝑚 = [(2 ∗ 𝑟𝑎𝑛𝑑(1, 𝑛𝑢𝑚 − 𝑑2) − 1) ∗ 2𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(V𝑏,log2V,𝑛𝑢𝑚−𝑑2)];
for 𝑖 = 𝑑2 + 1 : 𝑛𝑢𝑚 − 1 do𝑎𝐼(𝑖),𝐽(𝑖) = (𝑚(𝑖 − 𝑑2) − QDCTPs(𝐹, 𝑥, 𝑦))/𝑇𝐼(𝑖)(𝑥)𝑇𝐽(𝑖)(𝑦);
end for𝑎𝐼(𝑛𝑢𝑚),𝐽(𝑛𝑢𝑚) = (V − QDCTP(𝐹, 𝑥, 𝑦))/𝑇𝐼(𝑛𝑢𝑚)(𝑥)𝑇𝐽(𝑛𝑢𝑚)(𝑦);
V𝑎𝑐𝑡 = QDCTP(𝑃, 𝑥, 𝑦);𝑐𝑎𝑐𝑡 = QDCTP(𝑎𝑏𝑠(𝑃), 𝑥, 𝑦)/𝑎𝑏𝑠(V𝑎𝑐𝑡);

Algorithm 3: Generate polynomial 𝑃(𝑥, 𝑦) = ∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑖(𝑦) in the form of Chebyshev tensor product.

function 𝑟𝑒𝑠 = Clenshaw(𝑝, 𝑥)𝑏𝑛+2 = 𝑏𝑛+1 = 0
for 𝑗 = 𝑛 : −1 : 1 do𝑏𝑗 = 2𝑥𝑏𝑗+1 − 𝑏𝑗+2 + 𝑐𝑗
end for𝑏0 = 𝑥𝑏1 − 𝑏2 + 𝑐0
Clenshaw(𝑝, 𝑥) = 𝑟𝑒𝑠 = 𝑏0

Algorithm4: [16]Clenshaw algorithm to evaluate finiteChebyshev
series.

≤ 𝛾3𝑛−1 𝑚∑
𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)
+ 𝛾3𝑚−1 (1 + 𝛾3𝑛−1) 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)
≤ 𝛾3(𝑚+𝑛)−2 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) .
(11)

function 𝑟𝑒𝑠 = CompClenshaw(𝑝, 𝑥)𝑏̂𝑛+2 = 𝑏̂𝑛+1 = 0𝜀𝑏𝑛+2 = 𝜀𝑏𝑛+1 = 0
for 𝑗 = 𝑛 : −1 : 1 do[𝑠, 𝜋𝑗] = TwoProd(𝑏̂𝑗+1, 2𝑥)[V, 𝜎𝑗] = TwoSum(𝑠, −𝑏̂𝑗+2)[𝑏̂𝑗, 𝛽𝑗] = TwoSum(V, 𝑐𝑗)𝜔̂𝑗 = 𝜋𝑗 ⊕ 𝜎𝑗 ⊕ 𝛽𝑗𝜀𝑏̂𝑗 = 2𝑥 ⊗ 𝜀𝑏̂𝑗+1 ⊖ 𝜀𝑏̂𝑗+2 ⊕ 𝜔̂𝑗
end for[𝑠, 𝜋0] = TwoProd(𝑏̂1, 𝑥)[V, 𝜎0] = TwoSum(𝑠, −𝑏̂2)[𝑏̂0, 𝛽0] = TwoSum(V, 𝑐0)𝜔̂0 = 𝜋0 ⊕ 𝜎0 ⊕ 𝛽0𝜀𝑏̂0 = 𝑥 ⊗ 𝜀𝑏̂1 ⊖ 𝜀𝑏̂2 ⊕ 𝜔̂0
CompClenshaw(𝑝, 𝑥) = 𝑟𝑒𝑠 = 𝑏̂0 ⊕ 𝜀𝑏0

Algorithm 5: [15] compensated Clenshaw algorithm to evaluate
Chebyshev series accurately.
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function DDClenshaw(𝑝ℎ, 𝑝𝑙, 𝑥)𝑏 = 𝑧𝑒𝑟𝑜𝑠(2,𝑁 + 2)
for 𝑗 = 𝑁 : −1 : 2 do[𝑟ℎ1, 𝑟𝑙1] = prod dd d(𝑏(1, 𝑗 + 1), 𝑏(2, 𝑗 + 1), 2 ∗ 𝑥)[𝑟ℎ2, 𝑟𝑙2] = add dd dd(𝑟ℎ1, 𝑟𝑙1, −𝑏(1, 𝑗 + 2), −𝑏(2, 𝑗 + 2))[𝑏(1, 𝑗), 𝑏(2, 𝑗)] = add dd dd(rh2, rl2, ph(j), pl(j))
end for[𝑟ℎ1, 𝑟𝑙1] = prod dd d(𝑏(1, 2), 𝑏(2, 2), 2 ∗ 𝑥)[𝑟ℎ2, 𝑟𝑙2] = add dd dd(𝑟ℎ1, 𝑟𝑙1, −𝑏(1, 3), −𝑏(2, 3))[𝑏(1, 𝑗), 𝑏(2, 𝑗)] = add dd dd(rh2, rl2, ph(1), pl(1))[𝑟ℎ, 𝑟𝑙] = [𝑏(1, 𝑗), 𝑏(2, 𝑗)]

Algorithm 6: [15] Clenshaw algorithm in double-double format.

function [𝑟ℎ, 𝑟𝑙] = DDCTP(𝑃, 𝑥, 𝑦)
for 𝑖 = 1 : 𝑚 do[𝑓1(𝑖), 𝑓2(𝑖)] = DDClenshaw(𝐴(𝑖, :), 𝑎0, 𝑦)% here 𝑎0 = 𝑧𝑒𝑟𝑜𝑠(𝑛 + 1, 1)
end for[𝑟ℎ, 𝑟𝑙] = DDClenshaw(𝑓1, 𝑓2, 𝑥)

Algorithm 7: Clenshaw Chebyshev tensor product in double-double format.

In order to analyze the error bound of CompCTP algo-
rithm, we need a lemma (Lemma 5). Firstly, we review a
lemma in [15].

Lemma 4 (see [15]). Given 𝑝(𝑥) = ∑𝑛𝑗=0 𝑐𝑗𝑇𝑗(𝑥) and 𝜋𝑗, 𝜎𝑗,𝛽𝑗, 𝑗 = 𝑛 − 1 : −1 : 0, is the round-off error of EFTs in Comp-
Clenshaw (Algorithm 5), one obtains

𝑛−1∑
𝑗=0

(󵄨󵄨󵄨󵄨󵄨𝜋𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝜎𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨) 𝑇̃𝑗 (|𝑥|)
≤ 3𝑛𝑢 (1 + 𝛾3𝑛) 𝑛∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|) .
(12)

Lemma 5. Let 𝜀𝑏0 and 𝜀𝑏̂0 be the error of theoretical and
numerical error of CompClenshaw, respectively. One can get

󵄨󵄨󵄨󵄨󵄨𝜀𝑏0 − 𝜀𝑏̂0󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑛−1𝛾3𝑛+1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|) . (13)

Proof. Obviously, 𝜀𝑏̂0 is the Clenshaw algorithm with coef-
ficient 𝜔̂𝑗 in CompClenshaw (Algorithm 5). Using (4) we
obtain

󵄨󵄨󵄨󵄨󵄨𝜀𝑏0 − 𝜀𝑏̂0󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑛−1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝜔̂𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|)
= 𝛾3𝑛−1 𝑛∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝜋𝑗 ⊕ 𝜎𝑗 ⊕ 𝛽𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|)

≤ 𝛾3𝑛−1 𝑛∑
𝑗=0

(󵄨󵄨󵄨󵄨󵄨𝜋𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝜎𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨) (1 + 𝛾2) 𝑇̃𝑗 (|𝑥|)
≤ 𝛾3𝑛−1 (1 + 𝛾2) 𝑛∑

𝑗=0

(󵄨󵄨󵄨󵄨󵄨𝜋𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝜎𝑗󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨) 𝑇̃𝑗 (|𝑥|) .
(14)

Using Lemma 4 to (14), we have󵄨󵄨󵄨󵄨󵄨𝜀𝑏0 − 𝜀𝑏̂0󵄨󵄨󵄨󵄨󵄨
≤ 3𝑛𝑢 (1 + 𝛾3𝑛−1) 𝛾3𝑛−1 (1 + 𝛾2) 𝑛∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑐𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (|𝑥|) . (15)

We obtain 3𝑛𝑢𝛾3𝑛−1(1+𝛾3𝑛−1)(1+𝛾2) ≤ 𝛾3𝑛−13𝑛𝑢(1+𝛾3𝑛+1) ≤𝛾3𝑛−1𝛾3𝑛+1. Then we deduct relation (13).

Finally, we show the forward error bound of CompCTP
algorithm using previous analysis.

Theorem 6. Let 𝑃(𝑥, 𝑦) = ∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦) be a Che-
byshev tensor product surface.The CompCTP algorithm satisfies󵄨󵄨󵄨󵄨CompCTP (𝑃, 𝑥, 𝑦) − 𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨

≤ 𝑢 󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨
+ 3 (𝛾23𝑚+1 + 𝛾23𝑛+1) 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) .
(16)

Proof. According to Algorithm 2, we get the numerical result
of CompCTP algorithm as

𝑃 (𝑥, 𝑦) = 𝑃̂ (𝑥, 𝑦) ⊕ 𝑒 = (𝑃̂ (𝑥, 𝑦) + 𝑒) (1 + 𝛿) ,
𝛿 ≤ 𝑢. (17)
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Using relation (9) and

𝑃 (𝑥, 𝑦) = 𝑃̂ (𝑥, 𝑦) + 𝑒,
𝑒 = 𝑒2 + 𝑒3, 𝑒3 = 𝑚∑

𝑖=0

𝑒1 (𝑖) 𝑇𝑖 (𝑥) , (18)

we obtain

𝑃 (𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) (1 + 𝛿) + (𝑒 − 𝑒) (1 + 𝛿) . (19)

Next, we consider the bound of |𝑒 − 𝑒|. For 𝑒 = 𝑒2 ⊕ 𝑒3 = (𝑒2 +𝑒3)(1+𝛿), |𝛿| < 𝑢, and 𝑒 = 𝑒2+𝑒3 = (𝑒2+𝑒3)(1+𝛿)−𝛿(𝑒2+𝑒3),
we get

|𝑒 − 𝑒| ≤ 𝑢 󵄨󵄨󵄨󵄨𝑒2 + 𝑒3󵄨󵄨󵄨󵄨 + (1 + 𝑢) (󵄨󵄨󵄨󵄨𝑒2 − 𝑒2󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑒3 − 𝑒3󵄨󵄨󵄨󵄨) . (20)

Then, according to |𝑒| = |𝑒2 + 𝑒3| = |𝑃(𝑥, 𝑦) − 𝑃̂(𝑥, 𝑦)|, we
have

󵄨󵄨󵄨󵄨𝑒2 + 𝑒3󵄨󵄨󵄨󵄨 ≤ 𝛾3(𝑚+𝑛) 𝑚∑
𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) . (21)

Let us consider |𝑒2 − 𝑒2|. Because 𝑒2 is the error from
CompClenshaw algorithm, according to Lemma 5, we obtain

󵄨󵄨󵄨󵄨𝑒2 − 𝑒2󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑚−1𝛾3𝑚+1 𝑚∑
𝑖=0

|𝛼̂ (𝑖)| 𝑇̃𝑖 (|𝑥|) . (22)

Using the relation

|𝛼̂ (𝑖)| ≤ (1 + 𝛾3𝑛−1) 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) , 0 ≤ 𝑖 ≤ 𝑚 (23)

and (22), we have
󵄨󵄨󵄨󵄨𝑒2 − 𝑒2󵄨󵄨󵄨󵄨
≤ 𝛾3𝑚−1𝛾3𝑚+1 (1 + 𝛾3𝑛−1) 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) . (24)

Finally, we focus on the bound of |𝑒3 −𝑒3|. We assume 𝑒3mid =∑𝑚𝑖=0 𝑒1(𝑖)𝑇𝑖(𝑥), using triangle inequality󵄨󵄨󵄨󵄨𝑒3 − 𝑒3󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑒3 − 𝑒3mid
󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑒3mid − 𝑒3󵄨󵄨󵄨󵄨 ; (25)

then apparently we have

󵄨󵄨󵄨󵄨𝑒3 − 𝑒3mid
󵄨󵄨󵄨󵄨 = 𝑚∑
𝑖=0

󵄨󵄨󵄨󵄨𝑒1 (𝑖) − 𝑒1 (𝑖)󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|)
≤ 𝛾3𝑛−1𝛾3𝑛+1 𝑚∑

𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) .
(26)

Actually

󵄨󵄨󵄨󵄨𝑒3mid − 𝑒3󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑚−1 𝑚∑
𝑖=0

󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) ; (27)

then 󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑒1 (𝑖) − 𝑒1 (𝑖)󵄨󵄨󵄨󵄨 , 0 ≤ 𝑖 ≤ 𝑚, (28)

where 𝑒1(𝑖) acts as the theoretical error of∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑗(𝑦) at 𝑖th
step; combiningTheorem 1 we get

󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑛−1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) . (29)

Combining (13), (28), and (29) we obtain

󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑛−1 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (𝑦)
+ 𝛾3𝑛−1𝛾3𝑛+1 𝑛∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) .
(30)

Synthetically, combining (27) and (30) we derive

󵄨󵄨󵄨󵄨𝑒3mid − 𝑒3󵄨󵄨󵄨󵄨 ≤ 𝛾3𝑚−1 𝑚∑
𝑖=0

󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|)
≤ 𝛾3𝑚−1 𝑚∑

𝑖=0

(󵄨󵄨󵄨󵄨𝑒1 (𝑖)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑒1 (𝑖) − 𝑒1 (𝑖)󵄨󵄨󵄨󵄨) 𝑇̃𝑖 (|𝑥|)
≤ 𝛾3𝑚−1 (𝛾3𝑛−1 + 𝛾3𝑛−1𝛾3𝑛+1)
⋅ 𝑚∑
𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) .

(31)

According to (25), (26), and (31), we obtain󵄨󵄨󵄨󵄨𝑒3 − 𝑒3󵄨󵄨󵄨󵄨 ≤ (𝛾3𝑛−1𝛾3𝑛+1 + 𝛾3𝑚−1 (𝛾3𝑛−1 + 𝛾3𝑛−1𝛾3𝑛+1))
⋅ 𝑚∑
𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (𝑥) 𝑇̃𝑗 (𝑦) , (32)

using (20), (21), (24), and (32), the error bound yields

|𝑒 − 𝑒| ≤ 𝛼 (𝑚, 𝑛) 𝑚∑
𝑖=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) , (33)

where 𝛼(𝑚, 𝑛) is
𝛼 (𝑚, 𝑛) = 𝑢𝛾3(𝑚+𝑛) + (1 + 𝑢) [𝛾3𝑚−1𝛾3𝑚+1 (1 + 𝛾3𝑛−1)

+ 𝛾3𝑛−1𝛾3𝑛+1 (1 + 𝛾3𝑚−1) + 𝛾3𝑚−1𝛾3𝑛−1] . (34)

By the properties of the element 𝛾𝑛 [18], we deduct some
inequations as follows:

(1 + 𝑢) 𝑢𝛾3(𝑚+𝑛) ≤ 12 (𝛾23𝑚+1 + 𝛾23𝑛+1) ;
(1 + 𝑢)2 (1 + 𝛾3𝑚−1) 𝛾3𝑛−1𝛾3𝑛+1 ≤ 2 (1 + 𝑢)2 𝛾3𝑛−1𝛾3𝑛+1

≤ 2𝛾23𝑛+1;
(1 + 𝑢)2 𝛾3𝑛−1𝛾3𝑚−1 ≤ 𝛾3𝑚𝛾3𝑛 ≤ 12 (𝛾23𝑚+1 + 𝛾23𝑛+1) ;
(1 + 𝑢)2 (1 + 𝛾3𝑛−1) 𝛾3𝑚+1𝛾3𝑚−1 ≤ 2𝛾23𝑚+1.

(35)
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So we have (1 + 𝑢)𝛼(𝑚, 𝑛) ≤ 3(𝛾23𝑚+1 + 𝛾23𝑛+1) and combine
(19) with (33); then we obtain relation (16).

Let 𝑃(𝑥, 𝑦) = ∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦) be a polynomial
in Chebyshev tensor product. If the condition number for
polynomial evaluation of the 𝑃(𝑥, 𝑦) at entry (𝑥, 𝑦) is defined
by

cond (𝑃, 𝑥, 𝑦) = 𝑃̃ (|𝑥| , 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨
= ∑𝑚𝑖=0∑𝑛𝑗=0 󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑇̃𝑖 (|𝑥|) 𝑇̃𝑗 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)󵄨󵄨󵄨󵄨󵄨∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖 (𝑥) 𝑇𝑗 (𝑦)󵄨󵄨󵄨󵄨󵄨 ,

(36)

we show the relative error bound of the CTP and CompCTP
algorithm in Corollary 7.

Corollary 7. Let 𝑃(𝑥, 𝑦) = ∑𝑚𝑖=0∑𝑛𝑗=0 𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦) be a poly-
nomial in Chebyshev tensor product. The relative error bound
of the CTP algorithm and CompCTP algorithm yields󵄨󵄨󵄨󵄨CTP (𝑃, 𝑥, 𝑦) − 𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝛾3(𝑚+𝑛)−2cond (𝑃, 𝑥, 𝑦) ,

󵄨󵄨󵄨󵄨CompCTP (𝑃, 𝑥, 𝑦) − 𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨
≤ 𝑢 + 3 (𝛾23𝑚+1 + 𝛾23𝑛+1) cond (𝑃, 𝑥, 𝑦) .

(37)

As Corollary 7 illustrates that if 3(𝛾23𝑚+1 + 𝛾23𝑛+1)cond(𝑃,𝑥, 𝑦) < 𝑢, the error of the result evaluated by CompCTP is
bounded by working precision 𝑢. Besides that, the computed
result generated by the CompCTP scheme is as accurate as if
evaluated in double-double precision.

5. Experimental Results

In this section, we perform a series of numerical experiments.
The programs are written in Matlab code and run with the
software of MATLAB R2015b. We consider the polynomi-
als with floating-point numbers coefficients and floating-
point element (𝑥, 𝑦) expressed in Chebyshev tensor product.
Considering the efficiency, we use CTP with quad-double
arithmetic (QDCTP) [22] to accurately evaluate polynomial
instead of symbolic toolbox.

Generally, we can get an accurate result using Algorithm 1
as the Chebyshev tensor product series is well-conditioned.
But, we need a more accurate algorithm when the problem
is ill-conditioned. We consider a bivariate polynomial in area[0, 1] × [0, 1] proposed by [14]

𝑃 (𝑥, 𝑦)
= (𝑥 − 0.75)3 (𝑥 − 0.2)3 (𝑦 − 0.75)3 (𝑦 − 0.2)3 (38)

and convert it to a Chebyshev tensor product form.
We extend the univariate conversion algorithm [23] to

change a bivariate polynomial in power form to a Chebyshev
tensor product form. We transform the coefficients via the

Matlab symbolic toolbox. Since the coefficients of polynomi-
als in Chebyshev tensor product which are evaluated by us
are floating-point numbers, they need to be rounded to the
nearest floating-point elements.

We use CTP, CompCTP, and QDCTP (CTP algorithm along
with quad-double arithmetic) [22] to compute the value of
Chebyshev tensor product polynomial 𝑃(𝑥, 𝑦) at 400 grid
points near the multiple root (0.75, 0.2). Figure 1 shows the
surface generated by different algorithms. It is obvious that
the compensated algorithm can approximate the expected
smooth surface as accurate as that using CTP algorithm with
quad-double arithmetic, when the results are rounded to
the working precision. Observe that the surface of CTP is a
folding interface and varies slightly in the direction 𝑥. The
reason is that we firstly compute 𝛼̂(𝑖) = Clenshaw(𝑃(𝑖, :), 𝑦) at the 𝑖th step in the loop of the CTP algorithm and
then compute 𝛼̂(0) = Clenshaw(𝛼̂, 𝑥) leading to the more
obviously influences of the round-off errors along𝑥.Thus, the
CompCTP algorithm can compute a desired result.

Figure 2 performs an absolute forward error using the
algorithms CTP and CompCTP for 400 points. It is clear that
the CompCTP reduces the error better than CTP algorithm.
Besides, we observe that the relative errors of CompCTP
algorithm are smaller than the working precision 𝑢 even near
the point (0.75, 0.2). Therefore, the experiments verify our
estimation of relation (37).

Next we consider the relative error bounds for ill-
conditioned polynomials. We produce a series of ill-
conditioned polynomials in Chebyshev tensor product and
evaluate them using CTP, CompCTP, and DDCTP (CTP with
double-double precision in Algorithms 3–7). We choose
degree 𝑚 × 𝑛 (where 𝑚, 𝑛 is parameter from (6)) with
condition numbers changing from 103 to 1036. The algo-
rithm generating the ill-conditioned polynomials is shown in
Algorithms 3–7 (GenPolyCTP), which is similar to algorithm
GenPoly in [24]. Considering the size of the problem and
computational efficiency, we choose 𝑚 × 𝑛 = 6 × 7. We
plot the results in Figure 3. Obviously, we observe that the
CompCTP illustrates an expected result, where the CompCTP
is more stable and accurate than CTP. The relative errors
are equal to or smaller than 𝑢 when cond(𝑃, 𝑥, 𝑦) ≤1/𝑢. While cond(𝑃, 𝑥, 𝑦) ∈ [1/𝑢, 1/𝑢2], the relative errors
increase almost linearly. Meanwhile, we notice that the
CompCTP shows high accuracy because the rounding errors
are recorded to approximate the real errors even under
ill-condition. Besides, we also compute the ill-conditioned
polynomials using DDCTP based on the Bailey’s quad-double
[2, 25] arithmetic. Comparing with DDCTP, we can find
that the results of CompCTP algorithm are as accurate as
those computed using double-double arithmetic, which are
illustrated by our numerical experiment.

Finally, we focus on the computational complexity of all
the algorithms.

Clenshaw: 3𝑛 + 4
CompClenshaw: 36𝑛 + 38
DDClenshaw: 52𝑛 + 53
CTP: (3𝑛 + 4)(𝑚 + 1) + 3𝑚 + 4
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Figure 1: The surface using CTP, QDCTP, and CompCTP algorithm to evaluate Chebyshev tensor product series.
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Figure 2: Accuracy of the absolute error of CTP algorithm (a) and CompCTP algorithm (b).
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Figure 3: The relative forward error by using CTP, CompCTP, and
DDCTP to evaluate ill-conditioned polynomials.

CompCTP: (36𝑛 + 38)(𝑚 + 1) + 39𝑚 + 43
DDCTP: (52𝑛 + 53)(𝑚 + 1) + (52𝑚 + 53)

Considering the previous comparisons of the accuracy,
we can confirm thatCompCTP algorithm is as accurate as com-
putation with DDCTP algorithm (shown in Algorithms 3–7).
However, CompCTP only requires on the average about 69.2%
of flops. So our algorithm is more efficient than CTP with
double-double arithmetic.

6. Conclusion

We present an accurate and efficient algorithm for evaluation
of Chebyshev tensor product surface, which is based on
the Clenshaw algorithm and error-free transformations. The
error analysis shows that CompCTP algorithm can get the same
accuracy as that computed by the traditional CTP algorithm
with twice working precision. Besides, this compensated
algorithm can run more efficiently than CTP algorithm
with double-double precision. Experiments illustrate that our
algorithm is stable and accurate even in some ill-condition
cases.
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