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The primary objectives of this study are twofold. Firstly, the original SPR method of stress recovery has been modified by
incorporating the kriging interpolation technique to fit a polynomial to the derivatives recovered at the Gauss points. For this
purpose, the 𝑝-version of finite element analysis is performed to produce the stresses at the fixed 10 × 10 Gauss points where
the integrals of Legendre polynomials are used as a basis function. In contrast to the conventional least square method for stress
recovery, the weight factor is determined by experimental and theoretical variograms for interpolation of stress data, unlike the
conventional interpolation methods that use an equal weight factor. Secondly, an adaptive procedure for hierarchical 𝑝-refinement
in conjunction with a posteriori error based on the modified SPR (superconvergent patch recovery) method is proposed.Thirdly, a
new error estimator based on the limit value approach is proposed by predicting the exact strain energy to verify the kriging-based
SPR method.The validity of the proposed approach has been tested by analyzing two-dimensional plates with a rectangular cutout
in the presence of stress singularity.

1. Introduction

The error assessment tools used in finite element analysis
are well known and usually classified into two strategies:
recovery-based error estimators and residual-type estimators
[1, 2]. Stress recovery procedures can be classified as local
(i.e., element level), patch-based, and global. To obtain a
smooth stress field, averaging either projected or consistent
finite element nodal stresses is an example of a patch-based
scheme. The ideas of Zienkiewicz and Zhu [3–5] using the
superconvergent patch recovery (SPR) are often preferred by
researchers since they are robust and simple to use. Some
references [6–11] contain extensive reviews of the different
proposals for improving the SPR technique. They used the
conventional LSM (least square method) to obtain recovered
stresses from the ℎ-version of finite element solution at the
sampling quadrature points. However, the residual-type error
estimators have been proposed to evaluate errors for high-
order hierarchical elements [12–14]. The residual error for

high-order hierarchical elements is the difference between
the displacement fields over the original and a refined
mesh and is computationally more expensive than the 𝑍/𝑍
(Zienkiewicz and Zhu) error estimate.

Recently, some researchers [6, 7] used a weighted super-
convergent patch recovery technique in which the recovered
stresses are calculated by using weighting parameters. In
addition to these, the recover-based technique has been also
extended to mesh based PUMs and the X-FEM (extended
finite element method) [15]. Rodenas et al. [16] also explored
the capabilities of a recovery technique based on an MLS
(moving least squares) fitting, more flexible than SPR tech-
niques as it directly provides continuous interpolated fields
without relying on an FE mesh, to obtain estimates or the
error in energy norm as an alternative to SPR. In the context
of FEM model, the kriging interpolation technique has been
employed as an alternative for estimating the derivative of
the unknown variable at any point of interest [17]. This
method uses a variogram to express the spatial correlation,
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and it minimizes the error of predicted values. It estimates
the value at a location of interest as a weighted sum of
data values at surrounding locations. The weight factors are
assigned according to the variogram function that gives a
decreasing weight with increasing distance between the given
location and one of the surrounding locations. Dai [18] used
the kriging interpolation in mesh-free methods in order to
compare with the radial point interpolation method (RPIM)
based on local supported radial basis function (RBF) and the
Galerkin weak form. The literature on kriging interpolation
for FEM, however, is very limited [14].

The 𝑝-adaptive finite element analysis based on the
error estimation consists of two stages: a posteriori error
estimation and the automatic mesh refinement. The goal is
to increase the 𝑝-level nonuniformly so that the error is
within the specified tolerance. The estimated errors in the
finite element solution are of primary importance because of
the basis for adaptive mesh refinement [19–21]. To minimize
the computational cost, an effective and reliable technique
of postprocessing is necessary for use in adaptive mesh
refinement. It is known that the 𝑍/𝑍 error estimate has not
been directly extended to the 𝑝-refinement [12, 13, 22, 23]
because the high-order shape functions used to interpolate
displacements within an element are also used to interpolate
recovered stresses.

The objective of this study is to demonstrate the appli-
cability of OK (ordinary kriging) interpolation to the 𝑝-
adaptive refinement of L-shaped domain problem employing
the modified SPR method for stress recovery. To verify this
method, the limit value approach is proposed to predict
the exact strain energy for nonsmooth problems based on
the application of the equation of a prior error indicator in
the asymptotic range to three FEMs with three successively
higher levels of polynomial approximation.

2. Ordinary Kriging Interpolation

The OK method is a geostatistical interpolation technique
that requires both the distance and the degree of variation
between known sampled data points when estimating values
at unsampled locations, in other words, firstly, to calculate
the distances between the predicted unknown point and the
measured points nearby and, secondly, to derive the weight
of each of these surrounding measured points by using the
value of the variogram against those distances. The derived
weights at unknown points result in optimal and unbiased
estimates by minimizing the error variance. 𝛾(ℎ) defined in
(1) is often called a semivariogram or semivariance that can
be defined as half the expected squared difference between
paired random functions 𝑆(𝑥𝑖) denoted by stresses in FEM,
separated by the distance and direction vector called by lag
or separation distance ℎ [24, 25] such as

𝛾 (ℎ) = 12𝑛 𝑛∑
𝑖=1

[𝑆 (𝑥𝑖) − 𝑆 (𝑥𝑖 + ℎ)]2 , (1)

where 𝑛 is the number of pairs of values of which the
separation distance is marked with ℎ. When the semivariance
is plotted against the lag distance or separation distance
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Figure 1: Definition of the allowable limit of separation distance.
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Figure 2: Comparative plot of theoretical semivariogram models.

between points, the plot is called semivariogram. For any
given set of spatial data 𝑆(𝑥𝑖 + ℎ) separated from 𝑆(𝑥𝑖), there
will generally be atmost one pair that are separated by a given
distance ℎ. However, the observed data may be scattered near
the separation distance ℎ. One must necessarily aggregate
point pairs [𝑆(𝑥𝑖), 𝑆(𝑥𝑖 + ℎ)] with similar distances ℎ ± Δℎ
where Δℎ is called the allowable limit of separation distance
as shown in Figure 1. Thus the separation distance ℎ can be
allowed to use the similar distance denoted by ℎ±Δℎ. Sample
data belonging to a certain interval ℎ±Δℎ are averaged to find
the representative value at a given distance ℎ.

The semivariogram model is a function of three parame-
ters, known as the nugget effect, sill, and range.Theoretically,
at zero separation distance, the semivariogram value should
be zero. However, at an infinitesimally small separation
distance, the difference between measurements often does
not tend to zero. This is called the nugget effect. Thus, the
theoretical semivariogram model with a nugget effect can
be fitted where the sill denoted by 𝐶0 means the maximum
semivariogram value that is the plateau of Figure 2. As the
separation distance of two pairs increase, the semivariogram
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Table 1: Different models of variograms.

Model Theoretical semivariogram 𝛾(ℎ)
Linear 𝐶𝑜 ℎ𝑎 for ℎ ≤ 𝑎𝐶𝑜 for ℎ > 𝑎
Spherical 𝐶𝑜 [1.5 (ℎ𝑎) − 0.5 (ℎ𝑎)3] for ℎ ≤ 𝑎𝐶𝑜 for ℎ > 𝑎
Exponential 𝐶𝑜 [1 − exp(−3ℎ𝑎 )2]
Gaussian 𝐶𝑜 [1 − exp(−3(ℎ𝑎)2)]
Polynomial 𝑘𝑜 + 𝑘1ℎ + 𝑘2ℎ2 + ⋅ ⋅ ⋅ + 𝑘𝑛ℎ𝑛

of those two pairs also increases. Eventually, the increase
of the separation distance cannot cause the semivariogram
increase. The separation distance when the semivariogram
reaches plateau is called range 𝑎. The example of schematic
variogram graphs has been plotted in Figure 2 with respect
to different variogram models. Several theoretical kriging
modules are shown in Table 1.

As mentioned earlier, the OK estimates are linear
weighted moving average of available observations or Gauss
points in the FEM [23, 24]

𝑆∗ (𝑥𝑜) = 𝑛∑
𝑖=1

𝜆𝑖𝑆 (𝑥𝑖) , (2)

where 𝜆𝑖 and 𝑆(𝑥𝑖) are the weights assigned to the available
observations and neighbor data close to the unsampled
location 𝑥0, respectively. The weight factors add up to unity
to ensure that the estimate is unbiased.

𝑛∑
𝑖=1

𝜆𝑖 = 1. (3)

When a calculated stress value at any point is 𝑠0 and the
corresponding true value is 𝑠∗0 , an error variance based onOK
technique is as follows:𝜎2OK = 𝐸 [(𝑠0 − 𝑠∗0 )2] . (4)

Equation (4) can be written as below𝜎2OK = var (𝑠0) + var (𝑠∗0 ) − 2 cov (𝑠0, 𝑠∗0 ) . (5)

Substituting (2) in (5) gives

𝜎2OK = var (𝑠0) + var( 𝑛∑
𝑖=1

𝜆𝑖𝑠𝑖) − 2 cov(𝑠0, 𝑛∑
𝑖=1

𝜆𝑖𝑠𝑖) . (6)

Then, (6) can be written as below

𝜎2OK = var (𝑠0) + cov( 𝑛∑
𝑖=1

𝜆𝑖𝑠𝑖, 𝑛∑
𝑗=1

𝜆𝑗𝑠𝑗)
− 2 cov(𝑠0, 𝑛∑

𝑖=1

𝜆𝑖𝑠𝑖) . (7)

Equation (7) can be rewritten as

𝜎2OK = var (𝑠0) + 𝑛∑
𝑖=1

𝜆𝑖 𝑛∑
𝑗=1

𝜆𝑗 cov (𝑠𝑖, 𝑠𝑗)
− 2 𝑛∑
𝑖=1

𝜆𝑖 cov (𝑠0, 𝑠𝑖) . (8)

If variance and covariance in the above equations are marked
as below

𝜎2 = var (𝑠0) ;𝜎2𝑖𝑗 = cov (𝑠𝑖, 𝑠𝑗) (9)

then (8) is written as follows:

𝜎2OK = 𝜎2 + 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜆𝑖𝜆𝑗𝜎2𝑖𝑗 − 2 𝑛∑
𝑖=1

𝜆𝑖𝜎20𝑖. (10)

The error variance associated with the OK estimate is called
the minimum variance unbiased estimator or best linear
unbiased estimator, since the constraint condition defined in
(3) should be applied to minimize the variance of estimate
errors. Based on the method of Lagrange multipliers, the
mathematical form considering (3) and (10) can be expressed
as

𝐿 (𝜆1, 𝜆2, . . . , 𝜆𝑛, 𝜇) = 𝜎2 + 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜆𝑖𝜆𝑗𝜎2𝑖𝑗 − 2 𝑛∑
𝑖=1

𝜆𝑖𝜎20𝑖
− 2𝜇[ 𝑛∑

𝑖=1

𝜆𝑖 − 1] , (11)

where 𝐿(𝜆1, 𝜆2, . . . , 𝜆𝑛, 𝜇) is a Lagrange objective function
and 𝜇 is a Lagrange multiplier. In addition, number 2 in
the fourth term in (11) is used to derive final equations
with simple form. Minimizing the objective function can be
carried out by finding the partial derivatives with respect to𝜆𝑙 (𝑙 = 1, 2, . . . , 𝑛) and 𝜇 such that

𝜕𝐿𝜕𝜆𝑙 = 0,𝜕𝐿𝜕𝜇 = 0. (12)

Equation (12) can be rearranged to the following form:

𝑛∑
𝑖=1

𝜆𝑖𝜎2𝑖𝑙 − 𝜎20𝑙 − 𝜇 = 0,
𝑛∑
𝑖=1

𝜆𝑖 − 1 = 0. (13)
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From (13), weight factors for any unknown stress are calcu-
lated by following form

{{{{{{{{{{{{{{{{{{{

𝜆1𝜆2...𝜆𝑛𝜇

}}}}}}}}}}}}}}}}}}}
=
[[[[[[[[[[[

𝜎211 𝜎212 ⋅ ⋅ ⋅ 𝜎21𝑛 −1𝜎221 𝜎222 ⋅ ⋅ ⋅ 𝜎22𝑛 −1... ... ... ... ...𝜎2𝑛1 𝜎2𝑛2 ⋅ ⋅ ⋅ 𝜎2𝑛𝑛 −11 1 ⋅ ⋅ ⋅ 1 0

]]]]]]]]]]]

−1{{{{{{{{{{{{{{{{{{{{{

𝜎201𝜎202...𝜎20𝑛1

}}}}}}}}}}}}}}}}}}}}}
. (14)

Finally, the unknown stresses for 𝑚 points can be obtained
from

{{{{{{{{{{{{{
𝑠𝑎𝑠𝑏...𝑠𝑚
}}}}}}}}}}}}}

∗

=(((((((
(

[[[[[[[[[[[

𝜎211 𝜎212 ⋅ ⋅ ⋅ 𝜎21𝑛 −1𝜎221 𝜎222 ⋅ ⋅ ⋅ 𝜎22𝑛 −1... ... ... ... ...𝜎2𝑛1 𝜎2𝑛2 ⋅ ⋅ ⋅ 𝜎2𝑛𝑛 −11 1 ⋅ ⋅ ⋅ 1 0

]]]]]]]]]]]

−1

(𝑛+1)×(𝑛+1)

[[[[[[[[[[[

𝜎2𝑎1 𝜎2𝑏1 ⋅ ⋅ ⋅ 𝜎2𝑚1𝜎2𝑎1 𝜎2𝑏1 ⋅ ⋅ ⋅ 𝜎2𝑚1... ... ... ...𝜎2𝑎𝑛 𝜎2𝑏1 ⋅ ⋅ ⋅ 𝜎2𝑚11 1 1 1

]]]]]]]]]]]
(𝑛+1)×𝑚

)))))))
)

𝑇

⋅
{{{{{{{{{{{{{{{{{{{

𝑠1𝑠2...𝑠𝑛0

}}}}}}}}}}}}}}}}}}}
(𝑛+1)×1

.

(15)

3. A 𝑝-Adaptive Refinement Using Modified
SPR Technique

Adaptive procedures are to implement iteration analysis
based on distinctly different levels of space (ℎ)- or function
(𝑝)-refinements in specified local region to achieve solutions
having a certain degree of accuracy in an optimal fashion.
Particularly the 𝑝-adaptive refinement makes it easy to use
the initial meshes kept unchanged with selective increase in
the polynomial order of shape function that is called “selec-
tive or nonuniform 𝑝-refinement” in FEM. The continuity
between meshes with different polynomial order is achieved
by assigning zero to the higher-order derivatives associated
with edges in common with the lower derivatives. Thus, the
higher-order of approximation is degraded to the lower along
the interelement boundary. For this purpose, two important
algorithms should be established such as an automatic 𝑝-
adaptive mesh refinement scheme and a posteriori error
estimator for 𝑝-refinement strategy.

In this work, the higher-order approximation based on
Lobatto shape functions [26] which is often called integrals
of Legendre polynomials [14, 23] with hierarchical properties
is adopted to obtain displacements as a result of FEM. The
SPR technique proposed by Zienkiewicz and Zhu [3, 5] has
been adopted after a suitable modification to be compatible
with the adaptive p-refinement procedure since the number
of sampling Gauss points in each element is increased as
the 𝑝-level becomes higher. The increment of the quadrature
point has an effect on the stress norm. According to𝑍/𝑍, ‖𝑒𝑟‖
represents the local error for a particular element, measured
in energy norm. 𝜎∗ is the recovered stress resultant field
or estimated exact stress field over the patch of elements
(normally consisting of 4 elements) surrounding the patch
node. The estimated exact stress field denoted by 𝜎∗ is deter-
mined by using the ordinary kriging interpolation technique.
A posteriori error estimate in a particular energy norm is
computed by summing its elemental contribution as

𝑒𝑟 = √∫
Ω
(𝑆∗ − 𝑆𝑝)𝑇 [𝐷]−1 (𝑆∗ − 𝑆𝑝) 𝑑Ω, (16)

where 𝑆∗ is a column vector including the true stresses;𝑆𝑝 including the stresses interpolated by Lobatto shape
functions with the displacements obtained by FEM; [𝐷] is a
constitutive matrix; Ω is a mesh domain. Here a smoothed
continuous stress concept is applied for the true stresses𝑆∗ that are obtained by the aforementioned OK technique.
For the proposed technique, the weight factors depending
on the distance between a sampling point and the point
corresponding to an unknown value are considered. On the
other hand, no weight factor is used in the original SPR
technique based on LSM.The energy norm of the stress field
itself may also be expressed in terms of stresses as follows:

‖𝑟‖ = (∫
Ω
(𝑍𝑝)𝑇 [𝐷]−1 𝑍𝑝𝑑Ω)1/2 . (17)

Thus, the relative percentage error can be defined as

𝜂Ω = ( 𝑒𝑟2𝑒𝑟2 + ‖𝑟‖2)
1/2 . (18)

In case of the modified SPR method using ordinary
kriging, however, the estimated exact stress field denoted
by 𝑆∗ should be calculated at each iteration round of 𝑝-
refinement. In other words, 𝑆∗ cannot be fixed in the whole
process of 𝑝-adaptive refinement the same as ℎ-adaptive
refinement since this process is based on a posteriori error
estimate. Thus, a new error estimator is proposed on the
basis of a prior error estimator to verify the modified SPR
method. The limit value approach is proposed to predict
the exact strain energy for nonsmooth problems based on
the application of the equation of a prior error indicator in
the asymptotic range to three FEMs with three successively
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(b) Finite element mesh by 𝑝-FEM

Figure 3: Plate with a square cutout.

higher levels of polynomial approximation. In the presence
of singularities, the asymptotic convergence behavior of the𝑝-version of the FEM permits a close estimate of the exact
strain energy by extrapolation that is called the limit value,
and hence we can predict the error in the energy norm on
the finite element mesh employed. For a two-dimensional
problem, under the assumption that the error in the energy
norm has entered the asymptotic range where𝑈ex and𝑈fe are
the strain energy, the rate of convergence for the p-version of
FEM can be derived by the inverse theorem [23, 27] as𝑈ex − 𝑈fe

 ≤ 𝑘𝑁2𝛼𝑝 , (19)

where 𝑈ex and 𝑈fe are the exact strain energy estimated
by the limit value and the approximate strain energy by
FEM, 𝛼 is the strength of singularity, and 𝑁𝑝 and 𝑘 are
the degrees of freedom for the polynomial order 𝑝 and a
constant which depends on the mesh, respectively. There are
three unknowns 𝑈ex, 𝑘, and 𝛼 in (19). By performing three
successive extension processes,𝑝−2,𝑝−1, and𝑝, which are in
the asymptotic range, we have three equations for computing
the unknowns. Cancelling 𝛼 and 𝑘 in (19), the following
extrapolation equation can be derived as

log ((𝑈𝐿ex − 𝑈𝑝) / (𝑈𝐿ex − 𝑈𝑝−1))
log ((𝑈𝐿ex − 𝑈𝑝−1) / (𝑈𝐿ex − 𝑈𝑝−2))
= log (𝑁𝑝−1/𝑁𝑝)
log (𝑁𝑝−2/𝑁𝑝−1) ,

(20)

where 𝑈𝑝, 𝑈𝑝−1, and 𝑈𝑝−2 are the strain energies when the
polynomial orders are 𝑝, 𝑝 − 1, and 𝑝 − 2 and 𝑈𝐿ex represents
the limit value in terms of estimated exact strain energy
where 𝑁𝑝, 𝑁𝑝−1, and 𝑁𝑝−2 are the number of degrees of
freedom for each analysis. Computational experiences show
this estimated limit value to be reliable and accurate for two-
dimensional elastostatic problems, especially in the presence

of singularity [14, 23] which give no exact solution. Thus,
the percentage relative error expressed by energy norm using
limit value is defined by (21). It is noted that (21) is not used for
local indicator in practice but is used only to validate whether
the modified SPR technique is reliable and accurate. If the
local error estimate ‖𝑒𝑟‖ in (16) is large, the polynomial order
should be increased to satisfy an acceptable level of accuracy

𝜌Ω = [𝑈𝐿ex − 𝑈𝑝𝑈𝐿ex ]1/2 , (21)

where 𝑈𝐿ex is the exact global strain energy and 𝑈𝑝 is also
the global strain energy calculated in the current 𝑝-adaptive
mesh consisting of nonuniform 𝑝-distribution at a certain
iteration number.

4. Numerical Analysis

Thenumerical example is shown in Figure 3 that specifies the
geometric definition and analysis conditions that are given by𝑎 = 50 cm, 𝑡 = 1.0 cm, 𝐸 = 2 × 107N/cm2, ] = 0.3, and 𝜎 =10N/cm2. Due to the symmetry, a quarter of plate is modeled
by three elements with fourth-degree polynomials for shape
functions of 𝑝-version finite element analysis. Figure 4 shows
a 3D stem plot for distribution of von-Mises stresses at Gauss
points.The stress values obtained fromfinite element analysis
are considered as raw data for stress smoothing.

In Figure 5, the experimental semivariogram has been
plotted with respect to the separation distance ℎ. The allow-
able limit of separation distance Δℎ is assumed by 25% ofℎ. Thus, the separation distance ℎ can be allowed to use the
similar distance denoted by ℎ ± Δℎ. Based on experimental
semivariogram, three different theoretical semivariogram
modules as shown in Table 1 have been tested. In this study,
the Gauss model with Δℎ = 25% of ℎ has been adopted to
find the weight factor for the OK process explained in (2).

Before the further analysis of 𝑝-adaptive refinement, the
performance between LSM and OK method is compared
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Figure 5: Comparison of semivariogrammodels usingΔℎ/ℎ = 0.25
when 𝑝-level = 4.

with each other in Figures 6 and 7. As described earlier, the
FEM raw data represents the computed von-Mises stress at
Gauss points obtained by the 𝑝-version finite element model
in Figure 3. Due to the discontinuity of stresses along the
element interboundary, it is seen that the stress distribution is
not smooth as shown in Figure 6(a).Thus, the stress recovery
techniques are applied for stress smoothing. One is LSM
based on equal weighted interpolation and the other is OK
method by weighted interpolation using variogram model.
It is noted that the corner singularity denoted by von-Mises
stress is well expressed by OK interpolation comparing with
LSM that are shown in Figures 6(b), 6(c), 7(b), and 7(c).

To illustrate the applicability of OK interpolation to
the 𝑝-adaptive mesh refinement, two 𝑝-version models are
considered by 3-element and 12-element model. The initial𝑝-level of both models begins with one. For nonuniform 𝑝-
distribution, the continuity between elements with different
polynomial orders is achieved by assigning zero higher-order
derivatives associated with the edge in common with the
lower-order derivatives. The iteration step for 𝑝-adaptivity

Table 2: The relative percentage errors of 12-element model by the
modified SPR method.

Number of
iterations

Least square method Ordinary kriging
interpolation

NDF 𝜂Ω (%) NDF 𝜂Ω (%)
1
2
3
4
5
6
7
8
9
10

36
89
135
190
224
272
282
314
343
363

20.49
13.82
8.35
7.89
7.21
6.22
6.19
6.29
7.50
5.48

36
96
149
214
234
264
301
353
—
—

33.12
15.11
7.11
4.00
4.30
3.01
3.54
4.17
—
—

Table 3: The relative percentage errors of 12-element model by the
limit value.

Number of
iterations

Least square method Ordinary kriging
interpolation

NDF 𝜌Ω (%) NDF 𝜌Ω (%)
1
2
3
4
5
6
7
8
9
10

36
89
135
190
224
272
282
314
343
363

33.26
15.66
11.99
9.51
8.05
6.81
6.30
6.00
5.78
5.60

36
96
149
214
234
264
301
353
—
—

33.26
13.33
10.50
7.80
6.90
6.20
5.60
5.20
—
—

is proceeded to final adaptive mesh based on a posteriori
error estimation. In this study, the modified SPR technique is
proposed to estimate the smoothed stress field by projection
that is considered as an exact solution to calculate a posteriori
error. The final adaptive mesh is automatically determined
by the developed computer program for the purpose that are
shown in Figures 8 and 9.

The relative percentage errors have been illustrated in
Tables 2 and 3 according to iteration numbers by using the
modified SPR method as well as the limit value approach.
The first error estimator by the modified SPR method is the
objective of this study considering a posteriori error estimator
as shown in Table 2. However, the relative percentage errors
are not converged gradually, especially when higher-order
polynomials are used in the 𝑝-adaptive mesh regardless of
least square method or OK interpolation since the estimated
exact stress field can be reproduced at each iteration round.
To verify the proposed error estimator, the limit value
approach based on a prior error estimate is used to evaluate
the relative percentage error in Table 3. Since the exact strain
energy is fixed as a certain value, the relative percentage errors
are gradually decreased. As shown in Tables 2 and 3, the
required number of iterations to determine the final adaptive
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Figure 6: Stress contours by different interpolation techniques when 𝑝-level = 4.
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Figure 7: Stress plots by different interpolation techniques when 𝑝-level = 4.

mesh is 10 by the LSM based 𝑝-adaptive model and 8 by OK
based p-adaptive model. From this result, it is observed that
theOK interpolation technique ismore suitable for adaptivity
procedures than the LSM that has been commonly used in the
FE analysis.

In the case of LSM with NDF = 363, the relative per-
centage error shows 5.48%, but OK yields 4.17% when NDF
= 353 as shown in Table 2. However, the relative percentage
error based on the limit value is 5.78% for LSM and 5.61%
for OK, respectively, as shown in Table 3. It is observed that
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Figure 8: The final 𝑝-adaptive meshes by 3-element model.
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Figure 9: The final 𝑝-adaptive meshes by 12-element model.

p = 8

p = 7

p = 6

1 2 30
1000/NDF

0.00772

0.00774

0.00776

0.00778

0.0078

St
ra

in
 en

er
gy

 (N
·m

)

Figure 10: Estimation of exact strain energy by limit value approach.

the exact strain energy can be found by 𝑈ex = 7.7788 × 10−3
from Figure 10 that has been used to estimate the relative
percentage error at each iteration round. In other words, in
(21),𝑈𝐿ex is the exact global strain energy, and𝑈𝑝 is the global
strain energy calculated in the current 𝑝-adaptive mesh
consisting of nonuniform 𝑝-distribution at a certain iteration
round.Thus, (21) cannot be used for local indicator in practice
but is only used to check whether the modified SPR method
is reliable and accurate. The convergence characteristics of
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Figure 11: Convergence characteristics of 𝑝-adaptive model using
modified SPR method.

proposed 𝑝-adaptive models are plotted in Figures 11-12. It
is noted that stable convergence pattern by the limit value
approach is shownwithout any numerical oscillations, unlike
the modified SPR method.

5. Conclusions

The new 𝑝-adaptive finite element model with the OK inter-
polation technique is proposed in this study. This approach
shows better performance to determine the final adaptive
mesh than the existing SPR method by 𝑍/𝑍 using LSM
to estimated exact stress field by projection. This proposed
model is very suitable for stress singularity problems since
the higher weight factor is used to interpolate the calculated
stresses at the Gauss points near stress singular points by
applying theoretical variogram model and OK interpolation.
In addition, the proposed new error estimator based on limit
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Figure 12: Convergence characteristics of 𝑝-adaptive model using
limit value approach.

value using exact strain energy can be used to a prior error
estimate.
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