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The selection of a suitable model structure is an essential step in system modeling. Model structure is defined by determining
the class, the time delay, and the model order. This paper proposes improved structural estimation procedures for large-scale
interconnected nonlinear systems which are composed of a set of interconnected Single-Input Single-Output (SISO) Hammerstein
structures and described by discrete-time stochastic models with unknown time-varying parameters. An extensive Determinant
Report (DR) algorithm is developed to determine the order of the process. An improved discrete-time technique based onRecursive
Extended Least Squares with Varying Time (RELSVT) delay method is proposed to estimate the time delays of the considered
system. The developed theoretical analysis and simulation results prove the validity and performance of the proposed algorithms.

1. Introduction

In recent years, several theoretical and practical researches
dealing with different themes, like the modeling, the identifi-
cation, and the control for complex systems, have been devel-
oped in the literature [1–22]. These works preoccupied more
particularly the large-scale systems [1–14], the nonlinear
systems [1–22], and the nonstationary systems [12–14]. The
class of large-scale systems can be found in different fields as
transportation processes, power processes, communication
networks, space structures, and others.

Note that the study of the problems related to the
description of a dynamic system by a mathematical model
has been always a main objective to be met in different fields
of science and automatic engineering, more particularly in
the identification process. In this case, several automation
engineers are interested in the study of this problem and
various works dealing with this topic are developed and
published in the literature. It is important to note that, before
applying the identification methods, it is necessary to have
a priori information about the structure of the process to

be estimated. However, the order and the time delay of the
process may be unknown in a practical estimation problem.
Therefore, the estimation of these structural parameters is a
fundamental problem. Add to that, in automatic control and
signal processing applications, the time-delay and the order
estimation of a certain process can be a means to achieve a
good model for the control design. In this instance, various
structural estimation methods have been proposed in the
literature [15–28].

The purpose of this framework is to develop two proce-
dures which can be applied to the class of large-scale inter-
connected systems with unknown time-varying parameters,
in order to formulate the structure estimation problem. We
focused on the dynamic large-scale stochastic systems com-
prised of several SISO interconnected nonlinear subsystems
and represented by an interconnection of 𝑁 Hammerstein
structures with unknown parameters.

The rest of this article was organized as follows. The
second section describes the dynamics of large-scale inter-
connected systems by stochastic Hammerstein mathematical
models with unknown time-varying parameters. Section 3
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details the formulation of the structural identification prob-
lem of interconnected nonlinear systems where two itera-
tive procedures are proposed. The main purpose of these
developed algorithms is to estimate the order model and the
time delay for this class of dynamical systems. Numerical
simulation examples are treated to validate our developed
analytical results. Conclusions are delineated in Section 4.

2. Preliminary Study

Adynamic large-scale interconnected system is characterized
not only by a large number of dynamics, but also by input
and output signals. It can be presented by a mathematical
model composed of a large number of equations, which are
connected between themselves and contain several signals
and parameters. In the literature, several presentations are
used to describe the dynamics of this class of systems. We
can cite input-output discrete models [11], continuous state-
space models [1, 2], and block-orientedmathematical models
[10, 12–14]. In this framework, we consider the class of large-
scale systems which consist of several interconnected Ham-
merstein subsystems operating in a stochastic environment
with unknown time-varying parameters and described by the
following dynamic equation:

𝐴 𝑖 (𝑞−1, 𝑘) 𝑦𝑖 (𝑘) = 𝑞−𝑑𝑖𝐵𝑖 (𝑞−1, 𝑘) ℎ𝑢𝑖𝑖 (𝑘)

+
𝑁

∑
𝑗=1, 𝑗 ̸=𝑖

𝑞−𝑑𝑖𝑗𝐵𝑖𝑗 (𝑞−1, 𝑘) ℎ𝑢𝑗𝑗 (𝑘)

+
𝑁

∑
𝑗=1, 𝑗 ̸=𝑖

𝑞−𝑡𝑖𝑗𝐴 𝑖𝑗 (𝑞−1, 𝑘) ℎ𝑦𝑗𝑗 (𝑘)

+ 𝐶𝑖 (𝑞−1) 𝑒𝑖 (𝑘) ,

(1)

in which the nonlinear functions ℎ𝑢𝑖𝑖 (𝑘), ℎ
𝑢𝑗
𝑗 (𝑘), and ℎ

𝑦𝑗
𝑗 (𝑘) are

approximated by the following polynomials:

ℎ𝑢𝑖𝑗 (𝑘) = 𝛼𝑖,1𝑢𝑖 (𝑘) + 𝛼𝑖,2𝑢2𝑖 (𝑘) + ⋅ ⋅ ⋅ + 𝛼𝑖,𝑝1𝑢
𝑝1
𝑖 (𝑘) ,

ℎ𝑢𝑗𝑗 (𝑘) = 𝛽𝑗,1𝑢𝑗 (𝑘) + 𝛽𝑗,2𝑢2𝑗 (𝑘) + ⋅ ⋅ ⋅ + 𝛽𝑗,𝑝2𝑢
𝑝2
𝑗 (𝑘) ,

ℎ𝑦𝑗𝑗 (𝑘) = 𝛾𝑗,1𝑦𝑗 (𝑘) + 𝛾𝑗,2𝑦2𝑗 (𝑘) + ⋅ ⋅ ⋅ + 𝛾𝑗,𝑝3𝑦
𝑝3
𝑗 (𝑘) ,

(2)

where 𝑞−1 is the backward shift operator; 𝑦𝑖(𝑘) and 𝑢𝑖(𝑘)
represent, respectively, the output and the input of each
interconnected nonlinear system 𝑆𝑖; 𝑑𝑖, 𝑑𝑖𝑗, and 𝑡𝑖𝑗 correspond
to the time delays of the system 𝑆𝑖 and the other interaction
systems 𝑆𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖; 𝛼𝑖,𝑟1 , 𝛽𝑗,𝑟2 , and 𝛾𝑗,𝑟3 are
unknown constant parameters of the nonlinear functions;
and 𝐴 𝑖(𝑞−1, 𝑘), 𝐵𝑖(𝑞−1, 𝑘), 𝐵𝑖𝑗(𝑞−1, 𝑘), 𝐴 𝑖𝑗(𝑞−1, 𝑘), and 𝐶𝑖(𝑞−1)
are described by

𝐴 𝑖 (𝑞−1, 𝑘) = 1 + 𝑎𝑖,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑎𝑖,𝑛𝐴𝑖 (𝑘) 𝑞
−𝑛𝐴𝑖 ,

𝐵𝑖 (𝑞−1, 𝑘) = 𝑏𝑖,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑏𝑖,𝑛𝐵𝑖 (𝑘) 𝑞
−𝑛𝐵𝑖 ,

𝐵𝑖𝑗 (𝑞−1, 𝑘) = 𝑏𝑖𝑗,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑏𝑖𝑗,𝑛𝐵𝑖𝑗 (𝑘) 𝑞
−𝑛𝐵𝑖𝑗 ,

𝐴 𝑖𝑗 (𝑞−1, 𝑘) = 1 + 𝑎𝑖𝑗,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅ + 𝑎𝑖𝑗,𝑛𝐴𝑖𝑗 (𝑘) 𝑞
−𝑛𝐴𝑖𝑗 ,

𝐶𝑖 (𝑞−1) = 1 + 𝑐𝑖,1𝑞−1 + ⋅ ⋅ ⋅ + 𝑐𝑖,𝑛𝐶𝑖 𝑞
−𝑛𝐶𝑖 ,

(3)

with 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖, and 𝑛𝐴𝑖 , 𝑛𝐵𝑖 , 𝑛𝐴𝑖𝑗 , 𝑛𝐵𝑖𝑗 , and
𝑛𝐶𝑖 are the orders of the polynomials 𝐴 𝑖(𝑞−1, 𝑘), 𝐵𝑖(𝑞−1, 𝑘),
𝐴 𝑖𝑗(𝑞−1, 𝑘), 𝐵𝑖𝑗(𝑞−1, 𝑘), and 𝐶𝑖(𝑞−1), respectively.

For the sake of simplicity, in what follows, we retain
that 𝐴 𝑖(𝑞−1, 𝑘), 𝐵𝑖(𝑞−1, 𝑘), 𝐴 𝑖𝑗(𝑞−1, 𝑘), 𝐵𝑖𝑗(𝑞−1, 𝑘), and 𝐶𝑖(𝑞−1)
have an even order 𝑛𝑖. We assume also that the noise {𝑒𝑖(𝑘)}
is a sequence of independent random variables with zero
mean and constant variance 𝜎2𝑖 . In addition, this sequence is
uncorrelated with all input and output signals. Furthermore,
we can rewrite the system output in the following developed
form:

𝑦𝑖 (𝑘) = −𝑎𝑖,1 (𝑘) 𝑦𝑖 (𝑘 − 1) − ⋅ ⋅ ⋅ − 𝑎𝑖,𝑛𝑖 (𝑘) 𝑦𝑖 (𝑘 − 𝑛𝑖)
+ 𝑏𝑖,1 (𝑘) 𝛼𝑖,1𝑢𝑖 (𝑘 − 1) + 𝑏𝑖,2 (𝑘) 𝛼𝑖,1𝑢𝑖 (𝑘 − 2)
+ ⋅ ⋅ ⋅ + 𝑏𝑖,𝑛𝑖 (𝑘) 𝛼𝑖,1𝑢𝑖 (𝑘 − 𝑛𝑖) + ⋅ ⋅ ⋅
+ 𝑏𝑖,1 (𝑘) 𝛼𝑖,𝑝1𝑢

𝑝1
𝑖 (𝑘 − 1)

+ 𝑏𝑖,2 (𝑘) 𝛼𝑖,𝑝1𝑢
𝑝1
𝑖 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝑏𝑖,𝑛𝑖 (𝑘) 𝛼𝑖,𝑝1𝑢
𝑝1
𝑖 (𝑘 − 𝑛𝑖)

+ 𝑏𝑖𝑗,1 (𝑘) 𝛽𝑗,1𝑢𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅
+ 𝑏𝑖𝑗,𝑛𝑖 (𝑘) 𝛽𝑗,1𝑢𝑗 (𝑘 − 𝑛𝑖) + ⋅ ⋅ ⋅

+ 𝑏𝑖𝑗,1 (𝑘) 𝛽𝑗,𝑝2𝑢
𝑝2
𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑏𝑖𝑗,𝑛𝑖 (𝑘) 𝛽𝑗,𝑝2𝑢
𝑝2
𝑗 (𝑘 − 𝑛𝑖)

+ 𝑎𝑖𝑗,1 (𝑘) 𝛾𝑗,1𝑦𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅
+ 𝑎𝑖𝑗,𝑛𝑖 (𝑘) 𝛾𝑗,1𝑦𝑗 (𝑘 − 𝑛𝑖) + ⋅ ⋅ ⋅

+ 𝑎𝑖𝑗,1 (𝑘) 𝛾𝑗,𝑝3𝑦
𝑝3
𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝑎𝑖𝑗,𝑛𝑖 (𝑘) 𝛾𝑗,𝑝3𝑦
𝑝3
𝑗 (𝑘 − 𝑛𝑖) + 𝑒𝑖 (𝑘)

+ 𝑐𝑖,1𝑒𝑖 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑐𝑖,𝑛𝑖𝑒𝑖 (𝑘 − 𝑛𝑖) .

(4)

We note that some implementation difficulties are presented
in the formulation of the parametric estimation problem in
spite of the presence of some redundant parameters in model
(4). From [12], we propose that 𝛾𝑗,1, 𝑏𝑖,1(𝑘), and 𝑏𝑖𝑗,1(𝑘) are
constant and known, in such a way that 𝛾𝑗,1 = 𝑏𝑖𝑗,1(𝑘) =
𝑏𝑖,1(𝑘) = 1, ∀𝑘, in order to avoid the posed problem. In
this case, each output 𝑦𝑖(𝑘) of the considered interconnected
system becomes

𝑦𝑖 (𝑘) = −𝑎𝑖,1 (𝑘) 𝑦𝑖 (𝑘 − 1) − ⋅ ⋅ ⋅ − 𝑎𝑖,𝑛𝑖 (𝑘) 𝑦𝑖 (𝑘 − 𝑛𝑖)
+ 𝛼𝑖,1𝑢𝑖 (𝑘 − 1) + 𝛼𝑖,1𝑏𝑖,2 (𝑘) 𝑢𝑖 (𝑘 − 2) + ⋅ ⋅ ⋅
+ 𝛼𝑖,1𝑏𝑖,𝑛𝑖 (𝑘) 𝑢𝑖 (𝑘 − 𝑛𝑖) + ⋅ ⋅ ⋅ + 𝛼𝑖,𝑝1𝑢

𝑝1
𝑖 (𝑘 − 1)
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Figure 1: Order estimation procedure.

+ 𝛼𝑖,𝑝1𝑏𝑖,2 (𝑘) 𝑢
𝑝1
𝑖 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝛼𝑖,𝑝1𝑏𝑖,𝑛𝑖 (𝑘) 𝑢
𝑝1
𝑖 (𝑘 − 𝑛𝑖) + 𝛽𝑗,1𝑢𝑗 (𝑘 − 1)

+ ⋅ ⋅ ⋅ + 𝛽𝑗,1𝑏𝑖𝑗,𝑛𝑖 (𝑘) 𝑢𝑗 (𝑘 − 𝑛𝑖) + ⋅ ⋅ ⋅

+ 𝛽𝑗,𝑝2𝑢
𝑝2
𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝛽𝑗,𝑝2𝑏𝑖𝑗,𝑛𝑖 (𝑘) 𝑢
𝑝2
𝑗 (𝑘 − 𝑛𝑖)

+ 𝑎𝑖𝑗,1 (𝑘) 𝑦𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑎𝑖𝑗,𝑛𝑖 (𝑘) 𝑦𝑗 (𝑘 − 𝑛𝑖)

+ ⋅ ⋅ ⋅ + 𝛾𝑗,𝑝3𝑎𝑖𝑗,1 (𝑘) 𝑦
𝑝3
𝑗 (𝑘 − 1) + ⋅ ⋅ ⋅

+ 𝛾𝑗,𝑝3𝑎𝑖𝑗,𝑛𝑖 (𝑘) 𝑦
𝑝3
𝑗 (𝑘 − 𝑛𝑖) + 𝑒𝑖 (𝑘)

+ 𝑐𝑖,1𝑒𝑖 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑐𝑖,𝑛𝑖𝑒𝑖 (𝑘 − 𝑛𝑖) .
(5)

The formulation of the parametric estimation problem for
this class of large-scale systems, which is described by the
discrete model (5), was proved by Elloumi and Kamoun [12].
In this instance, the developed parameter estimation proce-
dure is based on the adjustablemodel and the prediction error
method, starting from the knowledge of several measured
input-output signals resulting from the considered process.
In this case, we supposed that the time delays and the order
model of the considered system are known. For this reason,
serious errors can be obtained in the synthesis of a control
design if the used order model and/or time-delay parameters
are wrong.

Note that the dynamic process models are always desir-
able in order to provide the required design of regulators. In
addition, the choice of the model structure (order and time
delay) and the parameter estimation are two basic elements
in the identification problem. Therefore, lots of works that
used variousmethods to estimate the time delay and the order
model have been published in the literature [15–28].

3. Structural Estimation

In this section, we are proposed to formulate the structural
estimation problem for the class of large-scale interconnected
nonlinear stochastic systems described by the mathematical
model (1). The formulation of this problem can be classified
into two subsections.

The first subsection seeks to determine the order of
the considered process, where its dynamics are modeled by
INARMAX mathematical model (5). The order estimate will
be performed on the basis of an extension of DR algorithm
that can be applied to this class of complex systems, whereas
the formulation of the time-delay estimation problem is con-
sidered in the second subsection. In this context, an improved
procedure based on RELSVT algorithm is proposed.

3.1. Order Estimation. The adequate value of the order pro-
cess is one of the major preoccupations in the identification
problem. Lots of testing methods have been proposed for
determining the orders of discrete dynamic processes, like
the Determinant Report (DR) method, the behavior of error
function, polynomial approach, test of normality, and so forth
[15–17]. In [15], the developed DR technique is based on
the product-moment matrix containing several input-output
signals measurements from the system.

In this part, the purpose is to extend this approach in
order to estimate the order of large-scale interconnected
nonlinear systems, which is described by the discrete-time
mathematical model (1).

The organizational chart of the order estimate, repre-
sented in Figure 1, seeks to verify certain criteria after
describing the system by amathematical model with an order
selected a priori 𝑚𝑖 (𝑚𝑖 = 1, 2, . . . , 𝑚𝑖max, where 𝑚𝑖max is
the maximum order). The exact model order of the system
corresponds to the value𝑚𝑖 for which the calculated criterion
presents a particular deviation.
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This procedure seeks to limit the number of possible
orders and determine the accurate one, and this is based
on the computation of the product-moment matrix with
dimension ((𝑝1 +𝑝2 +𝑝3 + 1)𝑚𝑖, (𝑝1 +𝑝2 +𝑝3 + 1)𝑚𝑖), which
is defined by

𝑄𝑖 (𝑚𝑖) =
1
𝑀𝑘
𝑀𝑘+𝑚𝑖

∑
𝑚𝑖

𝑞𝑖 (𝑚𝑖) 𝑞𝑇𝑖 (𝑚𝑖) (6)

with

𝑞𝑇𝑖 (𝑚𝑖) = [𝑦𝑖 (𝑘 − 1) 𝑢𝑖 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑢𝑝1𝑖 (𝑘 − 1)

⋅ 𝑢𝑗 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑢𝑝2𝑗 (𝑘 − 1)

⋅ 𝑦𝑗 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑦𝑝3𝑗 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑦𝑖 (𝑘 − 𝑚𝑖)

⋅ 𝑢𝑖 (𝑘 − 𝑚𝑖) ⋅ ⋅ ⋅ 𝑢𝑝1𝑖 (𝑘 − 𝑚𝑖)
⋅ 𝑢𝑗 (𝑘 − 𝑚𝑖) ⋅ ⋅ ⋅ 𝑢𝑝2𝑗 (𝑘 − 𝑚𝑖)

⋅ 𝑦𝑗 (𝑘 − 𝑚𝑖) ⋅ ⋅ ⋅ 𝑦𝑝3𝑗 (𝑘 − 𝑚𝑖)] ,

(7)

where 𝑀𝑘 represents the measurements number and 𝑚𝑖
depicts the model order of the process, 𝑖, 𝑗 = 1, . . . , 𝑁, 𝑗 ̸= 𝑖.

The matrix 𝑄𝑖(𝑚𝑖) possesses the following properties:

det [𝑄𝑖 (𝑚𝑖)] :
{
{
{

> 0 if 𝑚𝑖 < 𝑛𝑖
= 0 if 𝑚𝑖 > 𝑛𝑖;

𝑖 = 1, . . . , 𝑁. (8)

This matrix is positive definite and it is singular, if𝑚𝑖 > 𝑛𝑖.
For𝑚𝑖 < 𝑛𝑖, DR𝑖 is expressed by

DR𝑖 (𝑚𝑖) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

det [𝑄𝑖 (𝑚𝑖)]
det [𝑄𝑖 (𝑚𝑖 + 1)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(9)

with

DR𝑖 (𝑚𝑖) > 0 if 𝑚𝑖 < 𝑛𝑖,
DR𝑖 (𝑚𝑖) ≫ DR𝑖 (𝑚𝑖 − 1) if 𝑚𝑖 = 𝑛𝑖.

(10)

Report (9) is computed for different 𝑚𝑖 values (𝑚𝑖 = 1, 2,
. . . , 𝑚𝑖max). When the Determinant Report value DR𝑖(𝑚𝑖)
presents an important increase over the previous value
DR𝑖(𝑚𝑖 − 1), the value 𝑚𝑖 corresponds to the specific order
of the considered system.

As a result, the DR𝑖 procedure can be described as

𝑞𝑇𝑖 (𝑚𝑖) = [𝑦𝑖 (𝑘 − 1) 𝑢𝑖 (𝑘 − 1) 𝑢𝑝1𝑖 (𝑘 − 1) 𝑢𝑗 (𝑘 − 1)

⋅ 𝑢𝑝2𝑗 (𝑘 − 1) 𝑦𝑗 (𝑘 − 1) 𝑦𝑝3𝑗 (𝑘 − 1) ⋅ ⋅ ⋅ 𝑦𝑖 (𝑘 − 𝑚𝑖)

⋅ 𝑢𝑖 (𝑘 − 𝑚𝑖) 𝑢𝑝1𝑖 (𝑘 − 𝑚𝑖) 𝑢𝑗 (𝑘 − 𝑚𝑖) 𝑢𝑝2𝑗 (𝑘 − 𝑚𝑖)

⋅ 𝑦𝑗 (𝑘 − 𝑚𝑖) 𝑦𝑝3𝑗 (𝑘 − 𝑚𝑖)] ,

𝑄𝑖 (𝑚𝑖) =
1
𝑀𝑘
𝑀𝑘+𝑚𝑖

∑
𝑚𝑖

𝑞𝑖 (𝑚𝑖) 𝑞𝑇𝑖 (𝑚𝑖) ,

DR𝑖 (𝑚𝑖) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

det [𝑄𝑖 (𝑚𝑖)]
det [𝑄𝑖 (𝑚𝑖 + 1)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

with 𝑖, 𝑗 = 1, . . . , 𝑁; 𝑗 ̸= 𝑖, 𝑚𝑖 = 1, 2, . . . , 𝑚𝑖max.
(11)

In order to clarify the developed approach and to test the
performance of algorithm (11), we treat the following numer-
ical example, which corresponds to a large-scale system
constituted of two interconnected Hammerstein subsystems.
Each system output is described by

𝑦𝑖 (𝑘) = −𝑎𝑖,1 (𝑘) 𝑦𝑖 (𝑘 − 1) − 𝑎𝑖,2 (𝑘) 𝑦𝑖 (𝑘 − 2)
+ 𝛼𝑖,1𝑢𝑖 (𝑘 − 1) + 𝛼𝑖,1𝑏𝑖,2 (𝑘) 𝑢𝑖 (𝑘 − 2)
+ 𝛼𝑖,2𝑢2𝑖 (𝑘 − 1) + 𝛼𝑖,2𝑏𝑖,2 (𝑘) 𝑢2𝑖 (𝑘 − 2)
+ 𝛽𝑗,1𝑢𝑗 (𝑘 − 1) + 𝛽𝑗,1𝑏𝑖𝑗,2 (𝑘) 𝑢𝑗 (𝑘 − 2)

+ 𝛽𝑗,2𝑢2𝑗 (𝑘 − 1) + 𝛽𝑗,2𝑏𝑖𝑗,2 (𝑘) 𝑢2𝑗 (𝑘 − 2)
+ 𝑒𝑖 (𝑘) + 𝑐𝑖,1𝑒𝑖 (𝑘 − 1)

(12)

with
𝑎1,1 (𝑘) = −0.85 + 0.06 sin (0.3𝑘) ,
𝑎1,2 (𝑘) = 0.37 + 0.05 cos (0.3𝑘) ,
𝑏1,2 (𝑘) = 0.66 + 0.05 sin (0.2𝑘) ,
𝑏12,2 (𝑘) = 0.28 + 0.03 sin (0.4𝑘) ,

𝛼1,1 = 0.35,
𝛼1,2 = 0.2,
𝛽2,1 = 0.43,
𝛽2,2 = 0.3,
𝑐1,1 = 0.24,

𝑎2,1 (𝑘) = −0.82 + 0.05 cos (0.3𝑘) ,
𝑎2,2 (𝑘) = 0.4 + 0.03 sin (0.4𝑘) ,
𝑏2,2 (𝑘) = 0.58 + 0.03 sin (0.2𝑘) ,
𝑏21,2 (𝑘) = 0.23 + 0.03 sin (0.2𝑘) ,

𝛼2,1 = 0.43,
𝛼2,2 = 0.3,
𝛽1,1 = 0.35,
𝛽1,2 = 0.2,
𝑐1,2 = 0.35.

(13)

In this simulation example, the input 𝑢𝑖(𝑘), 𝑖 = 1, 2,
that applied to the interconnected Hammerstein system 𝑆𝑖
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Figure 2: Evolution curve of DR1(𝑚1).
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Figure 3: Evolution curve of DR2(𝑚2).

is a high level pseudorandom binary sequence [−1.5, +1.5].
In addition, the noise sequences {𝑒𝑖(𝑘), 𝑖 = 1, 2} are
uncorrelated with all input-output signals of the considered
system, their variance values are equal to 𝜎21 = 0.0943 and
𝜎22 = 0.0879, respectively, and the measurements number is
selected as𝑀𝑘 = 1, . . . , 600.

We remark that the evolution curves of the different
determinant reports, as delineated in Figures 2 and 3, admit
a specific jumping in 𝑚𝑖 = 2. As a result, we can conclude
that the model order is equal to 2 for each interconnected
subsystem 𝑆𝑖. Therefore, these results indicate the perfor-
mance and the efficiency of the developed algorithm (11) for
the order estimate of a large-scale interconnected nonlinear
system described by the Hammerstein model (1).

It should be mentioned that this approach is used to
limit the number of possible model orders before starting the
parameters estimation. This method gives the correct model
order independently of the number ofmeasurements because
from all the obtained values of DR𝑖(𝑚𝑖) only DR𝑖(𝑛𝑖) of the
exact order model presents a considerable step. For a system
with small noise level, this test still indicates the correct order.
So far, thismethod seems sufficient to be applied for a process
with uncorrelated and high disturbances. Nevertheless, in
real applications, when the noise is corrupted with all input
and/or output signals, this technique becomes not suitable
to determine the correct order model. In this sense, other
tests methods can be used, which are developed in the
literature to estimate the model order for simple systems,
like the condition number method, test of signals errors,
statistical𝐹-test, polynomial approach, test for normality, and
so forth. These techniques could be applied in combination

with the parameter estimation methods. Let us note that the
determinant ratio approach proves to be very robust under
all working conditions because, with this test, it is possible to
reduce the possibilities of the model order, as well as save a
lot of computing time.

Note that the practical value of these different testing
order approaches depends on the purpose and further
application of the estimated model. However, it must be
considered that the use of one testing approach alone may
produce a wrong order model; therefore, the use of various
methods together can elicit the correct order model with
important accuracy.

3.2. Time-Delay Estimation. In reality, there are no physical
systems without delay. The time delay as an active research
in automatic control and signal processing is widely used in
several industrial applications like chemical processes, energy
processes, communication processes, and so on. However, it
is assumed to be negligible in several researches, in order to
simplify the study. To overcome this assumption, a variety
of algorithms are introduced into the time-delay estimation,
in order to improve the precision and the convergence in
the modeling, identification, and control processes [23–28].
The time-delay identification is a greatly studied problem
with several works in the literature. In this instance, different
discrete-time and continuous-time techniques for time-delay
estimation were proposed in control process and signal
processing. Some typical approaches are described: Zhang
and Li proposed a time-delay identification approach based
on cross-correlation technology in signal processes [25],
Zheng and Feng developed a time-delay estimation algorithm
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Criterion computation

Interconnected nonlinear system described by a discrete-time
mathematical model with time delays di,
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Figure 4: General procedure of the delay estimation.

based on correlation analysis [26], Gao et al. presented an
iterative approach for time-delay estimation based on the
output error between the process output and the predictive
model [27, 28], and so forth.

In what follows, we propose an iterative approach incor-
porated with a Recursive Extended Least Squares estimator
and based on the prediction error method, in order to
estimate simultaneously the time delays and the parameters
of a large-scale interconnected nonlinear process, which is
modeled by (1).

The general procedure of time-delay estimation, as shown
in Figure 4, is based on the computation of the criteria 𝐹𝑖,𝑑𝑖 ,𝐹𝑖,𝑑𝑖𝑗 , and 𝐹𝑖,𝑡𝑖𝑗 for each of the time delays 𝑑𝑖, 𝑑𝑖𝑗, and 𝑡𝑖𝑗. The
minimum value of each criterion corresponds to the exact
estimated delay.

To apply this procedure, let us consider a large-scale
system decomposed into N interconnected nonlinear sub-
systems and described by the mathematical model (1). Each
system output can be written in the following manner:

𝑦𝑖 (𝑘) =
𝐵∗𝑖𝑟1 (𝑞

−1, 𝑘)
𝐴 𝑖 (𝑞−1, 𝑘)

𝑢𝑟1𝑖 (𝑘)

+
∑𝑁𝑗=1, 𝑗 ̸=𝑖 𝐵∗𝑖𝑗𝑟2 (𝑞

−1, 𝑘)
𝐴 𝑖 (𝑞−1, 𝑘)

𝑢𝑟2𝑗 (𝑘)

+
∑𝑁𝑗=1, 𝑗 ̸=𝑖 𝐴∗𝑖𝑗𝑟3 (𝑞

−1, 𝑘)
𝐴 𝑖 (𝑞−1, 𝑘)

𝑦𝑟3𝑗 (𝑘)

+ 𝐶𝑖 (𝑞−1)
𝐴 𝑖 (𝑞−1, 𝑘)

𝑒𝑖 (𝑘) ,

(14)
where

𝐵∗𝑖𝑟1 (𝑞
−1, 𝑘) =

𝑝1

∑
𝑟1=1

𝑞−𝑑𝑖𝐵𝑖 (𝑞−1, 𝑘) 𝛼𝑖,𝑟1 ,

𝐵∗𝑖𝑗𝑟2 (𝑞
−1, 𝑘) =

𝑝2

∑
𝑟2=1

𝑞−𝑑𝑖𝑗𝐵𝑖𝑗 (𝑞−1, 𝑘) 𝛽𝑗,𝑟2 ,

𝐴∗𝑖𝑗𝑟3 (𝑞
−1, 𝑘) =

𝑝3

∑
𝑟3=1

𝑞−𝑡𝑖𝑗𝐴 𝑖𝑗 (𝑞−1, 𝑘) 𝛾𝑗,𝑟3 ,

(15)

with
𝐵∗𝑖𝑟1 (𝑞

−1, 𝑘) = 𝑏∗𝑖1,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅
+ 𝑏∗𝑖𝑝1 ,𝑛𝑖+𝑑𝑖max

(𝑘) 𝑞−(𝑛𝑖+𝑑𝑖max),

𝐵∗𝑖𝑗𝑟2 (𝑞
−1, 𝑘) = 𝑏∗𝑖𝑗1,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅

+ 𝑏∗𝑖𝑗𝑝2 ,𝑛𝑖+𝑑𝑖𝑗max
(𝑘) 𝑞−(𝑛𝑖+𝑑𝑖𝑗max),
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𝐴∗𝑖𝑗𝑟3 (𝑞
−1, 𝑘) = 1 + 𝑎∗𝑖𝑗1,1 (𝑘) 𝑞−1 + ⋅ ⋅ ⋅

+ 𝑎∗𝑖𝑗𝑝3 ,𝑛𝑖+𝑡𝑖𝑗max
(𝑘) 𝑞−(𝑛𝑖+𝑡𝑖𝑗max),

(16)

in which the delays 𝑑𝑖max, 𝑑𝑖𝑗max, and 𝑡𝑖𝑗max correspond to the
superior ones which are selected a priori from the real delays
(𝑟𝑡 = 1, . . . , 𝑝𝑡, 𝑡 = 1, 2, 3).

Thus, the output 𝑦𝑖(𝑘) can be expressed in the following
developed form:

𝑦𝑖 (𝑘) = −𝑎𝑖,1 (𝑘) 𝑦𝑖 (𝑘 − 1) − ⋅ ⋅ ⋅ − 𝑎𝑖,𝑛𝑖 (𝑘) 𝑦𝑖 (𝑘 − 𝑛𝑖)
+ 𝑏∗𝑖1,1 (𝑘) 𝑢𝑖 (𝑘 − 1) + 𝑏∗𝑖1,2 (𝑘) 𝑢𝑖 (𝑘 − 2) + ⋅ ⋅ ⋅
+ 𝑏∗𝑖1,𝑛𝑖+𝑑𝑖max

(𝑘) 𝑢𝑖 (𝑘 − 𝑛𝑖 − 𝑑𝑖max) + ⋅ ⋅ ⋅

+ 𝑏∗𝑖𝑝1,1 (𝑘) 𝑢
𝑝1
𝑖 (𝑘 − 1) + 𝑏∗𝑖𝑝1 ,2 (𝑘) 𝑢

𝑝1
𝑖 (𝑘 − 2)

+ ⋅ ⋅ ⋅ + 𝑏∗𝑖𝑝1 ,𝑛𝑖+𝑑𝑖max
(𝑘) 𝑢𝑝1𝑖 (𝑘 − 𝑛𝑖 − 𝑑𝑖max)

+ 𝑏∗𝑖𝑗1,1 (𝑘) 𝑢𝑗 (𝑘 − 1) + 𝑏∗𝑖𝑗1,2 (𝑘) 𝑢𝑗 (𝑘 − 2)

+ ⋅ ⋅ ⋅ + 𝑏∗𝑖𝑗1,𝑛𝑖+𝑑𝑖𝑗max
(𝑘) 𝑢𝑗 (𝑘 − 𝑛𝑖 − 𝑑𝑖𝑗max)

+ ⋅ ⋅ ⋅ + 𝑏∗𝑖𝑗𝑝2 ,1 (𝑘) 𝑢
𝑝2
𝑗 (𝑘 − 1)

+ 𝑏∗𝑖𝑗𝑝2,2 (𝑘) 𝑢
𝑝2
𝑗 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝑏∗𝑖𝑗𝑝2,𝑛𝑖+𝑑𝑖𝑗max
(𝑘) 𝑢𝑝2𝑗 (𝑘 − 𝑛𝑖 − 𝑑𝑖𝑗max)

+ 𝑎∗𝑖𝑗1,1 (𝑘) 𝑦𝑗 (𝑘 − 1) + 𝑎∗𝑖𝑗1,2 (𝑘) 𝑦𝑗 (𝑘 − 2)

+ ⋅ ⋅ ⋅ + 𝑎∗𝑖𝑗1,𝑛𝑖+𝑡𝑖𝑗max
(𝑘) 𝑦𝑗 (𝑘 − 𝑛𝑖 − 𝑡𝑖𝑗max)

+ ⋅ ⋅ ⋅ + 𝑎∗𝑖𝑗𝑝3 ,1 (𝑘) 𝑦
𝑝3
𝑗 (𝑘 − 1)

+ 𝑎∗𝑖𝑗𝑝3 ,2 (𝑘) 𝑦
𝑝3
𝑗 (𝑘 − 2) + ⋅ ⋅ ⋅

+ 𝑎∗𝑖𝑗𝑝3 ,𝑛𝑖+𝑡𝑖𝑗max
(𝑘) 𝑦𝑝3𝑗 (𝑘 − 𝑛𝑖 − 𝑡𝑖𝑗max)

+ 𝑐𝑖,1𝑒𝑖 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑐𝑖,𝑛𝑖𝑒𝑖 (𝑘 − 𝑛𝑖) + 𝑒𝑖 (𝑘) .

(17)

Equivalently, its matrix form is as follows:

𝑦𝑖 (𝑘) = 𝜃∗𝑇𝑖 (𝑘) 𝜓∗𝑖 (𝑘) + 𝑒𝑖 (𝑘) , (18)

where the parameters vector 𝜃∗𝑇𝑖 (𝑘) and the information
vector 𝜓∗𝑖 (𝑘) are defined as

𝜃∗𝑇𝑖 (𝑘) = [𝑎𝑖,1 (𝑘) , . . . , 𝑎𝑖,𝑛𝑖 (𝑘) , 𝑏
∗
𝑖1,1 (𝑘) , . . . , 𝑏∗𝑖1,𝑛𝑖+𝑑𝑖max

(𝑘) ,

. . . , 𝑏∗𝑖𝑝1,1 (𝑘) , . . . , 𝑏
∗
𝑖𝑝1 ,𝑛𝑖+𝑑𝑖max

(𝑘) , 𝑏∗𝑖𝑗1,1 (𝑘) , . . . ,
𝑏∗𝑖𝑗1,𝑛𝑖+𝑑𝑖𝑗max

(𝑘) , . . . , 𝑏∗𝑖𝑗𝑝2,1 (𝑘) , . . . , 𝑏
∗
𝑖𝑗𝑝2,𝑛𝑖+𝑑𝑖𝑗max

(𝑘) ,

𝑎∗𝑖𝑗1,1 (𝑘) , . . . , 𝑎∗𝑖𝑗1,𝑛𝑖+𝑡𝑖𝑗max
(𝑘) , . . . , 𝑎∗𝑖𝑗𝑝3 ,1 (𝑘) , . . . ,

𝑎∗𝑖𝑗𝑝3 ,𝑛𝑖+𝑡𝑖𝑗max
(𝑘) , 𝑐𝑖,1, . . . , 𝑐𝑖,𝑛𝑖] ,

(19)

𝜓∗𝑇𝑖 (𝑘) = [−𝑦𝑖 (𝑘 − 1) , . . . , −𝑦𝑖 (𝑘 − 𝑛𝑖) , 𝑢𝑖 (𝑘 − 1) ,

. . . , 𝑢𝑖 (𝑘 − 𝑛𝑖 − 𝑑𝑖max) , . . . , 𝑢𝑝1𝑖 (𝑘 − 1) , . . . ,
𝑢𝑝1𝑖 (𝑘 − 𝑛𝑖 − 𝑑𝑖max) , 𝑢𝑗 (𝑘 − 1) , . . . ,

𝑢𝑗 (𝑘 − 𝑛𝑖 − 𝑑𝑖𝑗max) , . . . , 𝑢𝑝2𝑗 (𝑘 − 1) , . . . ,

𝑢𝑝2𝑗 (𝑘 − 𝑛𝑖 − 𝑑𝑖𝑗max) , 𝑦𝑗 (𝑘 − 1) , . . . ,

𝑦𝑗 (𝑘 − 𝑛𝑖 − 𝑡𝑖𝑗max) , . . . , 𝑦𝑝3𝑗 (𝑘 − 1) , . . . ,

𝑦𝑝3𝑗 (𝑘 − 𝑛𝑖 − 𝑡𝑖𝑗max) , 𝑒𝑖 (𝑘 − 1) , . . . , 𝑒𝑖 (𝑘 − 𝑛𝑖)] .

(20)

The previous vectors, given by (19) and (20), are used in a
recursive algorithm of parameter estimation, named Recur-
sive Extended Least Squares with Varying Time (RELSVT)
delay estimator. As a result, fewer steps are required to
estimate the time delays.

Step 1.

(i) Determine themaximumvalues of 𝑏∗𝑖,𝑑𝑖max
, 𝑏∗𝑖𝑗,𝑑𝑖𝑗max

, and
𝑎∗𝑖𝑗,𝑡𝑖𝑗max

in order to frame the real values of the delays
𝑑𝑖, 𝑑𝑖𝑗, and 𝑡𝑖𝑗:

𝑏∗𝑖,𝑑𝑖max
= {󵄨󵄨󵄨󵄨󵄨𝑏
∗
𝑖,𝑟

󵄨󵄨󵄨󵄨󵄨 ; 𝑟 = 1, 2, . . . , 𝑛𝑖 + 𝑑𝑖max} ,

𝑏∗𝑖𝑗,𝑑𝑖𝑗max
= {󵄨󵄨󵄨󵄨󵄨𝑏
∗
𝑖𝑗,𝑟

󵄨󵄨󵄨󵄨󵄨 ; 𝑟 = 1, 2, . . . , 𝑛𝑖 + 𝑑𝑖𝑗max} ,

𝑎∗𝑖𝑗,𝑡𝑖𝑗max
= {󵄨󵄨󵄨󵄨󵄨𝑎
∗
𝑖𝑗,𝑟

󵄨󵄨󵄨󵄨󵄨 ; 𝑟 = 1, 2, . . . , 𝑛𝑖 + 𝑡𝑖𝑗max} .

(21)

(ii) Verify the following relationships:

𝑏∗𝑖,𝑘1 = 0 for 𝑘1 = 1, . . . , 𝑑𝑖,
𝑏∗𝑖,𝑘2 = 𝑏∗𝑖,𝑘2−𝑑𝑖 for 𝑘2 = 𝑑𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖,
𝑏∗𝑖,𝑘3 = 0 for 𝑘3 = 𝑛𝑖 + 𝑑𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖max,
𝑏∗𝑖𝑗,𝑘1 = 0 for 𝑘1 = 1, . . . , 𝑑𝑖𝑗,
𝑏∗𝑖𝑗,𝑘2 = 𝑏∗𝑖𝑗,𝑘2−𝑑𝑖𝑗 for 𝑘2 = 𝑑𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑑𝑖𝑗,

𝑏∗𝑖𝑗,𝑘3 = 0 for 𝑘3 = 𝑛𝑖 + 𝑑𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑑𝑖𝑗max,
𝑎∗𝑖𝑗,𝑘1 = 0 for 𝑘1 = 1, . . . , 𝑡𝑖𝑗,
𝑎∗𝑖𝑗,𝑘2 = 𝑎∗𝑖𝑗,𝑘2−𝑡𝑖𝑗 for 𝑘2 = 𝑡𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑡𝑖𝑗,

𝑎∗𝑖𝑗,𝑘3 = 0 for 𝑘3 = 𝑛𝑖 + 𝑡𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑡𝑖𝑗max.

(22)

Thereby, the real delay satisfies the relation given as

0 ≤ 𝑑𝑖 ≤ 𝑑𝑖max − 1,

0 ≤ 𝑑𝑖𝑗 ≤ 𝑑𝑖𝑗max − 1,
0 ≤ 𝑡̂𝑖𝑗 ≤ 𝑡𝑖𝑗max − 1.

(23)
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Step 2. Compute the errors functions 𝐹𝑖,𝑑𝑖 , 𝐹𝑖,𝑑𝑖𝑗 , and 𝐹𝑖,𝑡𝑖𝑗
starting from

𝐹𝑖,𝑑𝑖 (𝑘) =
𝑀𝑘

∑
𝑘=0

𝐺2
𝑖,𝑑𝑖

(𝑘) ; 𝑑𝑖 = 0, . . . , 𝑑𝑖max − 1,

𝐹𝑖,𝑑𝑖𝑗 (𝑘) =
𝑀𝑘

∑
𝑘=0

𝐻̂2
𝑖,𝑑𝑖𝑗

(𝑘) ; 𝑑𝑖𝑗 = 0, . . . , 𝑑𝑖𝑗max − 1,

𝐹𝑖,𝑡𝑖𝑗 (𝑘) =
𝑀𝑘

∑
𝑘=0

𝐾̂2𝑖,𝑡𝑖𝑗 (𝑘) ; 𝑡𝑖𝑗 = 0, . . . , 𝑡𝑖𝑗max − 1,

(24)

where 𝐺𝑖,𝑑𝑖(𝑘), 𝐻̂𝑖,𝑑𝑖𝑗(𝑘), and 𝐾̂𝑖,𝑡𝑖𝑗(𝑘) are given as follows.
If 𝑑𝑖 = 0, then

𝐺𝑖,0 (𝑘) = 0 for 𝑘 = 1, . . . , 𝑛𝑖,

𝐺𝑖,0 (𝑘) = 𝑏̂∗𝑖,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖max,

𝐺𝑖,0 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖max + 1, . . . ,𝑀𝑘.

(25)

If 𝑑𝑖 ≥ 1, then

𝐺𝑖,𝑑𝑖 (𝑘) = 0 for 𝑘 = 0,

𝐺𝑖,𝑑𝑖 (𝑘) = 𝑏̂∗𝑖,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,𝑑𝑖 (𝑘 − 𝑟) for 𝑘 = 2, . . . , 𝑑𝑖,

𝐺𝑖,𝑑𝑖 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,𝑑𝑖 (𝑘 − 𝑟)

for 𝑘 = 𝑑𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖,

𝐺𝑖,𝑑𝑖 (𝑘) = 𝑏̂∗𝑖,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,𝑑𝑖 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖max,

𝐺𝑖,𝑑𝑖 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐺𝑖,𝑑𝑖 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖max + 1, . . . ,𝑀𝑘.

(26)

If 𝑑𝑖𝑗 = 0, then

𝐻̂𝑖,0 (𝑘) = 0 for 𝑘 = 1, . . . , 𝑛𝑖,

𝐻̂𝑖,0 (𝑘) = 𝑏̂∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑖 + 𝑑𝑖𝑗max,

𝐻̂𝑖,0 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖𝑗max + 1, . . . ,𝑀𝑘.

(27)

If 𝑑𝑖𝑗 ≥ 1, then

𝐻̂𝑖,𝑑𝑖𝑗 (𝑘) = 0 for 𝑘 = 0,

𝐻̂𝑖,𝑑𝑖𝑗 (𝑘) = 𝑏̂∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,𝑑𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 2, . . . , 𝑑𝑖𝑗,

𝐻̂𝑖,𝑑𝑖𝑗 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,𝑑𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑑𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑑𝑖𝑗,

𝐻̂𝑖,𝑑𝑖𝑗 (𝑘) = 𝑏̂∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,𝑑𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑑𝑖𝑗max,

𝐻̂𝑖,𝑑𝑖𝑗 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐻̂𝑖,𝑑𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑑𝑖𝑗max + 1, . . . ,𝑀𝑘.

(28)

If 𝑡𝑖𝑗 = 0, then

𝐾̂𝑖,0 (𝑘) = 0 for 𝑘 = 1, . . . , 𝑛𝑖,

𝐾̂𝑖,0 (𝑘) = 𝑎∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 1, . . . , 𝑛𝑖 + 𝑡𝑖𝑗max,

𝐾̂𝑖,0 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,0 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑡𝑖𝑗max + 1, . . . ,𝑀𝑘.

(29)
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If 𝑡𝑖𝑗 ≥ 1, then

𝐾̂𝑖,𝑡𝑖𝑗 (𝑘) = 0 for 𝑘 = 0,

𝐾̂𝑖,𝑡𝑖𝑗 (𝑘) = 𝑎∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,𝑡𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 2, . . . , 𝑡𝑖𝑗,

𝐾̂𝑖,𝑡𝑖𝑗 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,𝑡𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑡𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑡𝑖𝑗,

𝐾̂𝑖,𝑡𝑖𝑗 (𝑘) = 𝑎∗𝑖𝑗,𝑘 −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,𝑡𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑡𝑖𝑗 + 1, . . . , 𝑛𝑖 + 𝑡𝑖𝑗max,

𝐾̂𝑖,𝑡𝑖𝑗 (𝑘) = −
𝑛𝑖

∑
𝑟=1

𝑎𝑖,𝑟𝐾̂𝑖,𝑡𝑖𝑗 (𝑘 − 𝑟)

for 𝑘 = 𝑛𝑖 + 𝑡𝑖𝑗max + 1, . . . ,𝑀𝑘.

(30)

Step 3.

(i) Determine the estimated delay that satisfies

𝐹𝑖,𝑑𝑖 = min {𝐹𝑖,𝑑𝑖 (k) ; 𝑑𝑖 = 0, . . . , 𝑑𝑖max − 1} ,

𝐹𝑖,𝑑𝑖𝑗 = min {𝐹𝑖,𝑑𝑖𝑗 (𝑘) ; 𝑑𝑖𝑗 = 0, . . . , 𝑑𝑖𝑗max − 1} ,

𝐹𝑖,̂𝑡𝑖𝑗 = min {𝐹𝑖,𝑡𝑖𝑗 (𝑘) ; 𝑡𝑖𝑗 = 0, . . . , 𝑡𝑖𝑗max − 1} .

(31)

The minimum values of 𝐹𝑖,𝑑𝑖 , 𝐹𝑖,𝑑𝑖𝑗 , and 𝐹𝑖,𝑡𝑖𝑗 indicate,
respectively, the exact time delays 𝑑𝑖, 𝑑𝑖𝑗, and 𝑡𝑖𝑗 of the
process.

To validate the proposed approach of time-delay estima-
tion, let us consider the previous numerical example with
𝑑1 = 1 and 𝑑2 = 2. Figures 5 and 6 represent the evolution
curves of 𝐹𝑖,𝑑𝑖 , 𝑖 = 1, 2, for each interconnected nonlinear
subsystem.

According to the evolution curves of 𝐹1,𝑑1 and 𝐹2,𝑑2 , it can
be remarked that 𝑑1 = 1 and 𝑑2 = 2. These simulation results
prove the validity and feasibility of the proposed algorithm
for time-delay estimation of the large-scale interconnected
nonlinear processes.

It can be remarked that the estimated delays depend on
the estimated parameters of the model. Therefore, (31) is
added to an Extended Least Squares algorithm to estimate
simultaneously the parameters and the time delays of the
model. Note that computer simulations show that discrete
solutions properties of the delays equationsmake them robust
to estimation errors in the estimate of parameters vector
(19) and the presence of Gaussian-distributed noise. If the
parameters are correctly estimated and no disturbances exist,
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Figure 5: Evolution curve of 𝐹1,𝑑1 .
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Figure 6: Evolution curve of 𝐹2,𝑑2 .

(31) will have a zero minimum. If there is a small estimation
error and small noise level, (31) is still enough to identify
the delays correctly. As the estimation error and the level
noise increase, the delays estimation can be conducted using
the maximum likelihood algorithm in the estimation of
the process parameters and based on (31) (the maximum
likelihood estimator is more robust than the Recursive
Extended Least Squares algorithm in the convergence sense).
It should be mentioned that (31) can be added easily to
any recursive estimator. The implementation of this equation
requires minimum storage and computation time as they
contain multiplications and additions.

However, in realistic applications, the corrupting noise is
correlated with input and/or output signals, so this makes the
estimates of the parameters asymptotically biased, as well as
a wrong estimated time delay. In this case, we can use other
techniques to estimate the time delays and the parameters
of the model, such as the correlation analysis, the cross-
correlation method, and generalized 𝑙𝑝 norm estimation.
In conclusion, a priori information of noise distribution is
necessary in order to develop an efficient estimation.

In the identification systems, two main problems must be
considered.Thefirst one is the identification of the time delay,
and the second one is the identification of the parameters.
In this case, the time-delay estimation problem is a great
research axis with several references dealing with several
approaches for time-delay estimation. These approaches can
be classified into four classes. The first class denotes the
time-delay approximation approach (timedomain, frequency
domain, and Laguerre domain). In this case, the time delay is
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estimated from an approximation of the model. The second
class represents the time-delay parameter method (one step,
two steps, and sampling method). In this case, the time delay
and the parameters of the model are identified alternatively,
simultaneously, or using the sampling system. The third
class is the area and moments approaches. In this event,
we estimate firstly the step or the impulse response. After
that, we identify the time delay. The last class represents
the high-order statistics approach. The main disadvantage of
these techniques is that parameters estimation is required
on each iteration step of time-delay estimation, and this
makes the implementation difficult. Furthermore, it can be
indicated that there is not an efficient solution to the time-
delay problem.The general agreement is on which method is
the best.Thereby, a comparative study of these techniques for
time-delay estimation of large-scale interconnected nonlin-
ear systems will be investigated in the future research.

4. Conclusions

Two extended discrete-time structural estimation methods,
which are applied for estimating the time delay and the
order of a dynamical process, are developed. We have
particularly focused on the class of large-scale time-varying
stochastic systems constituted by various interconnected
Hammerstein structures. These systems are described by
discrete-time stochastic Hammerstein mathematical models
with unknown time-varying parameters.

The main research work developed in this article is
divided into two important parts. The first part formulated
the problem of the order estimation for the class of large-scale
interconnected nonlinear systems, using the determinant
ratio test DR𝑖.The second part proposed an extended iterative
procedure, which permits estimating the time delays of the
considered system.

These developed approaches are validated by treating
two numerical simulation examples of a large-scale system
composed of two interconnected Hammerstein structures.
Theobtained results prove the performance and the feasibility
of the proposed methods in spite of the presence of inter-
actions signals, Gaussian distribution noise, and parameters
variations.
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