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The optimization method to evaluate the tight reservoir porosity is a difficult technique to use due to its complexity and instability.
This paper proposes an improved optimization method to calculate the porosity of tight reservoirs. First, we applied the matrix
model which modified the multicomponent model to the problem and it improved the results by deducing a mathematical model.
Second, we used the Simulated Annealing Algorithm to calculate the incoherence function, and then based on statistical theory,
we obtained the most optimal results. Examples show that the method is effective, and despite the lack of the local experience
parameters, its application is valuable in order to evaluate the porosity.

1. Introduction

The optimization log interpretation method provides a
variety of logging information which is an effective way
to evaluate complex oil and gas reservoirs. After it was
proposed in 1980 [1], optimization log interpretation method
technology has developed and improved. Although the firm
Schlumberger Ltd. boasted about how the technology could
be suitable for all types of reservoirs around the world, it
was difficult to obtain a satisfactory result when evaluating
tight reservoirs. Because the pore system in tight reservoirs
presents a much greater variety of geometrical characteristics
and structures compared with clastic reservoir, then the
complexity of the pore system affects the results because the
parameter is difficult to ascertain.Therefore, the development
and improvement of the optimization log interpretation
method to solve the above problem are required.

The traditional optimization log interpretation method
contains two important processes: (1) the establishment of
the pore model and the response equations and (2) the
calculation of the response equations.

The traditional pore model is a multimineral model or
multicomponent model [2, 3]. In the model, the reservoirs
act as a unit of a space geological body and are made up

of partially homogeneous components, such as minerals and
porosity. The purpose of this division is to simplify the
calculation process and programming design [4]. However,
arguments presuppose that all types of minerals and geologic
parameters inmultimineral ormulticomponentmodels must
be known.Thosemodels cannot be used in geographical areas
where the mineral components are difficult to distinguish,
especially at tight reservoirs. In this paper, we put forward the
mixed-matrix model to improve traditional model following
the Fuzzy Clustering analysis. An important characteristic of
this new model is synthesizing multimineral as a synthesis.
For instance, with this model, the user does not need to know
the physical parameters of all the types of mineral present in
the system. Therefore, the response equations are calculated
for the optimization log interpretation mathematical model.

The calculation of the response equations is the opti-
mization algorithm. In the process of algorithm research, a
large number of scholars have used different algorithms to
proposemathematicalmodels as it is shown in Table 1 [5]. For
example, Global Program started using the steepest descent
algorithm [1], and Optima Program used the conjugate
gradient algorithm [6].These programswere a good approach
evaluating conventional reservoir wells. In China, Ouyang et
al. used the simplex algorithm to evaluate clastic reservoir [7]
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Table 1: Classification optimization algorithms.

Unconstrained optimization algorithms
Cyclic
Coordinate Steepest descent Newton’s

algorithm Conjugate gradient Powell’s
algorithm BFGS or DFP Simplex

Constrained optimization algorithms

Random
floating

Random
searching Complex CONMIN

Sequential
linear

programming
GRG Interior

penalty
Exterior
Penalty

Mixed
penalty SQP

Intelligent algorithm

Local search Simulated annealing Genetic
algorithm Tabu search algorithm Artificial neural network PSO

For example, BFGS or DFP is quasi-Newton methods; GRG is penalty function method; SQP is sequence quadratic program; PSO is particle swarm
optimization.

and lamprophyre reservoir [8], using BFGS or DFP to
evaluate oil-bearing igneous for better results [9]. All of the
above optimization algorithms have an initial value and the
initial value greatly influenced the results [10]. Stoffa and Sen
introduced the genetic algorithm (GA), in the optimization
algorithms [11], and GA does not need the initial value of
the input which means GA is not restricted by the initial
value [12]. Unfortunately, GA was not stable method to use
due to the repeated calculation it involves. An important
improvement in the algorithm would be to eliminate the
influence of the initial value and the computational stability.
Kirkpatrick et al. used the simulated annealing to solve a
similar problem [13]. In this paper, we apply the Simulated
Annealing Algorithm (SAA) to calculate the response equa-
tions, because not only is it a global optimization algorithm
for functions of continuous variables but also it depends
slightly on the initial value [14].

Firstly, we start comparing the correlation between well
logging and core porosity to select the well logging types.
Secondly, we have an introduction on mixed-matrix model
to improvemultimineralmodel.Thirdly, we use SAA for opti-
mization and then we use the Monte Carlo random method
to select the initial parameters of the optimal values. The
method was then tested with set data from a tight reservoir.
Finally, we conclude with a discussion of advantages and
limitations of the method.

2. The Improved Optimization Method

2.1. The Selection of Sensitive Logging Curves. The use of
more logging curves is likely to prove more reliable results
[15]. However, it becomes less reliable with increasing the
response equations and increasing the parameters [16]. Thus,
it is crucial to select the more correlated logging curves as
possible.

The porosity logs available for this study were obtained
from ten wells, the parameters cover acoustic (AC), density
(DEN), compensated neutron log (CNL), and natural gamma
rays (GR), among others. The porosity datum from the ten
wells come from 1773 samples. The data was obtained from
tight sandstone and shales reservoir. And then correlations
were calculated using the core porosity data and AC, DEN,

CNL, and GR as shown in Figures 1(a)–1(d). The overall
porosity ranged from 0% to 12% (average is 6.48%), the
overall AC is within the scope of 156.8 us/m to 338.9 us/m
(average is 225.5 us/m), the overall DEN was in a scale of
2.17 g/cm3 to 2.99 g/cm3 (average is 2.54 g/cm3), the overall
CNL was from 2.9% to 39.3% (average is 15.9%), and the
overall GR ranged from 10API to 330API (average is 90API).

In Figures 1(a)–1(d), the correlation coefficients between
the core porosity and the well log value of AC, DEN, CNL,
and GR are 0.1854, 0.2198, 0.2634, and 0.069, respectively.
The AC, DEN, and CNL (triporosity loggings) showed a
higher correlation coefficient. In this paper, we selected AC,
DEN, and CNL to calculate the porosity, similar to the usual
optimization interpretation used in conventional reservoir.

2.2. The Establishment of the Mixed-Matrix Model. In order
to solve the multimineral model or the multicomponent
model, which cannot be used in geographical areas where
the mineral components are difficult to distinguish especially
the tight reservoir, we modified multicomponent model to
the mixed-matrix model in this research. Figure 2 shows the
following:

(1) In the model, the complex formation as a unit of a
space geological body is made up of three compo-
nents, which are 𝑉ma, 𝑉cl, and 𝜙.

(2) 𝑉ma is the mixed-brittle matrix composed of 𝑉QUA,𝑉FEL, 𝑉CAL, 𝑉DOL, and so on.
(3) 𝑉cl is the mixed-clay matrix mainly composed of𝑉KAO, 𝑉MON, 𝑉CHL, and so on.
(4) 𝜙 is total porosity mainly composed of 𝑉OG and 𝑉W.

Three kinds of component are determined to reduce the
volume for the target porosity to build the linear equation

[[
[

Δ𝑡
𝜌
ΦN
]]
]
= [[[
[

Δ𝑡ma Δ𝑡cl Δ𝑡𝜙
𝜌ma 𝜌cl 𝜌𝜙
ΦNma ΦNcl ΦN𝜙

]]]
]
⋅ [[
[

𝑉ma

𝑉cl
𝜙
]]
]
. (1)

2.3. The Establishment of Incoherence Function and Con-
straints. The building of optimization log interpretation
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Figure 1: The crossplot between core data and well logging. (a)The crossplot of core porosity and acoustic. (b)The crossplot of core porosity
and density. (c) The crossplot of core porosity and neutron. (d) The crossplot of core porosity and natural gamma ray.
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Figure 2: Mixed-matrix model based on the improved multimineral model.
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Table 2: The physical parameter range.

Value range mamin mamax clmin clmax 𝜙min 𝜙maxΔ𝑡 (us/m) 114.83 196.85 213.25 360.89 620 656
𝜌 (g/cm3) 2.04 2.87 2.02 3 0.8 1.1
ΦN (%) −5 3.4 10 52 90 100

Table 3: The samples of triporosity logging data and calculated results.

Point AC (us/m) DEN (g/cm3) CNL (%) Porcore (%) Porave (%) Porsd (%)
a 207.875 2.636 11.959 2.77 2.78 1.47
b 216.057 2.486 14.887 3.99 3.95 1.86
c 246.092 2.519 11.798 4.38 4.34 1.88
d 260.563 2.635 20.680 5.74 5.75 2.11

mathematical model is the basis of the optimization log
interpretation, including the establishment of incoherence
function and constraints.

According to the principle of least squares methods,
the incoherence function of optimization interpretation is
established as

𝐹 (V) = ∑
𝑖

[𝑐𝑖 − 𝑓𝑖 (V)]2 . (2)

Extraordinarily, each logging data has different order of
magnitude, so the data should be processed. The procession
is prior to normalization, which is for the differentmeasuring
dimension. The incoherence equation (2) turns into

𝐹 (V) = ∑
𝑖

(1 − 𝑓𝑖 (V)𝑐𝑖 )
2 . (3)

After establishing the incoherence function, the con-
straints also need to be defined to ensure the practical
significance. Its constrains are shown on

1 = 𝑉ma + 𝑉cl + 𝜙,
0 ≤ 𝑉ma ≤ 100%,
20% ≤ 𝑉cl ≤ 100%,
0 ≤ 𝜙 ≤ 12%.

(4)

2.4. The Selection of the Geologic Parameters in Mixed-Matrix
Model. The conventional reservoir matrix is mainly com-
posed of quartz, feldspar, calcite, and dolomite; however, the
tight reservoir matrix composition is hard to be determined.
Inmixed-matrix model, wemodified the components as𝑉ma,𝑉cl, and 𝜙. The logging parameters of each component are no
longer a certain value but an interval, as shown in Table 2.
For example, the value of Δ𝑡ma is determined by the relative
content of quartz, feldspar, calcite, dolomite, and so on. At the
same time, the minimum incoherence function was obtained
like all the other parameters; therefore, the components and
physical parameters can be calculated.

2.5. The Simulated Annealing Algorithm and Monte Carlo
Initial Value. Szucs and Civan used the simulated annealing
method to interpret the multilayer well log [17]; however,
the method required layering of reservoirs in advance. In
order to find approximate minimum of the incoherence
function, we present the Simulated Annealing Algorithm
(SSA) combined with Monte Carlo random method to find
approximate results. SAA is essentially an iterative random
search procedure with adaptive moves along the coordinate
directions, depending only slightly on the starting point.
It allows uphill moves under the control of a probabilistic
criterion, thus tending to avoid the first localminima encoun-
tered.

As is shown in Figure 3, SSA proceeds iteratively: starting
from a given point V0 which is randomly generated by Monte
Carlo random method, and it generates a succession of
points: V0, V1, . . . , V𝑖, . . ., tending to the globalminimumof the
incoherence function. New candidate points are generated
around the current point V𝑖 applying random moves along
each coordinate direction, in turn. If the point falls outside
the definition domain, a new point is randomly generated by
Monte Carlo random method until a point belonging to the
definition domain is found. A candidate point V is accepted
or rejected according to the Metropolis criterion [18].

If Δ𝐹 ≤ 0, then accept the new point: V𝑖+1 = V;
else accept the new point with probability: 𝑝Δ𝑓 =𝑒−Δ𝑓/𝑇,

whereΔ𝐹 = 𝑓(V)−𝑓(V𝑖),𝑇 is a parameter called temperature
and the value must be higher than 0, 𝑁 is the termination
cycle, 𝑁𝑇 is temperature reduction, and 𝑓 is the error
tolerance for the function.

We wrote the optimization algorithm using MATLAB
software according to the schematic diagram on Figure 3 [19].

2.6. The Calculation Results of Normal Distribution. Four
samples were chosen from the 1773 samples (Table 3) to
illustrate and eliminate the differences. In Table 3, each of
them was repeated 100 times as shown in Figure 4.

In Figure 4, the abscissa is the calculation porosity and
the ordinate is the frequency of the results. Figures 4(a)–4(d)
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Figure 3: The schematic diagram of SSA minimization.

Table 4: The distribution of calculation results.

Point a b c d
The

theoretical
value

[𝜇 − 𝜎, 𝜇 + 𝜎] 74.00% 77.00% 67.00% 76.00% 68.3%
[𝜇 − 2𝜎, 𝜇 + 2𝜎] 93.00% 91.00% 93.00% 94.00% 95.4%
[𝜇 − 3𝜎, 𝜇 + 3𝜎] 98.00% 97.00% 99.00% 97.00% 99.7%

present that Porcore are 2.77%, 3.99%, 4.38%, and 5.74%, re-
spectively, Porave are 2.78%, 3.95%, 4.34%, and 5.75% respec-
tively, and Porsd are 1.47%, 1.86%, 1.88%, and 2.11%, respec-
tively, which means that Porave is very close to Porcore;
therefore, Porsd is almost half of Porcore. The calculated
results trend is a normal-like distribution. According to the
Pauta criterion, theoretically, the probability of one to three
standard deviations is 68.3%, 95.4%, and 99.7% in Table 4.

2.7. The Iterate Index. The normal-like distribution will help
eliminate the differences or make computational stability. We
can calculate many times and average the results to make
computational stability. Apparently, the iterate index can lead
to prolonging computation time. Therefore, it is crucial to

determine the iterate index of calculation. We chose X5 well
3671m–3679m for the test.

Figure 5 presents that the iterate indexes are 5, 30, 50, and
100. It can be noted that (a) Porave tends to be stable gradually
with increasing the iterate index. (b) The stable Porave tends
to Porcore with increasing the iterate index. (c) Porave does not
change much as the iterate index is up to approximately 30.

Figure 6 shows that it has been calculated 5 times
when the iterate index is 30. Figure 6 shows the repeated
calculation using the previously mentioned approach. In this
case, each calculation is not the same but the overall trend is
resemblance.

In Figure 7, the four samples were designed for the con-
vergence which were calculated 100 times. Figures 7(a)–7(d)
present that convergences are 2.78%, 3.95%, 4.34%, and
5.75%, respectively.

3. Applications and Contrast

3.1. The Influence of Initial Value. Using the last sampling
point to be the next point initial value is helpful technique
used by different studies, for instance, Yong and Sun [20].
Figure 8 shows the results of using Yong’s initial method for
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Figure 4:The calculation results of the statistical distribution. (a)The statistical distribution of point a. (b)The statistical distribution of point
b. (c) The statistical distribution of point c. (d) The statistical distribution of point d.

the 1773 samples in this study (Figure 8(a)) and also byMonte
Carlo random method (Figure 8(b)); the iterate index used
was 30 for the graphics, where PorY is the calculation porosity
by Yong’s method and PorMC is the calculation porosity by
Monte Carlo random method.

The abscissa is the calculation porosity and the ordinate
is Porcore, as shown in Figure 7. It is clear that the correlation
coefficient is 0.58 and it increases to 0.8261 from PorY
to PorMC. Therefore, we believe that Monte Carlo random
method is better than Yong’s method.

3.2. The Contrast with Other Methods. Mixed-matrix model
is based on multicomponent model. The contrast of the
two types of models has great significance due to their
strong connection. We chose JY1 well 2330m–2352m which
belongs to the shale gas reservoir. We used Wyllie formula,
multicomponent model, and our mixed-matrix model to
calculate the porosity as shown in Figure 9.

From Table 5, the results differ slightly with the core
which is due mainly to the 2340m interval. Figure 9 reveals

Table 5: The contrast with other methods.

Method Minimum
value

Maximum
value Average value

Wyllie formula 3.05% 18.42% 10.78%
Multimineral model 3.96% 12.15% 5.94%
Mixed-matrix model 3.47% 11.70% 5.18%
Porcore 2.43% 7.03% 4.61%

the different porosity by different methods, and mixed-
matrix method is better than multicomponent model and
multicomponent model is better than Wyllie formula.

3.3. The Physical Parameters. As it is shown in (1), there
are two sorts of the parameters with three kinds of com-
ponents (𝑉ma, 𝑉cl, and 𝜙) and also the physical parameters
(Δ𝑡ma, 𝜌ma, ΦNma, Δ𝑡cl, 𝜌cl, ΦNcl, Δ𝑡𝜙, 𝜌𝜙, and ΦN𝜙). It is also
significant regarding the other parameters except for 𝜙. We
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Table 6: The range of calculation results and the core.

𝑉ma 𝑉cl 𝜙
The core data 36.03% < 𝑉ma < 58.76%

(average is 41.73%)
37.57% < 𝑉cl < 59.04%
(average is 52.88%)

3.68% < 𝜙 < 6.68%
(average is 5.39%)

The calculation data 33.95% < 𝑉ma < 54.91%
(average is 36.88%)

41.19% < 𝑉cl < 61.27%
(average is 57.38%)

3.89% < 𝜙 < 7.43%
(average is 5.72%)

chose JY1 well 2330m–2352m for the test and the iterate
index is 30.

Table 6 reveals that 𝑉ma, 𝑉cl, and 𝜙 can be compared with
the core, and Figure 10 presents that the physical param-
eters V(Δ𝑡ma, 𝜌ma, ΦNma, Δ𝑡cl, 𝜌cl, ΦNcl, Δ𝑡𝜙, 𝜌𝜙, ΦN𝜙) conform
to the actual situation.

4. Discussions and Conclusions

4.1. Mixed-Matrix Model from the Original Model. Tight
reservoirs study is complex; they are composed ofmany kinds
of minerals, which are difficult to be determined. Various
factors should be considered in the establishment of the
reservoir model, so the multicomponent model should be

modified to mixed-model, in order to obtain more accurate
reservoir parameters.

Mixed-matrix model is based on the ideas of Fuzzy
Clustering. Comparing the classic multicomponent or multi-
mineral models, the brittleness minerals are fuzzy as mixed-
brittle matrix, the clay minerals are fuzzy as mixed-clay
matrix, and the oil and gas and water porosity are fuzzy as the
pore space volume. This improvement makes the approach
easier and the user did not require all types of mineral’s
physical parameters.

4.2. Simulated Annealing Algorithm and the Normal Distri-
bution. The Simulated Annealing Algorithm can provide a
high reliability in the minimization of incoherence function.
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Figure 7: The 100 times calculations convergence. (a) The convergence of point a. (b) The convergence of point b. (c) The convergence of
point c. (d) The convergence of point d.
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Figure 8: The contrast with Yong’s initial value method. (a) The crossplot of core porosity and calculated porosity by Yong’s initial value
method. (b) The crossplot of core porosity and calculated porosity by Monte Carlo random initial value method.
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Figure 10: The physical parameters of the method.

It does not guarantee, of course, finding the global minimum
of the incoherence function, but if the function has many
good near-optimal solutions, it should find one. It is worth
noting that the results of the calculation are slightly different
each time, so we should use the normal-like distribution
to eliminate those differences and achieve computational
stability.

4.3. The Advantages and Limitations. All methods provide
advantages as well as limitations whichwill be discussed next.
The advantages of themethod are the following: (a) the poros-
ity can be evaluated well even if there is a lack of the regional
geological parameters; (b) matrix physical parameters can be
accurately obtained; (c) the result of calculation is different
for each time, but it has consistent trend in the interval of
computation; (d) the user is not required to compute all types
of mineral, for instance, physical parameters, so the approach
is easier.

On the other hand, the limitations are as follows: for
individual well, iterating index of 30 may be not enough to
meet the requirement. If the case happened, it will take more
time to find the final answer.

Nomenclature

𝑉ma: Volume fraction of the mixed-brittle
matrix𝑉cl: Volume fraction of the mixed-clay matrix𝜙: Porosity or the pore space volume𝑉QUA: Volume fraction of quartz𝑉FEL: Volume fraction of feldspar𝑉CAL: Volume fraction of calcite𝑉DOL: Volume fraction of dolomite𝑉KAO: Volume fraction of kaolinite𝑉MON: Volume fraction of montmorillonite𝑉CHL: Volume fraction of chlorite𝑉OG: Volume fraction of oil and gas𝑉W: Volume fraction of waterΔ𝑡: Acoustic𝜌: DensityΦN: NeutronΔ𝑡ma: Acoustic of the mixed-brittle matrixΔ𝑡cl: Acoustic of the mixed-clay matrixΔ𝑡𝜙: Acoustic of fluid𝜌ma: Density of matrix𝜌cl: Density of clay𝜌𝜙: Density of fluid
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ΦNma: Neutron of matrixΦNcl: Neutron of clayΦN𝜙: Neutron of fluid
V: A vector, V = (𝑉ma, 𝑉cl, 𝜙, Δ𝑡ma, Δ𝑡cl, Δ𝑡𝑓,𝜌ma, 𝜌cl, 𝜌𝑓,ΦNma, ΦNcl, ΦNf )𝐹(V): The incoherence function𝐹(V): The normalized incoherence function𝑐𝑖: 𝑖th logging curve which is Δ𝑡, 𝜌 andΦN𝑓𝑖(V): 𝑖th tool response functionΔ𝐹: The difference between 𝑓(V) and 𝑓(V𝑖)𝑇: A parameter called temperature except 0𝑁: The termination cycle𝑁𝑇: Temperature reduction𝑓: The error tolerance for function
Porcore: The core porosity
Porave: The average porosity
Porsd: The standard deviation porosity
PorY: The calculation porosity by Yong’s method
PorMC: The calculation porosity by Monte Carlo

random initial value method
mamin: The minimum of volume fraction of the

mixed-brittle matrix
mamax: The maximum of volume fraction of the

mixed-brittle matrix
clmin: The minimum of volume fraction of the

mixed-clay matrix
clmax: The maximum of volume fraction of the

mixed-clay matrix𝜙min: The minimum of porosity𝜙max: The maximum of porosity.
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