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Overmuchmemory and time of CPU have been taken bymultiresolution time domain (MRTD)method in three-dimension issues.
In order to solve this problem, the alternating direction implicit body of revolution multiresolution time domain (ADI-BOR-
MRTD) scheme is presented. Firstly, based on body of revolution finite difference time domain (BOR-FDTD) method, equations
of body of revolution multiresolution time domain (BOR-MRTD) method are implemented. Then alternating direction implicit
(ADI) is introduced into BOR-MRTDmethod. Lastly, convolution perfect matched layer (CPML) is applied for ADI-BOR-MRTD
method. Numerical results demonstrate that ADI-BOR-MRTD method saves more memory and time of CPU than FDTD and
MRTDmethods.

1. Introduction

As an efficient numerical algorithm, the multiresolution time
domain (MRTD) method was applied in electromagnetic
field computation in 1996 by Krumpholz and Katehi [1]
firstly. Compared with the finite difference time domain
(FDTD) method, the MRTD method has lower numeri-
cal dispersion and saves more memory and time of CPU
[1, 2].

The time index and the calculating efficiency of the
MRTD method are generally limited by the Courant-
Friedrich-Levy (CFL) stability condition. However, the alter-
nating direction implicit (ADI) technique can overcome the
CFL limitation [3]. Chen and Zhang had published the
ADI-MRTD scheme in 2001 [4]. The time step size for the
ADI-MRTD is only limited by modeling accuracy of the
calculation. Then, the study on the numerical dispersion,
absorbing boundary conditions, and the application in the
one-dimension photoelectronic band-gap of the ADI-MRTD
scheme are developed gradually [5–7].

The body of revolution is an important target in electro-
magnetic field computation. In order to calculate the body
of revolution with less memory and time of CPU, the ADI-
BOR-MRTD scheme is presented. At the end of the work, the
convolution perfect matched layer (CPML) formulations are
derived for the ADI-BOR-MRTD scheme.

2. Equations of BOR-MRTD

In cylindrical coordinates, Maxwell’s equations should be
written as

𝜀𝜕𝐸𝜌𝜕𝑡 + 𝜎𝐸𝜌 = 1𝜌 𝜕𝐻𝑧𝜕𝜑 − 𝜕𝐻𝜑𝜕𝑧 (1a)

𝜀𝜕𝐸𝜑𝜕𝑡 + 𝜎𝐸𝜑 = 𝜕𝐻𝜌𝜕𝑧 − 𝜕𝐻𝑧𝜕𝜌 (1b)

𝜀𝜕𝐸𝑧𝜕𝑡 + 𝜎𝐸𝑧 = 1𝜌
𝜕 (𝜌𝐻𝜑)𝜕𝜌 − 1𝜌

𝜕𝐻𝜌𝜕𝜑 (1c)
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−𝜇𝜕𝐻𝜌𝜕𝑡 − 𝜎𝑚𝐻𝜌 = 1𝜌 𝜕𝐸𝑧𝜕𝜑 − 𝜕𝐸𝜑𝜕𝑧 (1d)

−𝜇𝜕𝐻𝜑𝜕𝑡 − 𝜎𝑚𝐻𝜑 = 𝜕𝐸𝜌𝜕𝑧 − 𝜕𝐸𝑧𝜕𝜌 (1e)

−𝜇𝜕𝐻𝑧𝜕𝑡 − 𝜎𝑚𝐻𝑧 = 1𝜌
𝜕 (𝜌𝐸𝜑)𝜕𝜌 − 1𝜌

𝜕𝐸𝜌𝜕𝜑 . (1f)

The electric and magnetic fields are expanded by Fourier
series as

E = ∞∑
𝑚=0

(e𝑢 cos𝑚𝜙 + eV sin𝑚𝜙) (2a)

H = ∞∑
𝑚=0

(h𝑢 cos𝑚𝜙 + hV sin𝑚𝜙) , (2b)

where e𝑢, eV, h𝑢, hV are Fourier coefficients and e = E𝑚, h =
H𝑚. 𝜙 is azimuth angle;𝑚 is modulus. 𝑢 is related to cos𝑚𝜙;
V is related to sin𝑚𝜙.

Substituting (2a) and (2b) to (1a)–(1f), (1a)–(1f) are
rewritten as

𝜀𝜕𝑒𝜌𝜕𝑡 = ±𝑚𝜌 ℎ𝑧 − 𝜕ℎ𝜑𝜕𝑧 (3a)

𝜀𝜕𝑒𝜑𝜕𝑡 = 𝜕ℎ𝜌𝜕𝑧 − 𝜕ℎ𝑧𝜕𝜌 (3b)

𝜀𝜕𝑒𝑧𝜕𝑡 = 1𝜌
𝜕 (𝜌ℎ𝜑)𝜕𝜌 ∓ 𝑚𝜌 ℎ𝜌 (3c)

𝜇𝜕ℎ𝜌𝜕𝑡 = ±𝑚𝜌 𝑒𝑧 + 𝜕𝑒𝜑𝜕𝑧 (3d)

𝜇𝜕ℎ𝜑𝜕𝑡 = −𝜕𝑒𝜌𝜕𝑧 + 𝜕𝑒𝑧𝜕𝜌 (3e)

𝜇𝜕ℎ𝑧𝜕𝑡 = −1𝜌
𝜕 (𝜌𝑒𝜑)𝜕𝜌 ∓ 𝑚𝜌 𝑒𝜌. (3f)

The electric and magnetic fields are expanded by
Daubechies’ scaling function in space domain and by Haar’s
scaling function in time domain.

𝑒𝜌 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

𝑒𝛼𝜌,𝑛𝑖+1/2,𝑗,𝑘Φ𝑛 (𝑡) 𝛼𝑖+1/2 (𝜌) 𝛼𝑗 (𝜑)
⋅ 𝛼𝑘 (𝑧)

(4a)

𝑒𝜑 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

𝑒𝛼𝜑,𝑛𝑖,𝑗+1/2,𝑘Φ𝑛 (𝑡) 𝛼𝑖 (𝜌) 𝛼𝑗+1/2 (𝜑)
⋅ 𝛼𝑘 (𝑧)

(4b)

𝑒𝑧 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

𝑒𝛼𝑧,𝑛𝑖,𝑗,𝑘+1/2Φ𝑛 (𝑡) 𝛼𝑖 (𝜌) 𝛼𝑗 (𝜑)
⋅ 𝛼𝑘+1/2 (𝑧)

(4c)
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Figure 1: Distribution of field components for BOR-MRTD.

ℎ𝜌 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

ℎ𝛼𝜌,𝑛+1/2𝑖,𝑗+1/2,𝑘+1/2Φ𝑛+1/2 (𝑡) 𝛼𝑖 (𝜌)
⋅ 𝛼𝑗+1/2 (𝜑) 𝛼𝑘+1/2 (𝑧)

(4d)

ℎ𝜑 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

ℎ𝛼𝜑,𝑛+1/2𝑖+1/2,𝑗,𝑘+1/2Φ𝑛+1/2 (𝑡) 𝛼𝑖+1/2 (𝜌)
⋅ 𝛼𝑗 (𝜑) 𝛼𝑘+1/2 (𝑧)

(4e)

ℎ𝑧 ( ⃗𝑟, 𝑡) = +∞∑
𝑖,𝑗,𝑘,𝑛=−∞

ℎ𝛼𝑧,𝑛+1/2𝑖+1/2,𝑗+1/2,𝑘Φ𝑛+1/2 (𝑡) 𝛼𝑖+1/2 (𝜌)
⋅ 𝛼𝑗+1/2 (𝜑) 𝛼𝑘 (𝑧) .

(4f)

𝑒𝛼𝜁,𝑛𝑖,𝑗,𝑘 and ℎ𝛼𝜁,𝑛𝑖,𝑗,𝑘 are the field coefficients, with 𝜁 = 𝜌, 𝜑, 𝑧.
The indexes 𝑖, 𝑗, 𝑘, and 𝑛 are the space indices and time indices
as 𝜌 = 𝑖Δ𝜌,𝜑 = 𝑗Δ𝜑, 𝑧 = 𝑘Δ𝑧, and 𝑡 = 𝑛Δ𝑡, whereΔ𝜌,Δ𝜑,Δ𝑧,
andΔ𝑡 represent the space and time discretization intervals in𝜌-, 𝜑-, 𝑧-, and 𝑡-direction.The functionΦ(𝑡) is Haar’s scaling
function [8], and 𝛼 is Daubechies’ scaling function [9].

The distribution of field components is shown in Figure 1.
The equations of BOR-MRTD method are presented as

follows:

𝑒𝑛+1𝜌 (𝑖 + 12 , 𝑘) = 𝑒𝑛𝜌 (𝑖 + 12 , 𝑘) ± 𝑚Δ𝑡(𝑖 + 1/2) 𝜀Δ𝜌
⋅ ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘) − Δ𝑡𝜀Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12)
(5a)

𝑒𝑛+1𝜑 (𝑖, 𝑘) = 𝑒𝑛𝜑 (𝑖, 𝑘) + Δ𝑡𝜀Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 𝑙 + 12) − Δ𝑡𝜀Δ𝜌
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝑧 (𝑖 + 𝑙 + 12 , 𝑘) .
(5b)
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Table 1: The coefficients 𝑎(𝑙) of𝐷2.
𝑙 𝑎(𝑙)
0 1.22916661202745
1 −0.09374997764746
2 0.01041666418309

𝑒𝑛+1𝑧 (𝑖, 𝑘 + 12) = 𝑒𝑛𝑧 (𝑖, 𝑘 + 12) ∓ 𝑚Δ𝑡𝜀𝑖Δ𝜌ℎ𝑛+1/2𝜌 (𝑖, 𝑘
+ 12) + Δ𝑡𝑖𝜀Δ𝜌∑

𝑙

𝑎 (𝑙) (𝑖 + 𝑙 + 12) ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 12 , 𝑘
+ 12)

(5c)

ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 12) = ℎ𝑛−1/2𝜌 (𝑖, 𝑘 + 12)
+ Δ𝑡𝜇 ( 1Δ𝑧∑

𝑙

𝑎 (𝑙) 𝑒𝑛𝜑 (𝑖, 𝑘 + 𝑙 + 1)
± 𝑚𝑖Δ𝜌𝑒𝑛𝑧 (𝑖, 𝑘 + 12))

(5d)

ℎ𝑛+1/2𝜑 (𝑖 + 12 , 𝑘 + 12) = ℎ𝑛−1/2𝜑 (𝑖 + 12 , 𝑘 + 12) + Δ𝑡𝜇Δ𝜌
⋅ ∑
𝑙

𝑎 (𝑙) 𝑒𝑛𝑧 (𝑖, 𝑘 + 𝑙 + 12) − Δ𝑡𝜇Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) 𝑒𝑛𝜌 (𝑖 + 12 , 𝑘 + 𝑙 + 1)
(5e)

ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘) = ℎ𝑛−1/2𝑧 (𝑖 + 12 , 𝑘)
+ Δ𝑡𝜇 (𝑖 + 1/2) Δ𝜌 (∓𝑚𝑒𝑛𝜌 (𝑖 + 12 , 𝑘)
−∑
𝑙

𝑎 (𝑙) (𝑖 + 𝑙 + 1) 𝑒𝑛𝜑 (𝑖 + 𝑙 + 1, 𝑘)) .
(5f)

The coefficient 𝑎(𝑙) is equal to
𝑎 (𝑙) ≡ ⟨𝜕𝛼𝑚+1/2 (𝑥)𝜕𝑥 , 𝛼𝑚−1 (𝑥)⟩

= 1𝜋 ∫∞
0

|�̂� (𝜔)|2 sin [𝜔 (𝑙 + 0.5)] 𝑑𝜔.
(6)

For Daubechies’ scaling function with two vanishing
moments (𝐷2), the coefficients are shown in Table 1;
for 𝑙 > 2, 𝑎(𝑙) are zeros due to the compact support of
Daubechies’ scaling function; for 𝑙 < 0, 𝑎(𝑙) are given by the
symmetry relation 𝑎(−1 − 𝑙) = −𝑎(𝑙).

When 𝜌 = 0, namely, 𝑖 = 0, the values of 𝑒𝜙, 𝑒𝑧, ℎ𝜌 are
singular. It can be solved via Ampere’s law:

∮
𝑐
H ⋅ 𝑑l = 𝜀 𝜕𝜕𝑡 ∬𝑠 E ⋅ 𝑑s +∬

𝑠
𝜎E ⋅ 𝑑s. (7)

Taking the integral of (7),

𝑒𝑛+1𝑧 (0, 𝑘 + 12) = 𝑒𝑛𝑧 (0, 𝑘 + 12)
+ 4Δ𝑡𝜀Δ𝜌ℎ𝑛+1/2𝜑 (12 , 𝑘 + 12) , 𝑚 = 0. (8)

According to distribution of 𝑒𝜑, 𝑒𝑧, ℎ𝜌, when 𝑚 ̸= 1,ℎ𝜌(0, 𝑘+1/2) = 𝑒𝜑(0, 𝑘) = 0, and when𝑚 > 0, 𝑒𝑧(0, 𝑘+1/2) =0. When 𝜌 = 0, it is not necessary to calculate 𝑒𝜑, because the
coefficient of 𝑒𝜑(0, 𝑘) is 0 in (5f). ℎ𝜌(0, 𝑘+1/2) is just useful to
calculate 𝑒𝜑(0, 𝑘), so it is needless too. The conclusion is that𝑒𝑧 with 𝑚 = 0 is the only field component to be calculated
when 𝜌 = 0.
3. Equations of ADI-BOR-MRTD

In alternating direction implicit method, field components
have been calculated at 𝑡 = 𝑛Δ𝑡 and 𝑡 = (𝑛 + 1/2)Δ𝑡. The
time has been discretized in two steps, namely, 𝑛 → 𝑛 + 1/2
and 𝑛 + 1/2 → 𝑛 + 1 [10]. The ADI-BOR-MRTD equations
are presented as follows.

First Step (𝑛 → 𝑛 + 1/2)
𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘) = 𝑒𝑛𝜌 (𝑖 + 12 , 𝑘)

+ Δ𝑡2𝜀 (± 𝑚(𝑖 + 1/2) Δ𝜌ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)

− 1Δ𝑧∑
𝑙

𝑎 (𝑙) ℎ𝑛𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12))
(9a)

𝑒𝑛+1/2𝜑 (𝑖, 𝑘) = 𝑒𝑛𝜑 (𝑖, 𝑘)
+ Δ𝑡2𝜀 ( 1Δ𝑧∑

𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 𝑙 + 12)

− 1Δ𝜌∑
𝑙

𝑎 (𝑙) ℎ𝑛𝑧 (𝑖 + 𝑙 + 12 , 𝑘))
(9b)

𝑒𝑛+1/2𝑧 (𝑖, 𝑘 + 12) = 𝑒𝑛𝑧 (𝑖, 𝑘 + 12)
+ Δ𝑡2𝜀 (

∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1/2) ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 1/2, 𝑘 + 1/2)
𝑖Δ𝜌

∓ 𝑚𝑖Δ𝜌ℎ𝑛𝜌 (𝑖, 𝑘 + 12))
(9c)



4 Mathematical Problems in Engineering

ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 12) = ℎ𝑛𝜌 (𝑖, 𝑘 + 12)
+ Δ𝑡2𝜇 (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1)

Δ𝑧
± 𝑚𝑖Δ𝜌𝑒𝑛𝑧 (𝑖, 𝑘 + 12))

(9d)

ℎ𝑛+1/2𝜑 (𝑖 + 12 , 𝑘 + 12) = ℎ𝑛𝜑 (𝑖 + 12 , 𝑘 + 12)
+ Δ𝑡2𝜇 (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 1/2)Δ𝜌
− ∑𝑙 𝑎 (𝑙) 𝑒𝑛𝜌 (𝑖 + 1/2, 𝑘 + 𝑙 + 1)

Δ𝑧 )
(9e)

ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘) = ℎ𝑛𝑧 (𝑖 + 12 , 𝑘)
+ Δ𝑡2 (𝑖 + 1/2) 𝜇Δ𝜌 (∓𝑚𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘)
−∑
𝑙

𝑎 (𝑙) (𝑖 + 𝑙 + 1) 𝑒𝑛𝜑 (𝑖 + 𝑙 + 1, 𝑘)) .
(9f)

Second Step (𝑛 + 1/2 → 𝑛 + 1)
𝑒𝑛+1𝜌 (𝑖 + 12 , 𝑘) = 𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘)

+ Δ𝑡2𝜀 (± 𝑚(𝑖 + 1/2) Δ𝜌ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)
− 1Δ𝑧∑

𝑙

𝑎 (𝑙) ℎ𝑛+1𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12))
(10a)

𝑒𝑛+1𝜑 (𝑖, 𝑘) = 𝑒𝑛+1/2𝜑 (𝑖, 𝑘)
+ Δ𝑡2𝜀 ( 1Δ𝑧∑

𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 𝑙 + 12)

− 1Δ𝜌∑
𝑙

𝑎 (𝑙) ℎ𝑛+1𝑧 (𝑖 + 𝑙 + 12 , 𝑘))
(10b)

𝑒𝑛+1𝑧 (𝑖, 𝑘 + 12) = 𝑒𝑛+1/2𝑧 (𝑖, 𝑘 + 12)
+ Δ𝑡2𝜀 (

∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1/2) ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 1/2, 𝑘 + 1/2)
𝑖Δ𝜌

∓ 𝑚𝑖Δ𝜌ℎ𝑛+1𝜌 (𝑖, 𝑘 + 12))
(10c)

ℎ𝑛+1𝜌 (𝑖, 𝑘 + 12) = ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 12)
+ Δ𝑡2𝜇 (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1)

Δ𝑧
± 𝑚𝑖Δ𝜌𝑒𝑛+1𝑧 (𝑖, 𝑘 + 12))

(10d)

ℎ𝑛+1𝜑 (𝑖 + 12 , 𝑘 + 12) = ℎ𝑛+1/2𝜑 (𝑖 + 12 , 𝑘 + 12)
+ Δ𝑡2𝜇 (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 1/2)Δ𝜌
− ∑𝑙 𝑎 (𝑙) 𝑒𝑛+1𝜌 (𝑖 + 1/2, 𝑘 + 𝑙 + 1)

Δ𝑧 )
(10e)

ℎ𝑛+1𝑧 (𝑖 + 12 , 𝑘) = ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)
+ Δ𝑡2 (𝑖 + 1/2) 𝜇Δ𝜌 (∓𝑚𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘)

−∑
𝑙

𝑎 (𝑙) (𝑖 + 𝑙 + 1) 𝑒𝑛+1𝜑 (𝑖 + 𝑙 + 1, 𝑘)) .
(10f)

Equations (9a)–(9f) and (10a)–(10f) can be solved by the
generalizedThomas method [5].

When 𝜌 = 0, namely, 𝑖 = 0, the values of 𝑒𝑧 are singular
as BOR-MRTD scheme. So 𝑒𝑧 is calculated as follows:

(𝑛 → 𝑛 + 1/2)
𝑒𝑛+1/2𝑧 (0, 𝑘 + 12) − Δ𝑡2𝜇𝜀Δ𝜌2∑

𝑙

𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑙 + 1, 𝑘 + 12)
= 𝑒𝑛𝑧 (0, 𝑘 + 12) + 2Δ𝑡𝜀Δ𝜌ℎ𝑛𝜑 (12 , 𝑘 + 12)

− Δ𝑡2𝜇𝜀Δ𝜌Δ𝑧∑
𝑙

𝑎 (𝑙) 𝑒𝑛𝜌 (12 , 𝑘 + 𝑙 + 1) .
(11)

(𝑛 + 1/2 → 𝑛 + 1)
𝑒𝑛+1𝑧 (0, 𝑘 + 12) = 𝑒𝑛+1/2𝑧 (0, 𝑘 + 12)

+ 2Δ𝑡𝜀Δ𝜌ℎ𝑛+1/2𝜑 (12 , 𝑘 + 12) .
(12)

4. Convolution Perfect Matched Layer

Based on equations of ADI-BOR-MRTD scheme, we can
present equations of CPML with consulting paper [11].

(𝑛 → 𝑛 + 1/2)
𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘) = 𝐶𝐴𝜌 (𝑖 + 12 , 𝑘) 𝑒𝑛𝜌 (𝑖 + 12 , 𝑘)

+ 𝐶𝐵𝜌 (𝑖 + 12 , 𝑘)(± 𝑚(𝑖 + 1/2) Δ𝜌ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)
− 1𝜅𝑘Δ𝑧∑𝑙 𝑎 (𝑙) ℎ

𝑛
𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12)

− 𝜓𝑛𝑒𝜌𝑧 (𝑖 + 12 , 𝑘))

(13a)
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𝜓𝑛+1/2𝑒𝜌𝑧 (𝑖 + 12 , 𝑘) = 𝑄𝑘𝜓𝑛𝑒𝜌𝑧 (𝑖 + 12 , 𝑘) + 𝑃𝑘Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12)
(13ai)

𝑒𝑛+1/2𝜙 (𝑖, 𝑘) = 𝐶𝐴𝜑 (𝑖, 𝑘) 𝑒𝑛𝜑 (𝑖, 𝑘) + 𝐶𝐵𝜑 (𝑖, 𝑘)
⋅ ( 1𝜅𝑘Δ𝑧∑𝑙 𝑎 (𝑙) ℎ

𝑛+1/2
𝜌 (𝑖, 𝑘 + 𝑙 + 12)

− 1𝜅𝑖Δ𝜌∑𝑙 𝑎 (𝑙) ℎ
𝑛
𝑧 (𝑖 + 𝑙 + 12 , 𝑘) + 𝜓𝑛+1/2𝑒𝜑𝑧 (𝑖, 𝑘)

− 𝜓𝑛𝑒𝜑𝜌 (𝑖, 𝑘))

(13b)

𝜓𝑛+1/2𝑒𝜑𝑧 (𝑖, 𝑘) = 𝑄𝑘𝜓𝑛𝑒𝜑𝑧 (𝑖, 𝑘) + 𝑃𝑘Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 𝑙 + 12)
(13bi)

𝜓𝑛+1/2𝑒𝜑𝜌 (𝑖, 𝑘) = 𝑄𝑖𝜓𝑛𝑒𝜑𝜌 (𝑖, 𝑘) + 𝑃𝑖Δ𝜌
⋅ ∑
𝑙

𝑎 (𝑙) ℎ𝑛𝑧 (𝑖 + 𝑙 + 12 , 𝑘)
(13bii)

𝑒𝑛+1/2𝑧 (𝑖, 𝑘 + 12) = 𝐶𝐴𝑧 (𝑖, 𝑘 + 12) 𝑒𝑛𝑧 (𝑖, 𝑘 + 12)
+ 𝐶𝐵𝑧 (𝑖, 𝑘 + 12)
⋅ (∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1/2) ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 1/2, 𝑘 + 1/2)

𝑖𝜅𝑖Δ𝜌
∓ 𝑚𝑖Δ𝜌ℎ𝑛𝜌 (𝑖, 𝑘 + 12) + 𝜓𝑛+1/2𝑒𝑧𝜌 (𝑖, 𝑘 + 12))

(13c)

𝜓𝑛+1/2𝑒𝑧𝜌 (𝑖, 𝑘 + 12) = 𝑄𝑖𝜓𝑛𝑒𝑧𝜌 (𝑖, 𝑘 + 12) + 𝑃𝑖Δ𝜌∑
𝑙

𝑎 (𝑙)
⋅ ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 12 , 𝑘 + 12)

(13ci)

ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 12) = 𝐶𝑃𝑥 (𝑖, 𝑘 + 12) ℎ𝑛𝜌 (𝑖, 𝑘 + 12)
+ 𝐶𝑄𝑥 (𝑖, 𝑘 + 12)(

∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1)
𝜅𝑘+1/2Δ𝑧

± 𝑚𝑖Δ𝜌𝑒𝑛𝑧 (𝑖, 𝑘 + 12) + 𝜓𝑛+1/2ℎ𝜌𝑧 (𝑖, 𝑘 + 12))
(13d)

𝜓𝑛+1/2ℎ𝜌𝑧 (𝑖, 𝑘 + 12) = 𝑄𝑘+1/2𝜓𝑛ℎ𝜌𝑧 (𝑖, 𝑘 + 12) + 𝑃𝑘+1/2Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1) (13di)

ℎ𝑛+1/2𝜑 (𝑖 + 12 , 𝑘 + 12) = 𝐶𝑃𝜑 (𝑖 + 12 , 𝑘 + 12) ℎ𝑛𝜑 (𝑖
+ 12 , 𝑘 + 12) + 𝐶𝑄𝜑 (𝑖 + 12 , 𝑘 + 12)
⋅ (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 1/2)𝜅𝑖+1/2Δ𝜌
− ∑𝑙 𝑎 (𝑙) 𝑒𝑛𝜌 (𝑖 + 1/2, 𝑘 + 𝑙 + 1)

𝜅𝑖+1/2Δ𝑧
+ 𝜓𝑛+1/2ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12) − 𝜓𝑛ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12))

(13e)

𝜓𝑛+1/2ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12) = 𝑄𝑘+1/2𝜓𝑛ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12)
+ 𝑃𝑘+1/2Δ𝑧 ∑

𝑙

𝑎 (𝑙) 𝑒𝑛𝜌 (𝑖 + 12 , 𝑘 + 𝑙 + 1) (13ei)

𝜓𝑛+1/2ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12) = 𝑄𝑖+1/2𝜓𝑛ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12)
+ 𝑃𝑖+1/2Δ𝜌 ∑

𝑙

𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 12)
(13eii)

ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘) = 𝐶𝑃𝑧 (𝑖 + 12 , 𝑘) ℎ𝑛𝑧 (𝑖 + 12 , 𝑘)
+ 𝐶𝑄𝑧 (𝑖 + 12 , 𝑘)(∓𝑚𝑒𝑛+1/2𝜌 (𝑖 + 1/2, 𝑘)

(𝑖 + 1/2) Δ𝜌
− ∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1) 𝑒𝑛𝜑 (𝑖 + 𝑙 + 1, 𝑘)

𝜅𝑖+1/2 (𝑖 + 1/2) Δ𝜌
− 𝜓𝑛ℎ𝑧𝜌 (𝑖 + 12 , 𝑘))

(13f)

𝜓𝑛+1/2ℎ𝑧𝜌 (𝑖 + 12 , 𝑘) = 𝑄𝑖+1/2𝜓𝑛ℎ𝑧𝜌 (𝑖 + 12 , 𝑘) + 𝑃𝑖+1/2Δ𝜌
⋅ ∑
𝑙

𝑎 (𝑙) 𝐸𝑛𝑦 (𝑖 + 𝑙 + 1, 𝑘) . (13fi)

(𝑛 + 1/2 → 𝑛 + 1)
𝑒𝑛+1𝜌 (𝑖 + 12 , 𝑘) = 𝐶𝐴𝑥 (𝑖 + 12 , 𝑘) 𝑒𝑛+1/2𝜌 (𝑖 + 12 , 𝑘)

+ 𝐶𝐵𝑥 (𝑖 + 12 , 𝑘)(± 𝑚(𝑖 + 1/2) Δ𝜌ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)
− 1𝜅𝑘Δ𝑧∑𝑙 𝑎 (𝑙) ℎ

𝑛+1
𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12)

− 𝜓𝑛+1𝑒𝜌𝑧 (𝑖 + 12 , 𝑘))

(14a)

𝜓𝑛+1𝑒𝜌𝑧 (𝑖 + 12 , 𝑘) = 𝑄𝑘𝜓𝑛+1/2𝑒𝜌𝑧 (𝑖 + 12 , 𝑘) + 𝑃𝑘Δ𝑧∑
𝑙

𝑎 (𝑙)
⋅ ℎ𝑛+1𝜑 (𝑖 + 12 , 𝑘 + 𝑙 + 12)

(14ai)
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𝑒𝑛+1𝜑 (𝑖, 𝑘) = 𝐶𝐴𝜑 (𝑖, 𝑘) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘) + 𝐶𝐵𝜑 (𝑖, 𝑘)
⋅ ( 1𝜅𝑘Δ𝑧∑𝑙 𝑎 (𝑙) ℎ

𝑛+1/2
𝜌 (𝑖, 𝑘 + 𝑙 + 12)

− 1𝜅𝑖Δ𝜌∑𝑙 𝑎 (𝑙) ℎ
𝑛+1
𝑧 (𝑖 + 𝑙 + 12 , 𝑘) + 𝜓𝑛+1/2𝑒𝜑𝑧 (𝑖, 𝑘)

− 𝜓𝑛+1𝑒𝜑𝜌 (𝑖, 𝑘))

(14b)

𝜓𝑛+1𝑒𝜑𝑧 (𝑖, 𝑘) = 𝑄𝑘𝜓𝑛+1/2𝑒𝜑𝑧 (𝑖, 𝑘) + 𝑃𝑘Δ𝑧∑
𝑙

𝑎 (𝑙) ℎ𝑛+1/2𝜌 (𝑖, 𝑘
+ 𝑙 + 12)

(14bi)

𝜓𝑛+1𝑒𝜑𝜌 (𝑖, 𝑘) = 𝑄𝑖𝜓𝑛+1/2𝑒𝜑𝜌 (𝑖, 𝑘) + 𝑃𝑖Δ𝜌∑
𝑙

𝑎 (𝑙) ℎ𝑛+1𝑧 (𝑖 + 𝑙
+ 12 , 𝑘)

(14bii)

𝑒𝑛+1𝑧 (𝑖, 𝑘 + 12) = 𝐶𝐴𝑧 (𝑖, 𝑘 + 12) 𝑒𝑛+1/2𝑧 (𝑖, 𝑘 + 12)
+ 𝐶𝐵𝑧 (𝑖, 𝑘 + 12)
⋅ (∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1/2) ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 1/2, 𝑘 + 1/2)

𝑖𝜅𝑖Δ𝜌
∓ 𝑚𝑖Δ𝜌ℎ𝑛+1𝜌 (𝑖, 𝑘 + 12) + 𝜓𝑛+1/2𝑒𝑧𝜌 (𝑖, 𝑘 + 12))

(14c)

𝜓𝑛+1𝑒𝑧𝜌 (𝑖, 𝑘 + 12) = 𝑄𝑖𝜓𝑛+1/2𝑒𝑧𝜌 (𝑖, 𝑘 + 12) + 𝑃𝑖Δ𝜌∑
𝑙

𝑎 (𝑙)
⋅ ℎ𝑛+1/2𝜑 (𝑖 + 𝑙 + 12 , 𝑘 + 12)

(14ci)

ℎ𝑛+1𝜌 (𝑖, 𝑘 + 12) = 𝐶𝑃𝜌 (𝑖, 𝑘 + 12) ℎ𝑛+1/2𝜌 (𝑖, 𝑘 + 12)
+ 𝐶𝑄𝜌 (𝑖, 𝑘 + 12)(

∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1)
𝜅𝑘+1/2Δ𝑧

± 𝑚𝑖Δ𝜌𝑒𝑛+1𝑧 (𝑖, 𝑘 + 12) + 𝜓𝑛+1/2ℎ𝜌𝑧 (𝑖, 𝑘 + 12))
(14d)

𝜓𝑛+1ℎ𝜌𝑧 (𝑖, 𝑘 + 12) = 𝑄𝑘+1/2𝜓𝑛+1/2ℎ𝜌𝑧 (𝑖, 𝑘 + 12) + 𝑃𝑘+1/2Δ𝑧
⋅ ∑
𝑙

𝑎 (𝑙) 𝑒𝑛+1/2𝜑 (𝑖, 𝑘 + 𝑙 + 1) (14di)

ℎ𝑛+1𝜑 (𝑖 + 12 , 𝑘 + 12) = 𝐶𝑃𝜑 (𝑖 + 12 , 𝑘 + 12) ℎ𝑛+1/2𝜑 (𝑖
+ 12 , 𝑘 + 12) + 𝐶𝑄𝜑 (𝑖 + 12 , 𝑘 + 12)

⋅ (∑𝑙 𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 1/2)Δ𝜌
− ∑𝑙 𝑎 (𝑙) 𝑒𝑛+1𝜌 (𝑖 + 1/2, 𝑘 + 𝑙 + 1)

Δ𝑧
+ 𝜓𝑛+1/2ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12) − 𝜓𝑛+1ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12))

(14e)
𝜓𝑛+1ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12) = 𝑄𝑘+1/2𝜓𝑛+1/2ℎ𝜑𝑧 (𝑖 + 12 , 𝑘 + 12)

+ 𝑃𝑘+1/2Δ𝑧 ∑
𝑙

𝑎 (𝑙) 𝑒𝑛+1𝜌 (𝑖 + 12 , 𝑘 + 𝑙 + 1) (14ei)

𝜓𝑛+1ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12) = 𝑄𝑖+1/2𝜓𝑛+1/2ℎ𝜑𝜌 (𝑖 + 12 , 𝑘 + 12)
+ 𝑃𝑖+1/2Δ𝜌 ∑

𝑙

𝑎 (𝑙) 𝑒𝑛+1/2𝑧 (𝑖 + 𝑙 + 1, 𝑘 + 12)
(14eii)

ℎ𝑛+1𝑧 (𝑖 + 12 , 𝑘) = 𝐶𝑃𝑧 (𝑖 + 12 , 𝑘) ℎ𝑛+1/2𝑧 (𝑖 + 12 , 𝑘)
+ 𝐶𝑄𝑧 (𝑖 + 12 , 𝑘)(∓𝑚𝑒𝑛+1/2𝜌 (𝑖 + 1/2, 𝑘)

(𝑖 + 1/2) Δ𝜌
− ∑𝑙 𝑎 (𝑙) (𝑖 + 𝑙 + 1) 𝑒𝑛+1𝜑 (𝑖 + 𝑙 + 1, 𝑘)

𝜅𝑖+1/2 (𝑖 + 1/2) Δ𝜌
− 𝜓𝑛+1ℎ𝑧𝜌 (𝑖 + 12 , 𝑘))

(14f)

𝜓𝑛+1ℎ𝑧𝜌 (𝑖 + 12 , 𝑘) = 𝑄𝑖+1/2𝜓𝑛+1/2ℎ𝑧𝜌 (𝑖 + 12 , 𝑘) + 𝑃𝑖+1/2Δ𝜌
⋅ ∑
𝑙

𝑎 (𝑙) 𝑒𝑛+1𝜑 (𝑖 + 𝑙 + 1, 𝑘) , (14fi)
where

𝐶𝐴𝜌 (𝑖 + 12 , 𝑘) = 4𝜀 − 𝜎Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑃𝜌 (𝑖, 𝑘 + 12) = 4𝜇 − 𝜎𝑚Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡
𝐶𝐵𝜌 (𝑖 + 12 , 𝑘) = 2Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑄𝜌 (𝑖, 𝑘 + 12) = 2Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡

(15a)

𝐶𝐴𝜑 (𝑖, 𝑘) = 4𝜀 − 𝜎Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑃𝜑 (𝑖 + 12 , 𝑘 + 12) = 4𝜇 − 𝜎𝑚Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡
𝐶𝐵𝜑 (𝑖, 𝑘) = 2Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑄𝜑 (𝑖 + 12 , 𝑘 + 12) = 2Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡

(15b)
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𝐶𝐴𝑧 (𝑖, 𝑘 + 12) = 4𝜀 − 𝜎Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑃𝑧 (𝑖 + 12 , 𝑘) = 4𝜇 − 𝜎𝑚Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡
𝐶𝐵𝑧 (𝑖, 𝑘 + 12) = 2Δ𝑡4𝜀 + 𝜎Δ𝑡
𝐶𝑄𝑧 (𝑖 + 12 , 𝑘) = 2Δ𝑡4𝜇 + 𝜎𝑚Δ𝑡

(15c)

𝑃𝜉 = 𝜎𝜉𝜎𝜉𝜅𝜉 + 𝜅2
𝜉
𝛼𝜉 (𝑒−(𝜎𝜉/𝜅𝜉+𝛼𝜉)(Δ𝑡/2𝜀0) − 1) ,

𝑄𝜉 = 𝑒−(𝜎𝜉/𝜅𝜉+𝛼𝜉)(Δ𝑡/2𝜀0),
𝜉 = 𝑖, 𝑘.

(15d)

Equations (13a)–(13fi) and (14a)–(14fi) can be also
solved by the generalized Thomas method [5]. The value of𝑒𝑧 is calculated the same as (11) and (12).

In the matched layer, the coefficients 𝜎𝑖 and 𝜅𝑖 are defined
as follows [12, 13]:

𝜎 (𝜌) = 𝜎max (𝜌𝑑)
𝑚

𝜅 (𝜌) = 1 + (𝜅max − 1) (𝜌𝑑)
𝑚 , (16)

where 𝜌 is the distance from the spot in the matched
layer to the interface between computational domain and
matched layer, 𝑑 is the thickness of matched layer, and 𝑚 is
a polynomial coefficient. 𝜎max is defined as follows:

𝜎max = 𝑘𝜎opt
𝜎opt = (𝑚 + 1)150𝜋√𝜀𝑟Δ, (17)

where 𝑘 = 𝜎max/𝜎opt is positive and 𝛼 is positive too.

5. Numerical Results

ADI-BOR-MRTDmethod has been tested by ametal ball and
ametal cylinderwith half-ball-hat. For comparison, they have
been also calculated by FDTD and MRTD methods.

CPU is Intel(R) Core(TM) i3 2.93GHz; thememory bank
is 1.93GB; theMacOS isMicrosoftWindowsXPProfessional;
the operating system is Fortran 90 Complier.

5.1. The Ball. The radius of metal ball is 1 meter. The results
are shown in Figure 2 and Table 2.

(1) FDTD: Δ𝑥 × Δ𝑦 × Δ𝑧 = 2 cm × 2 cm × 2 cm, Δ𝑡 =3.33 × 10−11 s, and the cell lattice is 138 × 138 × 138
with eight-cell-thick matched layer.

(2) MRTD: Δ𝑥×Δ𝑦×Δ𝑧 = 10 cm× 10 cm× 10 cm, Δ𝑡 =11.11 × 10−11 s, and the cell lattice is 56 × 56 × 56 with
eight-cell-thick matched layer.
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Figure 2: Single station RCS of metal ball.

Table 2: Comparison of the time and memory of CPU.

FDTD MRTD ADI-BOR-MRTD
CPU time/s 1652 5 0.4
Memory/MB 172.3 13.4 2.6

Table 3: Comparison of the time and memory of CPU.

FDTD MRTD ADI-BOR-MRTD
CPU time/s 1550 37 5
Memory/MB 161 13 0.23

(3) ADI-BOR-MRTD: Δ𝜌 × Δ𝑧 = 10 cm × 10 cm, Δ𝑡 =22.22×10−11 s, the cell lattice is 28× 56with eight-cell-
thick matched layer, and the modulus range is 𝑚 =0 ∼ 16.

Figure 2 shows that when the frequency is less than
500MHz, the differences among three numerical results are
less than 2 dB, which validate the feasibility of the ADI-BOR-
MRTD method. Moreover, Table 2 demonstrates that the
ADI-BOR-MRTD method has taken less time and memory
of CPU than the other two methods.

5.2.The Cylinder with Half-Ball-Hat. Themetal cylinder with
half-ball-hat is designed as Figure 3.

The results are shown as Figure 4 and Table 3.

(1) FDTD: Δ𝑥 × Δ𝑦 × Δ𝑧 = 1 cm × 1 cm × 1 cm, Δ𝑡 =1.67 × 10−11 s, and the cell lattice is 96 × 96 × 266 with
eight-cell-thick matched layer.

(2) MRTD: Δ𝑥 × Δ𝑦 × Δ𝑧 = 5 cm × 5 cm × 5 cm, Δ𝑡 =5.56 × 10−11 s, and the cell lattice is 48 × 48 × 82 with
eight-cell-thick matched layer.
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Figure 3: Structure of cylinder with half-ball-hat.
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Figure 4: Single station RCS of metal cylinder with half-ball-hat.

(3) ADI-BOR-MRTD: Δ𝜌 × Δ𝑧 = 5 cm × 5 cm, Δ𝑡 =11.11 × 10−11 s, the cell lattice is 24 × 82 with eight-
cell-thick matched layer, and the modulus range is𝑚 = 0 ∼ 16.

From Figure 4 we can see that when the frequency is less
than 1.5 GHz, the differences among three numerical results
are less than 3 dB and the curves are similar. The results in
Table 3 have also supported that ADI-BOR-MRTD method
has taken less time and memory of CPU than the other two
methods.

6. Conclusion

This paper has developed an ADI-BOR-MRTD algorithm.
Furthermore, the CPML absorbing boundary condition
is derived for ADI-BOR-MRTD algorithm. The simulated
results suggest that the ADI-BOR-MRTD scheme can save
more CPU time and memory than the FDTD and MRTD
methods, which proves that the ADI-BOR-MRTD scheme is
practicable, especially in the body of revolution case. In the
next work, the method would be improved feasible for the
frequency more than 500MHz.
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