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In this study, we proposed a game-theory based framework to model the dynamic pricing process in the cloud manufacturing
(CMfg) system.We considered a service provider (SP), a broker agent (BA), and a dynamic service demander (SD) population that
is composed of price takers and bargainers in this study.The pricing processes under linear demand and constant elasticity demand
were modeled, respectively. The combined effects of SD population structure, negotiation, and demand forms on the SP’s and the
BA’s equilibrium prices and expected revenues were examined. We found that the SP’s optimal wholesale price, the BA’s optimal
reservation price, and posted price all increase with the proportion of price takers under linear demand but decrease with it under
constant elasticity demand.We also found that the BA’s optimal reservation price increases with bargainers’ power nomatter under
what kind of demand. Through analyzing the participants’ revenues, we showed that a dynamic SD population with a high ratio of
price takers would benefit the SP and the BA.

1. Introduction

The emergence of cloud manufacturing (CMfg) enables
manufacturing capacities and resources to be traded in the
form of service in a cloud environment. With the support
of CMfg technology, service users are able to purchase
manufacturing services from service markets on demand [1].
User participation in manufacturing service transaction is
closely associated with service prices. Due to the enrichment
of service resources, the use of cloud services is highly price-
sensitive. Consequently, an appropriate price would make
a seller more competitive and assist her in gaining higher
revenue. But the fixed price which is currently adopted by
most cloud providers impedes the efficient allocation of
service resources in a dynamic environment [2]. With the
growing of manufacturing service transactions in the cloud
environment, the issue of how to dynamically determine ser-
vice prices tomaximize the revenues is becoming increasingly
critical for service sellers.

In a CMfg system, three types of roles are involved
in service transaction: service provider (SP), broker agent

(BA), and service demander (SD). SPs own service resources
and provide BAs with them. SDs play the role of service
buyers and they purchase services from BAs on demand. BAs
are responsible for supply-demand matching and delivering
services according to SDs’ requirements [3]. In an ideal
CMfg system, BAs are smart enough to deal with the service
transaction and SDs do not need to know how and where
the services are provided [3]. A certain number of SPs, BAs,
and SDs constitute a manufacturing supply chain (MSC) [4]
centering on service transaction.

Compared to traditional supply chain, the MSC in a
CMfg system has much enhanced flexibility and capability
[4]. These characteristics enable the MSC to serve a broad
dynamic population consisting of heterogeneous SDs. In
general, the SD population includes two types of users: price
takers and bargainers. A price taker purchases service at a
posted price, but a bargainer negotiates with BAs to strive
for a lower price. The role-differentiated behavior of SDs
increases the complexity of service pricing in a CMfg system.
Thus SD population structure and user negotiation behavior
should be considered in selection of service prices.
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Another factor that is directly related to price policy in
a cloud environment is the demand form. The diversity of
SDs induces substantial differences in demand forms. Some
SDs have fixed demand, while some others might have price-
sensitive demand. Researchers have proposed different kinds
of demand functions to model consumer demand in cloud
service markets, such as stochastic demand function [5],
linear demand function [6], and constant elasticity demand
function [7]. The significant impacts of demand forms on
pricing strategy have been validated in the field of supply
chain [8].

In a cloud environment, these factors work together to
influence the service prices. Such a complicated situation
poses a conundrum for SPs and BAs attempting to determine
their optimal prices to gain higher profits. Unfortunately,
there has been a lack of study analyzing how SD population
structure (i.e., the relative proportions of price takers and
bargainers), negotiation behavior, and demand forms jointly
affect service pricing in a cloud environment. Therefore, this
paper attempts to fill this research gap by incorporating
two types of demand (linear demand and constant elasticity
demand) and a dynamic SD population consisting of price
takers and bargainers into the analysis of dynamic pricing in a
CMfg system. Our goal is to investigate the combined effects
of SD population structure, negotiation, and demand forms
on SPs’ and BAs’ pricing strategies and thereby contribute to
the development of pricing mechanism in CMfg systems.

In this paper, we employ a game-theory based framework
to model the dynamic pricing problem in MSC consisting of
SP, BA, and dynamic SD population. Within this framework
the SP leads the game and chooses the wholesale price and
theBA (follower) determines the posted price and reservation
price. The SD population is composed of price takers and
bargainers. Price takers purchase services at the posted price.
Bargainers negotiate with the BA in order to obtain a better
price. Whether a bargainer deals with the BA depends on
each other’s reservation prices (or valuations) and bargaining
power. The BA only knows the probability distribution of the
bargainers’ valuations. We model the negotiation outcome
with generalizedNash bargaining solution (GNBS). To exam-
ine the combined effects of SD population structure, negotia-
tion, and demand forms on SP’s and BA’s pricing strategies,
the dynamic pricing processes under linear demand and
constant elasticity demand are modeled, respectively.

Our main contribution is to show how the impacts
of SD population structure and negotiation on SP’s and
BA’s equilibrium prices and expected revenues depend on
different demand models in a CMfg system with a dynamic
SD population.Wemake comparisons of the influences of SD
population structure on equilibrium prices when the SP and
the BA face linear demand and constant elasticity demand.
We show that the optimal wholesale price, BA’s optimal
reservation price, and posted price all increase with the
proportion of price takers under linear demand but decrease
with it under constant elasticity demand. Furthermore, we
examine the effect of bargaining power on equilibrium prices
under linear demand and constant elasticity demand. We
found that BA’s optimal reservation price increases with
bargainers’ power no matter under what kind of demand.

But BA’s posted price only rises with bargainers’ power in
two situations: under a linear demand with a large price-
sensitivity index and under a constant elasticity demand with
a small price-elasticity index. And the wholesale price rises
with bargainers’ power except under a constant elasticity
demand with a relative large price-elasticity index. Through
analyzing the participants’ revenues, we found that a dynamic
SD population with a high ratio of price takers would
benefit the SP and the BA. We also found that the rise
of the bargainers’ power diminishes BA’s expected revenue.
However, the SP can benefit from raising the wholesale price
with increasing bargainers’ power under a constant elasticity
demand with a relative small price-elasticity index.

The remaining part of the paper proceeds as follows:
Section 2 reviews the related literature. Section 3 describes
the pricing models and associated propositions. In Section 4
we use a numeric study to analyze the combined impacts
of SD population structure, negotiation, and demand forms
on equilibrium prices. Section 5 summarizes the main
conclusions and discusses the managerial implications and
limitations.

2. Literature Review

Dynamic pricing has consequently been a focus of cloud
service transaction. A considerable amount of dynamic
pricing models has been proposed in recent years, such
as game-theoretic model [9–12], auction-based model [13],
autonomic model [2], network utility maximization model
[14], stochastic dynamic programming model [5, 15], genetic
model [16], and financial option model [17]. More detailed
classification can be found in [18]. We follow the first stream
of research and use game theory to model the dynamic
pricing problem in a CMfg system. Game-theoretic models
focus on price competition among vendors. Researchers have
studied this problem from several perspectives, including
horizontal competition (e.g., [9, 12]), vertical competition
(e.g., [19]), and hybrid competition (e.g., [20]) in cloud
environment. Our study also concentrates on vertical compe-
tition. However, the above literature has potentially assumed
that all the SDs are price takers. In fact, bargainers occupy
a considerable proportion of the SD population in cloud
environment. The application of information technology
enables them to negotiate with vendors at a very low cost.
Nevertheless, bargaining behavior was mainly considered in
the research of negotiation mechanism design (e.g., [21, 22]).
The focuses of these studies are on negotiation protocols
rather than pricing strategies.

The most relevant studies were conducted in the field
of supply chain management. Gill and Thanassoulis [23, 24]
explored the impact of bargainers on firms’ pricing strategies
by using the Hotelling model. They found that a rise in
the proportion of bargainers would induce an increase in
firms’ posted prices and a decrease in consumers’ surplus.
But in their models the firms make all the offers and the
size of consumer population is unchanged, which restrict
its application. Kuo et al. [25] built a leader-follower-game
model and studied the impacts of consumer structure and



Mathematical Problems in Engineering 3

bargaining power on equilibrium prices in a supply chain
containing a manufacturer, a retailer, and some customers.
They showed that the retailer’s posted price and cut-off price
increasewith the proportion of the bargainers and bargainers’
power. In another paper, Kuo et al. [26] studied the effect of
negotiation on the pricing strategy of a retailer with limited
inventory. They found that the retailer’s benefit increases
with the proportion of bargainers and her own bargaining
power. However, these conclusions were derived under the
assumption that the consumer population is fixed and the
demand function is linear. Whether these valuable findings
remain valid when the consumer population is dynamic and
howdemand forms, SDpopulation structure, andnegotiation
affect equilibriumprices jointly in cloud environment are still
unclear.

Our research is different from these studies in several key
ways. First, we model the pricing problem in a CMfg system
with a dynamic SD population. Second, we introduce linear
and constant elasticity demand into our pricing models.
Third, we explore the combined effects of SD population
structure, negotiation, and demand forms on SP’s and BA’s
equilibrium prices and expected revenues.

3. Pricing Model

Consider MSC consisting of monopoly SP that provides a
kind of services, a BA, and a dynamic SD population which
depends on demand. The SP sells services to the BA at a
wholesale price, and the BA sells services to two types of
SDs: price takers and bargainers. A price taker purchases
services at a posted price. But a bargainer negotiates with the
BA and seeks to purchase services at a price lower than the
posted price. Each bargainer has a valuation of the services
needed and refuses any offer higher than this appraisement.
To protect its profit, the BA sets a reservation price which is
the lowest price it can accept. If a bargainer failed to reach
an agreement with the BA, she will quit the transaction. The
BA as well as the bargainer will incur a bargaining cost in the
negotiation.

Both the SP and the BA seek to maximize their expected
revenues through choosing the optimal prices.The SP sets the
wholesale price first, and the BA decides on the posted price
and reservation price after observing SP’s decision. They are
all rational participants and have the same knowledge about
the market information. This is a two-stage leader-follower
game.The SP and the BA play the role of leader and follower,
respectively. The leader will consider the follower’s response
when setting the wholesale price. The capacity constraint of
the SP is not considered in this study.

In service pricing process, the SDs’ demand is necessary
for the SP and the BA. Most of the literature on cloud
service pricing used certain functions (e.g., [12, 27, 28]) or
stochastic process (e.g., [5, 14, 15]) to describe consumer
demand. Essentially, these approaches represent the inverse
relationship between price and demand. Following the for-
mer stream of studies, we choose two widely used demand
functions (linear demand and constant elasticity demand)
to characterize the SDs’ demand in this study. The total

demand comes from price takers and bargainers. But the
demand from bargainers is their initial demand as they may
quit transactions. Using the initial demand is reasonable
since this is the original information collected from the
service market. More importantly, the BA and the SP could
forecast bargainers’ final demand only if they know their
initial demand. Assume that the law of demand from price
takers and the law of initial demand from bargainers are
the same; then we can describe the total demand with a
uniform function. The SP and the BA have knowledge of
the demand function and the proportion of price takers (or
bargainers). But they only know the probability distribution
of the bargainers’ valuations.

For computational simplicity, we assume that each SD
purchases one unit of the services. Thus the demand equals
the number of SDs. Next we analyze the SP’s and the BA’s
pricing strategies under the two types of demand functions.
The notations used in this study are listed in Abbreviations.

3.1. Pricing Model under Linear Demand. The linear demand
function can be written as 𝑑 = 𝑑0 − 𝛼𝑝𝑎. Assuming that there
is no transaction cost for all the participants, the SP’s expected
revenue from indirectly trading with the price takers is

𝑈1𝑠 (𝑝𝑠) = 𝛽 (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑠 − 𝑐𝑠) . (1)

And the BA’s expected revenue from trading with the price
takers can be represented as follows:

𝑈1𝑎 (𝑝𝑎) = 𝛽 (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠) . (2)

But their profits from transacting with the bargainers
depend on negotiation results. To model the outcome of the
bargaining between a bargainer and the BA, the GNBS [29]
which is a popular tool to model the negotiation between
two participants [26] was employed in this study. In the
negotiation between the BA and a bargainer, the BA’s surplus
is 𝑝𝑏 − 𝑝𝑟𝑎 (𝑝𝑟𝑎 ≥ 𝑝𝑠 + 𝑐𝑎) and the bargainer’s surplus is𝑝V − 𝑐𝑏 − 𝑝𝑏. Given the bargainer’s power, the optimal final
price is

𝑝∗𝑏 = arg max
𝑝𝑟𝑎≤𝑝𝑏≤min{𝑝,𝑝V}

(𝑝V − 𝑐𝑏 − 𝑝𝑏)𝛾 (𝑝𝑏 − 𝑝𝑟𝑎)1−𝛾 , (3)

where 𝑝V ≥ 𝑐𝑏 + 𝑝𝑏 and 𝑝𝑏 ≥ 𝑝𝑟𝑎.
If 𝑝V < 𝑝𝑟𝑎 + 𝑐𝑏, the BA would reject the transaction

and the bargainer would quit. Quitting a transaction is very
common in cloud environment, since SD could use local
resources if she fails to reach the target price [9]. In other
conditions, they could reach an agreement. The optimal
solution, (1 − 𝛾)(𝑝V − 𝑐𝑏) + 𝛾𝑝𝑟𝑎, can be obtained from the
first derivative of (3) with respect to𝑝𝑏.Thus the optimal final
price is

𝑝∗𝑏 = min {𝑝𝑎, (1 − 𝛾) (𝑝V − 𝑐𝑏) + 𝛾𝑝𝑟𝑎} . (4)

According to (4), a bargainer with a valuation higher than(𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾)𝑐𝑏)/(1 − 𝛾) will pay the posted price for
the services. But if the bargainer’s valuation is located in
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[𝑝𝑟𝑎 + 𝑐𝑏, (𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾)𝑐𝑏)/(1 − 𝛾)], she will purchase
the services at the price (1 − 𝛾)(𝑝V − 𝑐𝑏) + 𝛾𝑝𝑟𝑎. Therefore,

𝑝∗𝑏 =
{{{{{{{{{{{

𝑝𝑎 if 𝑝V ≥ 𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾) 𝑐𝑏1 − 𝛾 ,
(1 − 𝛾) (𝑝V − 𝑐𝑏) + 𝛾𝑝𝑟𝑎 if 𝑝V ∈ [𝑝𝑟𝑎 + 𝑐𝑏, 𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾) 𝑐𝑏1 − 𝛾 ] .

(5)

Assuming that all the bargainers have the same bargain-
ing power, the BA’s expected revenue from trading with the
bargainers can be written as

𝑈2𝑎 (𝑝𝑎, 𝑝𝑟𝑎) = (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎)

⋅ 𝐹(𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾) 𝑐𝑏1 − 𝛾 ) + (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎)

⋅ ∫(𝑝𝑎−𝛾𝑝𝑟𝑎+(1−𝛾)𝑐𝑏)/(1−𝛾)
𝑝𝑟𝑎+𝑐𝑏

[(1 − 𝛾) (𝑥 − 𝑐𝑏) + 𝛾𝑝𝑟𝑎 − 𝑝𝑠

− 𝑐𝑎] 𝑓 (𝑥) 𝑑𝑥.

(6)

And the SP’s expected revenue from indirectly trading with
the bargainers is

𝑈2𝑠 (𝑝𝑠) = (1 − 𝛽) (𝑝𝑠 − 𝑐𝑠) (𝑑0 − 𝛼𝑝𝑎) 𝐹 (𝑝𝑟𝑎 + 𝑐𝑏) . (7)

Based on the analysis above, when price takers coexist
with bargainers in the MSC, the price competition between
the SP and the BA can be represented by the following two-
stage model:

max
𝑝𝑠

𝑈𝑠 (𝑝𝑠)

= (𝑝𝑠 − 𝑐𝑠) (𝑑0 − 𝛼𝑝𝑎) [𝛽 + (1 − 𝛽) 𝐹 (𝑝𝑟𝑎 + 𝑐𝑏)] ,
subject to 𝑐𝑠 − 𝑝𝑠 ≤ 0,

(8)

where, for a given 𝑝𝑠,

(𝑝𝑎, 𝑝𝑟𝑎) ∈ arg max
𝑝𝑎,𝑝𝑟𝑎

𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)

= 𝛽 (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠) + (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎) 𝐹(𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾) 𝑐𝑏1 − 𝛾 )

+ (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) ∫
(𝑝𝑎−𝛾𝑝𝑟𝑎+(1−𝛾)𝑐𝑏)/(1−𝛾)

𝑝𝑟𝑎+𝑐𝑏

[(1 − 𝛾) (𝑥 − 𝑐𝑏) + 𝛾𝑝𝑟𝑎 − 𝑝𝑠 − 𝑐𝑎] 𝑓 (𝑥) 𝑑𝑥,

subject to 𝑐𝑎 + 𝑝𝑠 − 𝑝𝑟𝑎 ≤ 0,
𝑝𝑟𝑎 − 𝑝𝑎 ≤ 0,
𝑝𝑎 − ℎ ≤ 0.

(9)

The last constraint guarantees that there are always some
bargainers that can reach an agreement with the BA.

3.2. Pricing Model under Constant Elasticity Demand. In this
section, we characterize the pricing model under constant
elasticity demand (the function can be written as 𝑑 =𝑑0𝑝−𝜏𝑎 ). As the components are the same as those under linear

demand apart from the demand function, we only present the
final model as follows:

max
𝑝𝑠

𝑈𝑠 (𝑝𝑠)
= (𝑝𝑠 − 𝑐𝑠) 𝑑0𝑝−𝜏𝑎 [𝛽 + (1 − 𝛽) 𝐹 (𝑝𝑟𝑎 + 𝑐𝑏)] ,

subject to 𝑐𝑠 − 𝑝𝑠 ≤ 0,
(10)
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where, for a given 𝑝𝑠,

(𝑝𝑎, 𝑝𝑟𝑎) ∈ arg max
𝑝𝑎,𝑝𝑟𝑎

𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)

= 𝛽 (𝑝𝑎 − 𝑝𝑠) 𝑑0𝑝−𝜏𝑎 + (1 − 𝛽) (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎) 𝑑0𝑝−𝜏𝑎 𝐹(𝑝𝑎 − 𝛾𝑝𝑟𝑎 + (1 − 𝛾) 𝑐𝑏1 − 𝛾 )

+ (1 − 𝛽) 𝑑0𝑝−𝜏𝑎 ∫(𝑝𝑎−𝛾𝑝𝑟𝑎+(1−𝛾)𝑐𝑏)/(1−𝛾)
𝑝𝑟𝑎+𝑐𝑏

[(1 − 𝛾) (𝑥 − 𝑐𝑏) + 𝛾𝑝𝑟𝑎 − 𝑝𝑠 − 𝑐𝑎] 𝑓 (𝑥) 𝑑𝑥,
subject to 𝑐𝑎 + 𝑝𝑠 − 𝑝𝑟𝑎 ≤ 0,

𝑝𝑟𝑎 − 𝑝𝑎 ≤ 0,
𝑝𝑎 − ℎ ≤ 0.

(11)

In the two-stage price game between the SP and the
BA, their optimal strategies form a subgame perfect Nash
equilibrium (SPNE). To obtain the SPNE of (8) and (10), we
first analyze the existence and uniqueness of the follower’s
optimal strategy for a given wholesale price.

3.3. Existence and Uniqueness of the Follower’s Optimal Strat-
egy. In this subsection, we show that (8) and (10) have unique
equilibrium in the feasible zone under some constraints. To
simplify the analysis, we have the following assumption.

Assumption 1. The cumulative distribution function, 𝐹(⋅), is
uniformly distributed on [0, h].

Consequently, 𝑓(⋅) = 1/ℎ and 𝐹(⋅) have an increasing
failure rate. Under Assumption 1, the following propositions
characterize the existence and uniqueness of the solutions
thatmaximize theBA’s expected revenue for a givenwholesale
price.

Proposition 2. Given the SP’s wholesale price, there exists a
unique pair of posted price and reservation price thatmaximize
the BA’s expected revenue under linear demand.

All proofs are in Appendix.

Proposition 3. Given the SP’s wholesale price, there exists a
unique pair of posted price and reservation price thatmaximize
the BA’s expected revenue under constant elasticity demand
when the following conditions are satisfied:

(a) 𝜏 ≥ max{1, 2ℎ𝐸1/(𝐸2 + 𝐸3)}.
(b) 𝜏 ≤ (𝑝𝑠 + 𝑐𝑎)[ℎ − (1 − 𝛽)(𝑝𝑠 + 𝑐𝑎 + 𝑐𝑏)]/𝛽ℎ𝑐𝑎.

𝐸1 = (𝛽 − 𝛾 + 𝛽𝛾)ℎ + (1 − 𝛽)𝛾𝑐𝑎 − (1 − 𝛽)𝑐𝑏 + (1 − 𝛽)𝛾𝑝𝑠,𝐸2 = (1 − 𝛽)(1 − 𝛾)𝑐2𝑎 + 2(1 − 𝛽)[𝑐𝑏 − (1 − 𝛾)(ℎ − 𝑝𝑠)]𝑐𝑎, and𝐸3 = (ℎ−𝑝𝑠)[(1+𝛽−𝛾+𝛽𝛾)ℎ−2(1−𝛽)𝑐𝑏 − (1−𝛽)(1−𝛾)𝑝𝑠].
Note that the price-elasticity index is restricted to a

limited range. This is reasonable since a large price-elasticity
index would lead to the participators’ expected revenues
approaching zero.

Propositions 2 and 3 show that the unique optimal
solutions of the follower’s expected revenue functions are
guaranteed for any given wholesale price under some condi-
tions. Since the SP has full knowledge of the BA’s response,
she is able to choose a wholesale price that maximizes her
expected revenue.

4. Numeric Analysis

Due to the complication of the two pricing models, it is
very challenging to obtain the analytic solutions of them.
Therefore, we conducted a numeric study to explore the
combined impacts of SD population structure, negotiation,
and demand forms on the equilibrium prices.

The impacts of the demand functions onpricing strategies
mainly depend on price-sensitivity and price-elasticity index;
the SD population structure is reflected by the proportion
of price takers (or bargainers), and the negotiation out-
come relies on participants’ bargaining power. Therefore, we
considered these factors in this section and analyzed their
combined effects on the SP’s and the BA’s optimal pricing
strategies. To make the demand functions nontrivial, the
upper bound of the bargainers’ valuations, ℎ, should be less
than or equal to the upper bound of the posted price. For
simplicity, we assume ℎ equals the upper bound of the posted
price. Under linear demand, ℎ = 𝑑0/𝛼. And under constant
elasticity demand, ℎ equals infinity in theory. However, this is
unrealistic in practice.Thus we consider that if the demand is
close enough to zero (we set the criterion as 𝑑 ≤ 0.001) for
a given 𝜏, then the corresponding value of 𝑝𝑎 is the upper
bound of the posted price. Other parameters were set as
follows: 𝑑0 = 1000, 𝑐𝑠 = 10, 𝑐𝑎 = 5, and 𝑐𝑏 = 6. We employed
a particle swarm optimization (PSO) based algorithm [30]
to solve the two models. The two constrained models were
reduced to unconstrained models by using exterior penalty
method. The main parameters used in the algorithm were
set according to Rezaee Jordehi and Jasni’s review [31]. In
the following parts, we first investigated the impacts of
price-sensitivity and price-elasticity index on the equilibrium
prices and then explored how the SP’s and the BA’s optimal
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Figure 1: Effects of price-sensitivity and price-elasticity index on equilibrium prices. (a) Price-sensitivity and (b) price-elasticity index.

prices change under different combinations of SD population
structure, bargaining power, and demand functions.

4.1. Effects of Price-Sensitivity and Price-Elasticity Index. Let𝛼 vary from 2 to 34 at intervals of 2, and let 𝜏 vary from 1.3
to 3.7 at intervals of 0.2. Figure 1 depicts the variations in the
equilibrium prices.

As shown in Figure 1, all the equilibrium prices (i.e., 𝑝∗𝑠 ,𝑝∗𝑟𝑎, and 𝑝∗𝑎 ) decrease nonlinearly with 𝛼 and 𝜏. The results
are intuitive since a large 𝛼 (or 𝜏) means a low upper bound
of the posted price. Therefore, the equilibrium prices drop
with 𝛼 and 𝜏. Remark 4 characterizes the impacts of demand
functions on equilibrium prices.

Remark 4. The wholesale price, the BA’s reservation price,
and posted price all decrease nonlinearly with price-
sensitivity and price-elasticity index.

4.2. Combined Effects of Demand-Related Parameters and SD
Population Structure. To explore whether the equilibrium
prices are affected by the combined effects of demand func-
tions and SD population structure, we analyzed the variations
in the equilibriumprices with varying𝛽 under different levels
of 𝛼 and 𝜏, respectively. Let 𝛽 vary from 0.1 to 0.9 at intervals
of 0.1. The results are portrayed in Figures 2 and 3.

Figures 2 and 3 reveal that (1) 𝑝∗𝑎 , 𝑝∗𝑟𝑎, and 𝑝∗𝑠 all increase
with 𝛽 under linear demand but decrease with 𝛽 under
constant elasticity demand and (2) 𝑈𝑎 and 𝑈𝑠 go up with 𝛽
no matter under what kind of demand.

The first finding is partly consistent with the previous
study on dynamic pricing in a supply chain with fixed
consumer population [25], which found that the optimal

posted price and cut-off price (reservation price) increase
with the proportion of bargainers (i.e., 1 − 𝛽). This finding
remains valid in the CMfg system when the SP and the BA
are facing a constant elasticity demand. But under a linear
demand, the equilibrium prices show the opposite behavior.
The reason is that the valuemaximizing the BA’s revenue from
trading with price takers is higher than the value maximizing
the BA’s revenue from trading with bargainers under linear
demand. Thus the optimal prices rise with the proportion
of price takers. The second finding implies that both the
SP’s and the BA’s profits are maximized when no bargainers
exist. This finding differs from Gill and Thanassoulis [24]
and Kuo et al.’s [26] results demonstrating that the sellers’
expected revenue increaseswith the proportion of bargainers.
The rather contradictory results on this effect may be due to
the difference of consumer population. When the number
of consumers is fixed, not all members have needs for the
products (services) for a given price. The sellers wish there
would be more bargainers since the demand rises with the
proportion of bargainers. But in our model, the demand is
definite for a given posted price, which means that all the
SDs have demand for the services. Consequently, the sellers
benefit from the rising of the average price which goes up
with the proportion of price takers. Remark 5 characterizes
the variations in the SP’s and the BA’s equilibrium prices and
expected revenues when SD population structure changes.

Remark 5. When the proportion of price takers increases,

(a) the optimal wholesale price, the BA’s optimal reserva-
tion price, and posted price rise under linear demand
but decrease under constant elasticity demand;
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Figure 2: Combined effects of price-sensitivity and the proportion of price takers on SP’s and BA’s equilibrium prices and expected revenues.
(a) 𝛼 = 2 and 𝛾 = 0.6, (b) 𝛼 = 32 and 𝛾 = 0.6, (c) 𝛼 = 2 and 𝛾 = 0.6, and (d) 𝛼 = 32 and 𝛾 = 0.6.

(b) the SP’s and the BA’s expected revenues go up no
matter under what kind of demand.

4.3. Combined Effects of Demand-Related Parameters and
Bargaining Power. We then analyzed the combined effects of
demand-related parameters and bargainers’ power on the SP’s
and the BA’s equilibrium prices and expected revenues. Let 𝛾
vary from 0.1 to 0.9 at intervals of 0.1. The values of 𝛼 and 𝜏
are the same as before. The results are depicted in Figures 4
and 5.

Figures 4 and 5 show that (1) 𝑝∗𝑟𝑎 increases with 𝛾 no
matter under what kind of demand; (2) the situation of a
linear demand with large 𝛼 and the situation of a constant

elasticity demand with small 𝜏 lead 𝑝∗𝑎 to rise slightly with 𝛾,
while in other situations, 𝑝∗𝑎 declines with 𝛾; (3) 𝑝∗𝑠 decreases
with 𝛾 in the situation of a constant elasticity demand with a
large 𝜏; in other situations, it always increases with 𝛾; and (4)𝑈𝑎 always falls with 𝛾, and 𝑈𝑠 also decreases with 𝛾 except in
the situation of a constant elasticity demand with a small 𝜏.

Kuo et al. [26] modeled the pricing process in a supply
chain with fixed consumer population and found that the
retailer’s posted price drops with bargainers’ power but the
reservation price goes up with it. Our analysis demonstrates
that such an insight into the seller’s reservation price is robust
in a cloud environment with dynamic consumer population.
But the variation in the posted price is not fully consistent
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Figure 3: Combined effects of price-elasticity index and the proportion of price takers on SP’s and BA’s equilibrium prices and expected
revenues. (a) 𝜏 = 1.3 and 𝛾 = 0.6, (b) 𝜏 = 3.5 and 𝛾 = 0.6, (c) 𝜏 = 1.3 and 𝛾 = 0.6, and (d) 𝜏 = 3.5 and 𝛾 = 0.6.

with their conclusion. In the situation of being under a
linear demand with a large price-sensitivity index and in
the situation of being under a constant elasticity demand
with a small price-elasticity index, the posted price rises
slightly with bargainers’ power. A possible explanation for
this resultmay be that the rise of the average price counteracts
the loss from the decreased demand. The rise of the posted
price leads to a decrease in the demand and a rise in the
average price. But in this two situations, the demand changes
slowly with the posted price. If the profit from the rise of
the average price can neutralize the loss from the decreased
demand, it is reasonable for the BA to raise the posted
price.

The variation of the wholesale price might be related
to the price-elasticity index. Since the demand is close to
zero in the situation of a constant elasticity demand with a
relative large price-elasticity index, a lower wholesale price is
appropriate as it motivates the BA to lower the posted price
in order to attract more SDs.

A powerful bargainer would force the final price down
to a level close to the BA’s reservation price. Besides, the
increase of the BA’s reservation price leads to a drop in total
transactions. Consequently, the BA’s expected revenue falls
with the bargainers’ power. The inconsistency in Figure 5(c)
may be due to the fact that the profit from increasedwholesale
price can cover the loss from decreased demand in a situation
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Figure 4: Combined effects of price-sensitivity and bargainers’ power on SP’s and BA’s equilibrium prices and expected revenues. (a) 𝛼 = 2
and 𝛽 = 0.3, (b) 𝛼 = 32 and 𝛽 = 0.3, (c) 𝛼 = 2 and 𝛽 = 0.3, and (d) 𝛼 = 32 and 𝛽 = 0.3.

of a constant elasticity demand with a small price-elasticity
index.

The following remark characterizes the combined effects
of demand functions and bargainers’ power on the SP’s and
the BA’s equilibrium prices and expected revenues.

Remark 6. When the bargainers’ bargaining power rises,

(1) the BA’s reservation price increases no matter under
what kind of demand;

(2) the BA’s posted price rises in two situations: under a
linear demandwith a large price-sensitivity index and
under a constant elasticity demandwith a small price-
elasticity index, but it drops in other situations;

(3) the wholesale price rises except under a constant
elasticity demand with a relative large price-elasticity
index;

(4) the BA’s expected revenue always falls, and the SP’s
expected revenue shows the same tendency except
under a constant elasticity demand with a relative
small price-elasticity index.

5. Conclusion

Demand forms, SDpopulation structure, and negotiation sig-
nificantly affect SPs’ and BAs’ pricing strategies and expected
revenues in the CMfg system. In this study, we proposed two
two-stage models to analyze the dynamic pricing problem in
MSC consisting of SP, BA, and dynamic SD population under
linear demand and constant elasticity demand, respectively.
In our study, the price competition between the SP and the
BA was modeled with a leader-follower game.We considered
price takers and bargainers in the models and formulated
the negotiation between the BA and bargainers with GNBS.
Through solving the twomodels numerically with PSO based
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Figure 5: Combined effects of price-elasticity index and bargainers’ power on SP’s and BA’s equilibrium prices and expected revenues. (a)𝜏 = 1.3 and 𝛽 = 0.3, (b) 𝜏 = 3.5 and 𝛽 = 0.3, (c) 𝜏 = 1.3 and 𝛽 = 0.3, and (d) 𝜏 = 3.5 and 𝛽 = 0.3.

algorithm, we developed several insights into the combined
influences of demand forms, SD population structure, and
negotiation on the SP’s and the BA’s equilibrium prices and
expected revenues. There are three key findings from this
study:

(1) The wholesale price, the BA’s reservation price, and
posted price all decrease nonlinearly with price-
sensitivity and price-elasticity index.

(2) The effects of SD population structure and negotia-
tion on equilibrium prices are related to population
stability and demand models. With fixed consumer
population and linear demand, the optimal posted
price and reservation price increase with the pro-
portion of bargainers [24, 25]. But this conclusion
is partly valid when the SD population is dynamic.

We found that the optimal wholesale price, the
BA’s optimal reservation price, and posted price all
increase with the proportion of price takers under
linear demand but decrease with it under constant
elasticity demand. When bargainers’ power rises, the
BA’s reservation price increases no matter what kind
of demand is involved, which is in line with Kuo
et al.’s finding [25]. But the BA’s posted price only
rises with bargainers’ power in two situations: under
a linear demand with a large price-sensitivity index
and under a constant elasticity demand with a small
price-elasticity index. The wholesale price rises with
bargainers’ power except under a constant elasticity
demand with a relative large price-elasticity index.

(3) A dynamic SD population with a high ratio of price
takers would benefit the SP and the BA as their
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expected revenues go up with the increasing propor-
tion of price takers no matter under what kind of
demand. This finding is contrary to the conclusion
reached by Kuo et al. [26] who conducted a study
in a supply chain with fixed consumer population.
The rise of bargainers’ power will diminish the BA’s
expected revenue. However, the SP can benefit from
raising thewholesale pricewith increasing bargainers’
power under a constant elasticity demand with a
relative small price-elasticity index.

We then state the potential application of our conclusions to
the general problem of pricing strategies in a CMfg system.
Firstly, we find that whether the wholesale price should
rise with increasing proportion of price takers depends on
the demand form. Although a high wholesale price might
increase the surplus, raising the wholesale price with the
proportion of price takers is not an optimal measure for
SPs when facing a constant elasticity demand. Secondly, BA
should follow the monopoly SP’s strategy when consumer
structure changes as the optimal prices have the same trend
in this situation. Thirdly, since the BA’s optimal reservation
price rises with the bargainers’ power regardless of demand
forms, it is appropriate for BA to set a high reservation price
when facing powerful bargainers. Fourthly, although they do
not interact with bargainers directly, SPs should adjust the
wholesale price according to bargainers’ power, especially
under a constant elasticity demand. When price-elasticity
index is small, increasing the wholesale price with increasing
power of bargainers would benefit them.

This study also has several limitations. First of all, a
momentous assumption made in this study is that the price
takers’ demand and the bargainers’ initial demand follow
the same law. However, some bargainers may decide their
initial demand casually as they can modify their needs in a
negotiation.Therefore, a possible direction of future research
would be to investigate whether the uncertainty of bargainers’
demand has significant impact on pricing process. Another
limitation is thatwe considered that the bargainers’ valuations
follow a uniformdistribution. But such an assumption cannot
cover all the cases. In some situations, other distributions
(e.g., Gaussian distribution) might be more suitable. Our
further study would explore the effect of the distribution
of bargainers’ valuations on equilibrium prices in the CMfg
system.

Despite these limitations, this research extends our
knowledge of dynamic pricing in the CMfg system through
investigating the combined effects of consumer structure,
negotiation, and demand forms on pricing strategies. Our
study complements previous studies and provides support for
further research in this area.

Appendix

Proof of Proposition 2. We first prove that, for a given 𝑝𝑎,𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) (as shown in (8)) is unimodal with respect
to 𝑝𝑟𝑎 for 𝑝𝑟𝑎 ∈ [𝑝𝑠 + 𝑐𝑎, 𝑝𝑎]. This can be guaranteed
by the following claims: (i) 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) is concave in 𝑝𝑟𝑎,

(ii) (𝜕𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎)/𝜕𝑝𝑟𝑎)|𝑝𝑟𝑎=𝑝𝑠+𝑐𝑎 ≥ 0, and (iii) (𝜕𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎)/𝜕𝑝𝑟𝑎)|𝑝𝑟𝑎=𝑝𝑎 ≤ 0.
The first and second derivatives of 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) (as shown

in (8)) with respect to 𝑝𝑟𝑎 are
𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎
= (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) [(1 − 𝛾) (𝑐𝑎 + 𝑝𝑠) + 𝛾𝑝𝑎 − 𝑝𝑟𝑎]ℎ (1 − 𝛾) ,

(A.1)

𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝2𝑟𝑎 = −(1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎)ℎ (1 − 𝛾) . (A.2)

Since 𝑑0 − 𝛼𝑝𝑎 ≥ 0, claim (i) follows directly from (A.2).
And as

𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑟𝑎=𝑝𝑠+𝑐𝑎

= 𝛾 (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎)ℎ (1 − 𝛾) ≥ 0,
𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑟𝑎=𝑝𝑎
= −(1 − 𝛽) (𝑑0 − 𝛼𝑝𝑎) (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎)ℎ ≤ 0,

(A.3)

we thus complete the proof of claims (ii) and (iii).
We then turn to prove that there exists a unique posted

price, 𝑝𝑎 ∈ [𝑝𝑟𝑎, ℎ], which maximizes 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) when 𝑝𝑟𝑎
takes its optimal value. Let (A.1) equal zero; we get the optimal
value of 𝑝𝑟𝑎 as follows:

𝑝∗𝑟𝑎 = 𝛾𝑝𝑎 + (1 − 𝛾) (𝑝𝑠 + 𝑐𝑎) . (A.4)

Then the first and second derivatives of 𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎) with
respect to 𝑝𝑎 are

𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝𝑎 = 1
2ℎ {𝛼 (−1 + 𝛽 + 𝛾 − 𝛽𝛾) 𝑐2𝑎

+ 2𝑑0 (ℎ − (1 − 𝛽) 𝑐𝑏
− (1 − 𝛽) ((1 + 𝛾) 𝑝𝑎 − 𝛾𝑝𝑠)) + 2 (1 − 𝛽) 𝑐𝑎 (−𝛼𝑐𝑏
+ 𝛾𝑑0 + 𝛼 (ℎ − 2𝛾𝑝𝑎 − (1 − 𝛾) 𝑝𝑠))
+ 𝛼 (3 (1 − 𝛽) (1 + 𝛾) 𝑝2𝑎
+ 𝑝𝑠 (2ℎ − 2 (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) (1 − 𝛾) 𝑝𝑠)
− 4𝑝𝑎 (ℎ − (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝛾𝑝𝑠))} ,

(A.5)

𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝2𝑎 = 1
ℎ {−2ℎ𝛼 − 2𝛼 (1 − 𝛽) 𝛾𝑐𝑎 + 2𝛼 (1

− 𝛽) 𝑐𝑏 − 𝑑0 + 3𝛼𝑝𝑎 + (𝛽 − (1 − 𝛽) 𝛾) (𝑑0 − 3𝛼𝑝𝑎)
− 2𝛼 (1 − 𝛽) 𝛾𝑝𝑠} .

(A.6)
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Let (A.6) equal zero; then we have

𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝2𝑎
{{{
≤ 0 if 𝑝𝑎 ≤ 𝜃𝑎
≥ 0 if 𝑝𝑎 ≥ 𝜃𝑎, (A.7)

where 𝜃𝑎 = (2ℎ𝛼 + 2𝛼(1 − 𝛽)𝛾𝑐𝑎 − 2𝛼(1 − 𝛽)𝑐𝑏 + (1 − 𝛽)((1 +𝛾)𝑑0 + 2𝛼𝛾𝑝𝑠))/(3𝛼(1 − 𝛽)(1 + 𝛾)).
Equation (A.7) indicates that 𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎) is concave

when 𝑝𝑎 ≤ 𝜃𝑎 and convex when 𝑝𝑎 ≥ 𝜃𝑎. Thus, we only
need to prove that the optimal value of 𝑝𝑎 is located in
[𝑝∗𝑟𝑎, 𝜃𝑎]. As 𝑝∗𝑟𝑎 ≥ 𝑝𝑠 + 𝑐𝑎, the interval should be changed
to [𝑝𝑠 + 𝑐𝑎, 𝜃𝑎]. Next we prove the following claim: (iv)(𝜕𝑈𝑎(𝑝𝑎, 𝑝∗

𝑟𝑎

)/𝜕𝑝𝑎)|𝑝𝑎=𝑝𝑠+𝑐𝑎 ≥ 0.
Substituting 𝑝𝑎 = 𝑝𝑠 + 𝑐𝑎 into (A.5) yields
𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑎=𝑝𝑠+𝑐𝑎 =
1
ℎ {𝛼 (1 − 𝛽) 𝑐2𝑎

− 𝑐𝑎 (ℎ𝛼 (1 + 𝛽) − 𝛼 (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝑑0
− 2𝛼 (1 − 𝛽) 𝑝𝑠) + (ℎ − (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) 𝑝𝑠)
⋅ (𝑑0 − 𝛼𝑝𝑠)} .

(A.8)

From the constraints of (8), we know thatℎ−𝑝𝑠−𝑐𝑏−𝑐𝑎 ≥ 0.
Let 𝐴 denote the left-hand side term of (A.8); then we have

𝐴 = 1
ℎ {(𝑑0 − 𝛼𝑝𝑠) [ℎ − (1 − 𝛽) (𝑐𝑏 + 𝑝𝑠)]

− 𝑐𝑎 [ℎ𝛼 (1 + 𝛽) − 𝛼 (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)
+ (1 − 𝛽) (𝑑0 − 𝛼𝑝𝑠)]} = 1

ℎ {(𝑑0 − 𝛼𝑝𝑠) [ℎ
− (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)] − 𝛼𝑐𝑎 [ℎ (1 + 𝛽)
− (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)]} = 1

ℎ {(𝑑0 − 𝛼𝑝𝑠) [ℎ
− (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)] − 𝛼𝑐𝑎 [ℎ
− (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)] − 𝛼𝛽ℎ𝑐𝑎} = 1

ℎ {[ℎ
− (1 − 𝛽) (𝑝𝑠 + 𝑐𝑏 + 𝑐𝑎)] (𝑑0 − 𝛼𝑝𝑠 − 𝛼𝑐𝑎)
− 𝛼𝛽ℎ𝑐𝑎} ≥ 1

ℎ {[(1 − 𝛽) (ℎ − 𝑝𝑠 − 𝑐𝑏 − 𝑐𝑎) + 𝛽ℎ]
⋅ (𝛼ℎ − 𝛼𝑝𝑠 − 𝛼𝑐𝑎) − 𝛼𝛽ℎ𝑐𝑎} ≥ 1

ℎ {𝛼𝛽ℎ𝑐𝑏
− 𝛼𝛽ℎ𝑐𝑎} ≥ 0.

(A.9)

Therefore, claim (iv) holds.
To finish the proof, next we prove that the optimal value

of pa is less than 𝜃𝑎. Assume that there exist 𝜇1 (𝜇1 > 1) that
makes 𝜇1(𝑝𝑠 + 𝑐𝑎) be a zero solution of (A.5) and 𝜇2 (𝜇2 > 1)
that makes 𝜇2(𝑝𝑠 + 𝑐𝑎) = 𝜃𝑎. If we prove that 𝜇1 ≤ 𝜇2, then
Proposition 2 is true.

Let (A.5) equal zero; then we obtain two solutions of 𝜇1
as follows:

𝜇11 = 𝐵 − 𝐶
𝐷

𝜇12 = 𝐵 + 𝐶
𝐷 ,

(A.10)

where

𝐵 = 2ℎ𝛼 + 2𝛼 (1 − 𝛽) 𝛾𝑐𝑎 − 2𝛼 (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽)
⋅ [(1 + 𝛾) 𝑑0 + 2𝛼𝛾𝑝𝑠] ,

𝐶 = {[−2ℎ𝛼 − 2𝛼 (1 − 𝛽) 𝛾𝑐𝑎 + 2𝛼 (1 − 𝛽) 𝑐𝑏
− (1 − 𝛽) ((1 + 𝛾) 𝑑0 + 2𝛼𝛾𝑝𝑠)]2 + 3𝛼 (1 − 𝛽) (1
+ 𝛾) [𝛼 (1 − 𝛽) (1 − 𝛾) 𝑐2𝑎
− 2 (1 − 𝛽) (ℎ𝛼 − 𝛼𝑐𝑏 + 𝛾𝑑0 − 𝛼 (1 − 𝛾) 𝑝𝑠) 𝑐𝑎
− 𝛼𝑝𝑠 (2ℎ − 2 (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) (1 − 𝛾) 𝑝𝑠)
− 2𝑑0 (ℎ − (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝛾𝑝𝑠)]}1/2 ,

𝐷 = 3𝛼 (1 − 𝛽) (1 + 𝛾) (𝑐𝑎 + 𝑝𝑠) .

(A.11)

Obviously, B,C, andD are all positive. Since claim (iv) has
been proven to be true, the zero solutions of (A.5) are sure to
be larger than𝑝𝑠+𝑐𝑎.Therefore,𝜇11 and𝜇12 are all greater than
one. According to (A.7), only the smaller one of the two zero
solutions of (A.5) can maximize 𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎). Thus, let 𝜇1 =𝜇11. We can also get the value of 𝜇2 as follows:

𝜇2 = 𝐵
𝐷. (A.12)

Subtracting 𝜇1 from 𝜇2 yields
𝜇2 − 𝜇1 = 𝐶

𝐷 ≥ 0. (A.13)

Thus we complete the proof.

Proof of Proposition 3. We first prove that, for given 𝑝𝑎,𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) (as shown in (10)) is unimodal with respect to𝑝𝑟𝑎 for 𝑝𝑟𝑎 ∈ [𝑝𝑠 + 𝑐𝑎, 𝑝𝑎]. This can be guaranteed
by the following claims: (i) 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) is concave in 𝑝𝑟𝑎,
(ii) (𝜕𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎)/𝜕𝑝𝑟𝑎)|𝑝𝑟𝑎=𝑝𝑠+𝑐𝑎 ≥ 0, and (iii) (𝜕𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎)/𝜕𝑝𝑟𝑎)|𝑝𝑟𝑎=𝑝𝑎 ≤ 0.

The first and second derivatives of 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) (as shown
in (10)) with respect to 𝑝𝑟𝑎 are
𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎
= 𝑑0𝑝−𝜏𝑎 (1 − 𝛽) ((1 − 𝛾) (𝑝𝑠 + 𝑐𝑎) + 𝛾𝑝𝑎 − 𝑝𝑟𝑎)ℎ (1 − 𝛾) ,

(A.14)

𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝2𝑟𝑎 = −(1 − 𝛽) 𝑑0𝑝−𝜏𝑎ℎ (1 − 𝛾) . (A.15)
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Since 𝑑0𝑝−𝜏𝑎 ≥ 0, claim (i) follows directly from (A.15). As

𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑟𝑎=𝑝𝑠+𝑐𝑎

= 𝛾 (1 − 𝛽) 𝑑0𝑝−𝜏𝑎 (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎)ℎ (1 − 𝛾) ≥ 0,
𝜕𝑈𝑎 (𝑝𝑎, 𝑝𝑟𝑎)𝜕𝑝𝑟𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑟𝑎=𝑝𝑎
= −(1 − 𝛽) 𝑑0𝑝−𝜏𝑎 (𝑝𝑎 − 𝑝𝑠 − 𝑐𝑎)ℎ ≤ 0,

(A.16)

we thus finish the proof of claims (ii) and (iii).
Next we prove that there exists a unique posted price,𝑝𝑎 ∈ [𝑝𝑟𝑎, ℎ], which maximizes 𝑈𝑎(𝑝𝑎, 𝑝𝑟𝑎) when 𝑝𝑟𝑎 takes

its optimal value. The optimal value of 𝑝𝑟𝑎 is the same one
shown in (A.4).

To begin with, we give the proof for the follow-
ing claims: (iv) (𝜕𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎)/𝜕𝑝𝑎)|𝑝𝑎=𝑝𝑠+𝑐𝑎 ≥ 0 and (v)
(𝜕𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎)/𝜕𝑝𝑎)|𝑝𝑎=ℎ ≤ 0.

The first derivative of 𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎) is
𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝𝑎 = − 1

2ℎ𝑑0𝑝−1−𝜏𝑎 {𝜏 (1 − 𝛽) (1 − 𝛾) 𝑐2𝑎
+ (2 − 𝜏) (1 − 𝛽) (1 + 𝛾) 𝑝2𝑎 − 2 (1 − 𝛽)
⋅ [ℎ𝜏 − 𝜏𝑐𝑏 + (1 − 𝜏) 𝛾𝑝𝑎 − 𝜏 (1 − 𝛾) 𝑝𝑠] 𝑐𝑎
− 𝜏 [2ℎ − 2 (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) (1 − 𝛾) 𝑝𝑠] 𝑝𝑠
− 2 (1 − 𝜏) [ℎ − (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝛾𝑝𝑠] 𝑝𝑎} .

(A.17)

Substituting 𝑝𝑎 = 𝑝𝑠 + 𝑐𝑎 into (A.17) yields
𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑎=𝑝𝑠+𝑐𝑎 =
1
ℎ𝑑0 (𝑝𝑠 + 𝑐𝑎)

−1−𝜏

⋅ {− (1 − 𝛽) 𝑐2𝑎 + [ℎ − (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) 𝑝𝑠] 𝑝𝑠
+ [(1 − 𝜏𝛽) ℎ − (1 − 𝛽) 𝑐𝑏 − 2 (1 − 𝛽) 𝑝𝑠] 𝑐𝑎} .

(A.18)

Let (𝜕𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎)/𝜕𝑝𝑎)|𝑝𝑎=𝑝𝑠+𝑐𝑎 ≥ 0; then we have

𝜏 ≤ (𝑝𝑠 + 𝑐𝑎) [ℎ − (1 − 𝛽) (𝑝𝑠 + 𝑐𝑎 + 𝑐𝑏)]𝛽ℎ𝑐𝑎 . (A.19)

Therefore, claim (iv) holds when condition (A.19) is satisfied.
Substituting 𝑝𝑎 = ℎ into (A.17) yields

𝜕𝑈𝑎 (𝑝𝑎, 𝑝∗𝑟𝑎)𝜕𝑝𝑎
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝𝑎=ℎ = −

1
2𝑑0ℎ−2−𝜏 {(2 − 𝜏) (1 − 𝛽)

⋅ (1 + 𝛾) ℎ2 + 𝜏 (1 − 𝛽) (1 − 𝛾) 𝑐2𝑎 − 2 (1 − 𝛽)

⋅ [(𝜏 + 𝛾 − 𝜏𝛾) ℎ − 𝜏𝑐𝑏 − 𝜏 (1 − 𝛾) 𝑝𝑠] 𝑐𝑎
− 𝜏 [2ℎ − 2 (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) (1 − 𝛾) 𝑝𝑠] 𝑝𝑠
− 2ℎ (1 − 𝜏) [ℎ − (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝛾𝑝𝑠]} .

(A.20)

Let (𝜕𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎)/𝜕𝑝𝑎)|𝑝𝑎=ℎ ≤ 0; then we have

𝜏 ≥ max(1, 2ℎ𝐸1𝐸2 + 𝐸3) , (A.21)

where 𝐸1 = (𝛽−𝛾+𝛽𝛾)ℎ+ (1−𝛽)𝛾𝑐𝑎 − (1−𝛽)𝑐𝑏 + (1−𝛽)𝛾𝑝𝑠,𝐸2 = (1 − 𝛽)(1 − 𝛾)𝑐2𝑎 + 2(1 − 𝛽)[𝑐𝑏 − (1 − 𝛾)(ℎ − 𝑝𝑠)]𝑐𝑎, and𝐸3 = (ℎ−𝑝𝑠)[(1+𝛽−𝛾+𝛽𝛾)ℎ−2(1−𝛽)𝑐𝑏 − (1−𝛽)(1−𝛾)𝑝𝑠].
Thus, claim (v) holds when condition (A.21) is satisfied.

We then prove that 𝑈𝑎(𝑝𝑎, 𝑝∗𝑟𝑎) has only one maximum
value in the predefined interval. To do this, we attest that
(A.17) has only one zero solution in [𝑝𝑠 + 𝑐𝑎, ℎ]. Let

𝐺 (𝑝𝑎) = 𝜏 (1 − 𝛽) (1 − 𝛾) 𝑐2𝑎 + (2 − 𝜏) (1 − 𝛽)
⋅ (1 + 𝛾) 𝑝2𝑎 − 2 (1 − 𝛽)
⋅ [ℎ𝜏 − 𝜏𝑐𝑏 + (1 − 𝜏) 𝛾𝑝𝑎 − 𝜏 (1 − 𝛾) 𝑝𝑠] 𝑐𝑎
− 𝜏 [2ℎ − 2 (1 − 𝛽) 𝑐𝑏 − (1 − 𝛽) (1 − 𝛾) 𝑝𝑠] 𝑝𝑠
− 2 (1 − 𝜏) [ℎ − (1 − 𝛽) 𝑐𝑏 + (1 − 𝛽) 𝛾𝑝𝑠] 𝑝𝑎.

(A.22)

Obviously, 𝐺(𝑝𝑎) is continuous with respect to 𝑝𝑎. If
conditions (A.19) and (A.21) are satisfied, then 𝐺(𝑝𝑠 + 𝑐𝑎) ≤ 0
and𝐺(ℎ) ≥ 0, which implies that there exists at least one zero
solution in the predefined interval. The following analysis is
conducted under the assumption that the two conditions are
all satisfied. Note that the behavior of 𝐺(𝑝𝑎) depends on 𝜏;
thus we consider three situations: 𝜏 = 2, 1 < 𝜏 < 2, and 𝜏 > 2.
(1) 𝜏 = 2. 𝐺(𝑝𝑎) is a linear function. Consequently, it has only
one zero solution in [𝑝𝑠 + 𝑐𝑎, ℎ].
(2) 1 < 𝜏 < 2. 𝐺(𝑝𝑎) is a parabola and opens upward. It has
two zero solutions. Since 𝐺(𝑝𝑠 + 𝑐𝑎) ≤ 0 and 𝐺(ℎ) ≥ 0, there
is only one zero solution in [𝑝𝑠 + 𝑐𝑎, ℎ].
(3) 𝜏 > 2. 𝐺(𝑝𝑎) is a parabola and opens downward. Assume
that there are two zero solutions in the predefined interval.
Then we have 𝐺(ℎ) ≤ 0, which is in conflict with the known
condition.Therefore,𝐺(𝑝𝑎)has only one zero solution in [𝑝𝑠+𝑐𝑎, ℎ]. Thus we complete the proof.

Abbreviations

𝑝𝑎: Posted price set by the BA𝑝𝑠: Wholesale price set by the SP𝑝𝑏: Final price accepted by both the BA and
bargainers𝑈𝑎: Expected revenue of the BA𝑈𝑠: Expected revenue of the SP𝛼: Price-sensitivity, 𝛼 > 0
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𝑑: SDs’ total demand𝑑0: A positive constant which embodies the effects
of all factors other than price on demand𝐹(⋅): Cumulative distribution function of the bar-
gainers’ valuations𝐹(⋅): 1 − 𝐹(⋅)𝑓(⋅): Probability density function of the bargainers’
valuations𝛽: The proportion of the demand from price
takers (and the proportion of price takers in the
SD population), 0 < 𝛽 < 1𝑐𝑠: Unit service cost of the SP𝑝V: A bargainer’s valuation of the services needed𝑝𝑟𝑎: Reservation price of the BA𝛾: Bargainers’ bargaining power, 0 < 𝛾 < 1𝑐𝑏: Unit bargaining cost of the bargainers𝑐𝑎: Unit bargaining cost of the BA, 𝑐𝑎 < 𝑐𝑏𝜏: Price-elasticity index, 𝜏 > 1ℎ: Upper bound of the bargainers’ valuations.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research was supported by the National Science-
Technology Support Plan Project (no. 2015BAF32B03).

References

[1] L. Zhang, Y. Luo, F. Tao et al., “Cloud manufacturing: a new
manufacturing paradigm,” Enterprise Information Systems, vol.
8, no. 2, pp. 167–187, 2014.

[2] C. S. Yeo, S. Venugopal, X. Chu, and R. Buyya, “Autonomic
metered pricing for a utility computing service,” Future Gener-
ation Computer Systems, vol. 26, no. 8, pp. 1368–1380, 2010.

[3] X.Wang,Development of an interoperable cloud-basedmanufac-
turing system [Ph.D. thesis], The University of Auckland, 2012.

[4] D. Wu, M. J. Greer, D. W. Rosen, and D. Schaefer, “Cloud
manufacturing: strategic vision and state-of-the-art,” Journal of
Manufacturing Systems, vol. 32, no. 4, pp. 564–579, 2013.

[5] H. Xu and B. Li, “Maximizing revenue with dynamic cloud
pricing: the infinite horizon case,” in Proceedings of the IEEE
International Conference on Communications (ICC ’12), pp.
2929–2933, June 2012.

[6] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allo-
cation for spot markets in cloud computing environments,” in
Proceedings of the 4th IEEE/ACM International Conference on
Cloud andUtility Computing (UCC ’11), pp. 178–185,Melbourne,
Australia, December 2011.

[7] C. Wang, J. Chen, B. B. Zhou, and A. Y. Zomaya, “Just
satisfactory resource provisioning for parallel applications in
the cloud,” in Proceedings of the IEEE 8th World Congress on
Services (SERVICES ’12), pp. 285–292, Honolulu, Hawaii, USA,
June 2012.

[8] C.-C. Hsieh, Y.-T. Liu, and W.-M. Wang, “Coordinating order-
ing and pricing decisions in a two-stage distribution system
with price-sensitive demand through short-term discounting,”

European Journal of Operational Research, vol. 207, no. 1, pp.
142–151, 2010.

[9] Y. Feng, B. Li, and B. Li, “Price competition in an oligopoly
market with multiple IaaS cloud providers,” IEEE Transactions
on Computers, vol. 63, no. 1, pp. 59–73, 2014.

[10] D. Ma and J. Huang, “The pricing model of cloud computing
services,” in Proceedings of the 14th Annual International Confer-
ence onElectronic Commerce (ICEC ’12), pp. 263–269, Singapore,
Singapore, August 2012.

[11] K. Sowmya and R. P. Sundarraj, “Strategic bidding for cloud
resources under dynamic pricing schemes,” in Proceedings of
the International Symposium on Cloud and Services Computing
(ISCOS ’12), pp. 25–30, IEEE,Mangalore, India, December 2012.

[12] T. Truong-Huu and C.-K. Tham, “A game-theoretic model for
dynamic pricing and competition among cloud providers,” in
Proceedings of the IEEE/ACM 6th International Conference on
Utility and Cloud Computing (UCC ’13), pp. 235–238, Dresden,
Germany, December 2013.

[13] M.Mihailescu and Y.M. Teo, “Strategy-proof dynamic resource
pricing of multiple resource types on federated clouds,” in
Proceedings of the International Conference on Algorithms and
Architectures for Parallel Processing, pp. 337–350, Busan, Repub-
lic of Korea, May 2010.

[14] D. Niu, C. Feng, and B. Li, “Pricing cloud bandwidth reser-
vations under demand uncertainty,” in Proceedings of the 12th
Joint International Conference on Measurement and Modeling of
Computer Systems, ACM (SIGMETRICS ’12), pp. 151–162, ACM,
London, UK, June 2012.

[15] H. Xu and B. Li, “Dynamic cloud pricing for revenuemaximiza-
tion,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp.
158–171, 2013.
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