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Dynamical behaviors of the 4D hyperchaotic memristive circuit are analyzed with the system parameter. Based on the definitions
of fractional-order differential and Adomian decomposition algorithm, the numerical solution of fractional-order 4D hyperchaotic
memristive circuit is investigated. The distribution of stable and unstable regions of the fractional-order 4D hyperchaotic
memristive circuit is determined, and dynamical characteristics are studied by phase portraits, Lyapunov exponents spectrum,
and bifurcation diagram. Complexities are calculated by employing the spectral entropy (SE) algorithm and C0 algorithm.
Complexity results are consistent with that of the bifurcation diagrams, and this means that complexity can also reflect the dynamic
characteristics of a chaotic system. Results of this paper provide a theoretical and experimental basis for the application of fractional-
order 4D hyperchaotic memristive circuit in the field of encryption and secure communication.

1. Introduction

According to the principle of completeness with variable
combination, Professor Chua predicted the existence of
memristor in 1971 [1]. In 1976, he expounded the character of
memristor, composition principle, and applications [2]. For
a long time, the existence of element which satisfied the
character of memristor was not discovered, so the study of
memristor did not rise to the attention of scientific com-
munity and engineering circles. In 2008, the HP laboratory
reported the realization of memristor firstly [3, 4], and,
since then, the memristor has attracted much attention all
over the world. Memristors are often divided into charge-
controlled memristor and flux-controlled memristor. Both
of them are typical nonlinear elements. It is expected to be
an effective memory storage device in computers. It means
lower power consumption and less thermal design to deal
with, and it is easy to generate a chaotic vibration signal by
employing this element. On one hand, we need to prevent
the harm of chaos phenomenon in the application. On the
other hand, the chaotic vibration signal by employing the
memristor can be applied to many fields such as secure
communication and aerospace industry. So researchers began

to focus on the design and realization of memristive chaotic
circuit [5–20]. In these literatures, only one memristor was
applied in an independent circuit, and the dynamic char-
acteristics of memristive chaotic system are related to the
initial state of memristor, including unique nonlinear physics
phenomenon. Zhang and Deng studied double-compound
synchronization of six memristor-based Lorenz systems [21].
However, this article focuses on the synchronization method
of a net with four Lorenz systems, rather than dynamic
behaviors of a memristive circuit. When Bao et al. and Mou
et al. applied more than one memristor in a single circuit [22,
23], they found that memristors would affect each other, and
the dynamical behaviors of the circuit with more than one
memristor become more complex. Compared with ordinary
memristive chaotic systems, the memristive hyperchaotic
systems have excellent security in communication because
the memristive hyperchaotic sequence has better complexity
and randomicity [24–26].

Fractional calculus ismore than 300-year-old topic. It can
describe physical phenomena more accurately than that of
the integer-order calculus, so fractional calculus has attracted
more attention in various areas of applications such as
physics, chemistry, bioengineering, signal processing, and
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control system [27–29]. A very important area of applications
is the chaos theory [30–33]. At present, there are three typical
methods to solve the fractional-order nonlinear system,
such as frequency domain approximation [30], predictor-
corrector method (PCM) [34], and Adomian decomposition
method (ADM) [35]. The calculation precision of frequency
domain approximations is limited. Whether this method
accurately reflects the chaos characteristics of a fractional-
order nonlinear system was questioned [36, 37]. For PCM,
one can obtain more accurate results, but the calculation
speed is too slow, and it consumes too much computer
resources. Thus, it is unsuitable for engineering practice.
Comparedwith the two solution approaches, ADM is capable
of dealingwith linear and nonlinear problems in time domain
[38, 39]. He et al. concluded the characteristics of this
method, such as high accuracy, fast convergence, and less
computer resources consumption [40]. Recently, Li et al.
proposed a new 4D hyperchaotic memristive circuit [41],
which possesses abundant complex dynamics. The main fea-
ture of this system is having uncountable infinite number of
stable equilibria, which is significantly different from other
reported chaotic systems before. However, the article mainly
analyzed the equilibrium states, and the analysis of dynamics
characteristics of the 4D memristive hyperchaotic system is
incomplete. Its fractional-order form has not been studied
by now. Thus, it makes a great sense to study the dynamics
characteristics of the system and the solution and dynamics
of its corresponding fractional-order case. To our knowledge,
no one has studied the fractional-order memristive hyper-
chaotic system. So we will employ ADM algorithm to solve
the fractional-order 4D hyperchaotic system.

In this paper, we focus on dynamical characteristic of
the fractional-order 4D hyperchaotic memristive circuit.
It is organized as follows. The dynamical characteristics
of integer-order 4D hyperchaotic memristive circuit are
investigated in Section 2. In Section 3, ADM is introduced
briefly, and the iterative algorithm of the fractional-order 4D
hyperchaotic memristive circuit is deduced. In Section 4, the
distribution of stable and unstable regions of the fractional-
order 4D hyperchaotic memristive circuit is determined, and
the dynamical characteristics of this system are analyzed.
Finally, we summarize the results and indicate future direc-
tions.

2. 4D Hyperchaotic Memristive Circuit

2.1.Model of the 4DHyperchaoticMemristive Circuit. Figure 1
shows the 4D hyperchaotic memristive circuit model, which
consists of standard integrators, standard multipliers, linear
resistors, linear capacitors, and a nonlinear active memristor.
We can use 𝑥, 𝑦, and 𝑧 to indicate states of voltages. For
the memristive circuit, there is an input from 𝑥 to 𝑦 by
a flux-controlled memristor, and it is illustrated by 𝑊 in
Figure 1. According to Chua’s definition, a memristor is a
passive two-terminal circuit element described by a nonlinear
i-v characteristic as follows: V = 𝑀(𝑧)𝑖 or 𝑖 = 𝑊(𝜑)V,
where V, 𝑖, 𝑧, and 𝜑 are the voltage, current, charge, and flux
associated with the device.𝑀(𝑧) is the memristance defined
as follows: 𝑀(𝑧) = 𝑑𝜑(𝑧)/𝑑𝑧. 𝑊(𝜑) is the memductance
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Figure 1: The 4D hyperchaotic memristive circuit.

defined as follows:𝑊(𝜑) = 𝑑𝑧(𝜑)/𝑑𝜑. Here, we focus on the
flux-controlledmemristive system described by the following
circuit equation: 𝑊(𝜑) = 𝑎 + 3𝑏𝜑2, where 𝑎 and 𝑏 are two
positive constant parameters. According to the volt-ampere
characteristics of each element and Kirchhoff ’s current and
voltage law, the differential equation (1) is obtained:

𝐶𝑥𝑥̇ = 𝑦𝑅1 −
𝑥𝑅2

𝐶𝑦 ̇𝑦 = −𝑥𝑧𝑅3 +
𝑦𝑅4 −𝑊(𝜑) 𝑥

𝐶𝑧𝑧̇ = 𝑥𝑦𝑅5 −
𝑧𝑅6

𝜑̇ = 𝑥,

(1)

where 𝑅 is a reference resistor and 𝐶 is a reference capacitor;
then 𝑡 = 𝑅𝐶 is the physical time, where 𝑡 is the dimensionless
time. The parameters can be taken as follows: 𝐶𝑥= 𝐶𝑦 = 𝐶𝑧 =
C, 𝑅3 = 𝑅5 = R, 𝛼 = 𝑅/𝑅1 = 𝑅/𝑅2, 𝛽 = 𝑅/𝑅4, and 𝛾 = 𝑅/𝑅6.
By employing the normalized operation, (1) becomes

𝑥̇ = 𝛼 (𝑦 − 𝑥)
̇𝑦 = −𝑥𝑧 + 𝛽𝑦 − 𝜌𝑊 (𝑤) 𝑥
𝑧̇ = 𝑥𝑦 − 𝛾𝑧
𝑤̇ = 𝑥,

(2)

where 𝜌 is a positive parameter indicating the strength of
the memristor. We should note here that𝑊(𝑤) comes from
the memristor and has the same function as the physical
memductance mentioned above, but it is dimensionless,
which would be convenient for the following discussion.

Setting the parameters 𝑎 = 4, 𝑏 = 0.01, 𝛼 = 36, 𝛽 = 20,𝛾 = 3, 𝜌 = 3, the initial value of (2) is (1, 0, 1, 0), and the time
step is 𝑡 = 0.001 s; we get the hyperchaotic attractor as shown
in Figure 2. In this case, the Lyapunov exponents of the system
are 𝐿1 = 0.2566, 𝐿2 = 0.0674, and 𝐿3 = 0, 𝐿4 = −19.2935, and
the Lyapunov dimension isD𝐿 = 3.017. Obviously the first two
positive Lyapunov exponents imply that the 4D memristive
circuit is hyperchaotic.
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Figure 2: Hyperchaotic attractor of the 4D hyperchaotic memristive circuit: (a) 𝑥-𝑧 and (b) 𝑦-𝑤.
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Figure 3: Lyapunov exponents spectrum and bifurcation diagram with variation of the parameter 𝜌.

2.2. Dynamic Analysis with Different System Parameter. Fix
the initial value of (2) to (1, 0, 1, 0), and change the
parameter 𝜌 from 0 to 3.2. Other parameters are the same
as mentioned above. We obtain the Lyapunov exponents and
its corresponding bifurcation diagram as shown in Figure 3,
where the last Lyapunov exponent is not displayed because it
is always a big negative number. It shows that the Lyapunov
exponents spectrum and bifurcation diagram are consistent.
Figure 3(b) shows the routes to chaos of the system (2), and
the system transforms into two-scroll hyperchaotic attractor
from one-scroll chaotic attractor.When the circuit parameter𝜌 increases further, the system transforms into three-scroll
hyperchaotic attractor from two-scroll hyperchaotic attrac-
tor. Obviously, there are two periodic windows in the chaotic
region at about 𝜌 = 2.55 and 𝜌 = 2.79. It indicates that system
(2) has abundant dynamical behaviors.

To display its dynamics further, 𝑦-𝑤 phase portraits of
different states with different parameter 𝜌 are presented in
Figure 4.

3. Numerical Solution of Fractional-Order
4D Hyperchaotic Memristive Circuit

3.1. Adomian Decomposition Method. For a given fractional-
order differential equation ∗𝐷𝑞𝑡0(𝑡) = 𝑓(𝑥(𝑡)), here 𝑥(𝑡) =[𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]𝑇 are variables and ∗𝐷𝑞𝑡0(𝑡) is the
Caputo derivative operator of order 𝑞 [42, 43]. To obtain the
following initial value problem,𝑓(𝑥(𝑡)) is separated into three
terms [44, 45]:

∗𝐷𝑞𝑡0𝑥 (𝑡) = 𝐿𝑥 (𝑡) + 𝑁𝑥 (𝑡) + 𝑔 (𝑡)
𝑥(𝑘) (𝑡+0 ) = 𝑏𝑘, 𝑘 = 0, 1, . . . , 𝑚 − 1. (3)

Here, L and 𝑁 represent linear and nonlinear items,
respectively, and 𝑔(𝑡) = [𝑔1(𝑡), 𝑔2(𝑡), . . . , 𝑔𝑛(𝑡)]𝑇 are con-
stants for autonomous systems, and 𝑏𝑘 is a specified constant.
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(a) Chaotic attractor (𝜌 = 0.5)
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(d) Two-scroll hyperchaotic attractor (𝜌 = 3)
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(e) Three-scroll hyperchaotic attractor (𝜌 = 3.15)

Figure 4: Phase portraits with different parameter 𝜌.

By applying the operator 𝐽𝑞𝑡0 to both sides of (3), the following
equation is obtained [46]:

𝑥 = 𝐽𝑞𝑡0𝐿𝑥 + 𝐽𝑞𝑡0𝑁𝑥 + 𝐽𝑞𝑡0𝑔 + 𝑚−1∑
𝑘=0

𝑏𝑘 (𝑡 − 𝑡0)
𝑘

𝑘! . (4)

𝐽𝑞𝑡0 is Riemann-Liouville fractional integral operator with
order 𝑞. For 𝑡 = [𝑡0, 𝑡1], 𝑞 ⩾ 0, 𝑟 ⩾ 0, 𝛾 > −1, and real constant𝐶, the fundamental properties of the integral operator 𝐽𝑞𝑡0 are
described as follows [47]:
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𝐽𝑞𝑡0 (𝑡 − 𝑡0)𝛾 = Γ (𝛾 + 1)
Γ (𝛾 + 1 + 𝑞) (𝑡 − 𝑡0)𝛾+𝑞 ,

𝐽𝑞𝑡0𝐶 = 𝐶Γ (𝑞 + 1) (𝑡 − 𝑡0)𝑞 ,
𝐽𝑞𝑡0𝐽𝑟𝑡0𝑥 (𝑡) = 𝐽𝑞+𝑟𝑡0 𝑥 (𝑡) .

(5)

Based on ADM, the nonlinear terms of (4) are decom-
posed according to

𝐴𝑖𝑗 = 1𝑖! [ 𝑑
𝑖

𝑑𝜆𝑖𝑁(]𝑖𝑗 (𝜆))]
𝜆=0

]𝑖𝑗 (𝜆) = 𝑖∑
𝑘=0

(𝜆)𝑘 𝑥𝑘𝑗 ,
(6)

where 𝑖 = 0, 1, . . . ,∞, 𝑗 = 1, 2, . . . , 𝑛; then the nonlinear
terms are expressed as

𝑁𝑥 = ∞∑
𝑖=0

𝐴𝑖 (𝑥0, 𝑥1, . . . , 𝑥𝑖) . (7)

So the solution of (3) 𝑥 = ∑∞𝑖=0 𝑥𝑖 is derived from

𝑥0 = 𝐽𝑞𝑡0𝑔 + 𝑚−1∑
𝑘=0

𝑏𝑘 (𝑡 − 𝑡0)
𝑘

𝑘!
𝑥1 = 𝐽𝑞𝑡0𝐿𝑥0 + 𝐽𝑞𝑡0𝐴0 (𝑥0)
𝑥2 = 𝐽𝑞𝑡0𝐿𝑥1 + 𝐽𝑞𝑡0𝐴1 (𝑥0, 𝑥1)

...
𝑥𝑖 = 𝐽𝑞𝑡0𝐿𝑥𝑖−1 + 𝐽𝑞𝑡0𝐴𝑖−1 (𝑥0, 𝑥1, . . . , 𝑥𝑖−1)

... .

(8)

3.2. Solution of the Fractional-Order 4DHyperchaoticMemris-
tive Circuit. The equation of the fractional-order 4D hyper-
chaotic memristive circuit is

∗𝐷𝑞𝑡0𝑥 = 𝛼 (𝑦 − 𝑥)
∗𝐷𝑞𝑡0𝑦 = −𝑥𝑧 + 𝛽𝑦 − 𝜌𝑊(𝑤) 𝑥
∗𝐷𝑞𝑡0𝑧 = 𝑥𝑦 − 𝛾𝑧
∗𝐷𝑞𝑡0𝑤 = 𝑥,

(9)

where 𝑥, 𝑦, 𝑧, and𝑤 are the state variables, and 𝑞 (0 < 𝑞 ⩽ 1)
is the order of fractional-order differential equation, where𝑊(𝜑) is the memductance defined as𝑊(𝑤) = 𝑎 + 3𝑏𝑤2, and𝑎, 𝑏, 𝛼, 𝛽, 𝛾, and 𝜌 are the system parameters. According to
(5) and (8), the discrete iterative formula of the system (9) is
presented by

𝑥𝑚+1 = 𝑥𝑚 + 𝛼 (𝑦𝑚 − 𝑥𝑚) ℎ𝑞Γ (𝑞 + 1)
+ 𝛼 (−𝑥𝑚𝑧𝑚 + 𝛽𝑦𝑚 − 𝑎𝜌𝑥𝑚 − 3𝑏𝜌𝑥𝑚𝑤2𝑚 + ⋅ ⋅ ⋅)
⋅ ℎ2𝑞Γ (2𝑞 + 1) + ⋅ ⋅ ⋅

𝑦𝑚+1 = 𝑦𝑚 + (−𝑥𝑚𝑧𝑚 + 𝛽𝑦𝑚 − 𝑎𝜌𝑥𝑚 − 3𝑏𝜌𝑥𝑚𝑤2𝑚)
⋅ ℎ𝑞Γ (𝑞 + 1) + (−𝑥𝑚𝑥𝑚𝑦𝑚 + ⋅ ⋅ ⋅) ℎ2𝑞Γ (2𝑞 + 1) + ⋅ ⋅ ⋅

𝑧𝑚+1 = 𝑧𝑚 + (𝑥𝑚𝑦𝑚 − 𝛾𝑧𝑚) ℎ𝑞Γ (𝑞 + 1)
+ (𝛼 (𝑦𝑚 − 𝑥𝑚) 𝑦𝑚 − 𝛾 (𝑥𝑚𝑦𝑚 − 𝛾𝑧𝑚) + ⋅ ⋅ ⋅)
⋅ ℎ2𝑞Γ (2𝑞 + 1) + ⋅ ⋅ ⋅

𝑤𝑚+1 = 𝑤𝑚 + 𝑥𝑚 ℎ𝑞Γ (𝑞 + 1) + 𝛼 (𝑦𝑚 − 𝑥𝑚) ℎ2𝑞Γ (2𝑞 + 1)
+ 𝛼 (−𝑥𝑚𝑧𝑚 + 𝛽𝑦𝑚 + ⋅ ⋅ ⋅) ℎ3𝑞Γ (3𝑞 + 1) + ⋅ ⋅ ⋅ ,

(10)

where ℎ is iteration step size. D(⋅) is Gamma function.
Considering the fast convergence of this method, we truncate
the first six terms of (10) in this paper. For the computer
simulation, the iteration is expressed as follows:

𝐶10 = 𝑥𝑚
𝐶20 = 𝑦𝑚
𝐶30 = 𝑧𝑚
𝐶40 = 𝑤𝑚,
𝐶11 = 𝛼 (𝐶20 − 𝐶10)
𝐶21 = −𝐶10𝐶30 + 𝛽𝐶20 − 𝑎𝜌𝐶10 − 3𝑏𝜌𝐶10𝐶240
𝐶31 = 𝐶10𝐶20 − 𝛾𝐶30
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𝐶41 = 𝐶10,
𝐶12 = 𝛼 (𝐶21 − 𝐶11)
𝐶22 = −𝐶10𝐶31 − 𝐶11𝐶30 + 𝛽𝐶20 − 𝑎𝜌𝐶11 − 3𝑏𝜌 (𝐶11𝐶240 + 2𝐶10𝐶40𝐶41)
𝐶32 = 𝐶11𝐶20 + 𝐶10𝐶21 − 𝛾𝐶31
𝐶42 = 𝐶11,
𝐶13 = 𝛼 (𝐶22 − 𝐶12)
𝐶23 = −𝐶10𝐶32 − 𝐶12𝐶30 − 𝐶11𝐶31 Γ (2𝑞 + 1)Γ2𝑞+1 + 𝛽𝐶22 − 𝑎𝜌𝐶12

− 3𝑏𝜌(𝐶12𝐶240 + 2𝐶10𝐶40𝐶42 + (2𝐶11𝐶40𝐶41 + 𝐶10𝐶241) Γ (2𝑞 + 1)Γ2𝑞+1 )

𝐶33 = 𝐶10𝐶22 + 𝐶12𝐶20 − 𝛾𝐶32 + 𝐶11𝐶21 Γ (2𝑞 + 1)Γ2𝑞+1
𝐶43 = 𝐶12,
𝐶14 = 𝛼 (𝐶23 − 𝐶13)
𝐶24 = −𝐶13𝐶30 − 𝐶10𝐶33 − (𝐶12𝐶31 + 𝐶11𝐶32) Γ (3𝑞 + 1)

Γ (𝑞 + 1) Γ (2𝑞 + 1) + 𝛽𝐶23 − 𝑎𝜌𝐶13
− 3𝑏𝜌(𝐶13𝐶240 + 2𝐶10𝐶40𝐶43 + (2𝐶12𝐶40𝐶41 + 2𝐶11𝐶40𝐶42 + 2𝐶10𝐶41𝐶42) Γ (3𝑞 + 1)

Γ (𝑞 + 1) Γ (2𝑞 + 1))
+ 𝐶11𝐶241 Γ (3𝑞 + 1)Γ3𝑞+1

𝐶34 = 𝐶13𝐶20 + 𝐶10𝐶23 + (𝐶12𝐶21 + 𝐶11𝐶22) Γ (3𝑞 + 1)
Γ (𝑞 + 1) Γ (2𝑞 + 1) − 𝛾𝐶33

𝐶44 = 𝐶13,𝐶15 = 𝛼 (𝐶24 − 𝐶14)
𝐶25 = −𝐶14𝐶30 − 𝐶10𝐶34 − (𝐶13𝐶31 + 𝐶11𝐶33) Γ (4𝑞 + 1)

Γ (𝑞 + 1) Γ (3𝑞 + 1) − 𝐶12𝐶32
Γ (4𝑞 + 1)
Γ22𝑞+1 + 𝛽𝐶24 − 𝑎𝜌𝐶14

− 3𝑏𝜌(𝐶14𝐶240 + 𝐶10𝐶40𝐶44 + (2𝐶13𝐶40𝐶41 + 2𝐶11𝐶40𝐶43 + 2𝐶10𝐶41𝐶43) Γ (4𝑞 + 1)
Γ (𝑞 + 1) Γ (3𝑞 + 1))

+ (2𝐶12𝐶40𝐶42 + 𝐶10𝐶242) Γ (4𝑞 + 1)Γ22𝑞+1 + (𝐶12𝐶241 + 2𝐶11𝐶41𝐶42) Γ (4𝑞 + 1)
Γ (2𝑞 + 1) Γ2𝑞+1

𝐶35 = 𝐶14𝐶20 + 𝐶10𝐶24 + (𝐶13𝐶21 + 𝐶11𝐶23) Γ (4𝑞 + 1)
Γ (𝑞 + 1) Γ (3𝑞 + 1) + 𝐶12𝐶22

Γ (4𝑞 + 1)
Γ22𝑞+1 − 𝛾𝐶33

𝐶45 = 𝐶14,
[[[[[
[

𝑥𝑚+1𝑦𝑚+1𝑧𝑚+1𝑤𝑚+1

]]]]]
]
= [[[[[
[

𝐶10 𝐶11 𝐶12 𝐶13 𝐶14 𝐶15𝐶20 𝐶21 𝐶22 𝐶23 𝐶24 𝐶25𝐶30 𝐶31 𝐶32 𝐶33 𝐶34 𝐶35𝐶40 𝐶41 𝐶42 𝐶43 𝐶44 𝐶44

]]]]]
]
= [1 ℎ𝑞Γ (𝑞 + 1) ℎ2𝑞Γ (2𝑞 + 1) ℎ3𝑞Γ (3𝑞 + 1) ℎ4𝑞Γ (4𝑞 + 1) ℎ5𝑞Γ (5𝑞 + 1)]

𝑇 ,

(11)
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According to (11), the chaotic sequences of the fractional-
order 4D hyperchaotic memristive circuit are obtained with
initial values, ℎ, 𝑞, and appropriate parameters. Then we can
analyze the dynamical characteristics of the system by using
the chaotic sequences.

4. Dynamical Characteristics

4.1. Stability Analysis. By setting the left-hand side of (9) to
zero, we can calculate the equilibrium points of the system.
Obviously, 𝑝0 = (𝑥, 𝑦, 𝑧, 𝑤) = (0, 0, 0, 𝑛) is the one
equilibrium point set for the system, 𝑛 is a real constant. The
Jacobian matrix of the system (9) at equilibrium point set 𝑝0
is described as follows:

𝐽(𝑃0) =
[[[[[
[

−𝛼 𝛼 0 0
−𝑎𝜌 − 3𝜌𝑏𝑛2 𝛽 0 0

0 0 −𝛾 0
1 0 0 0

]]]]]
]
. (12)

The characteristic polynomial of (12) is 𝜆(𝜆+𝛾)(𝜆2 + (𝛼−𝛽) − 𝛼𝛽 + 𝑎𝛼𝜌 + 3𝛼𝜌𝑏𝑛2) = 0, which has root at

𝜆1 = 0
𝜆2 = −𝛾
𝜆2
= (𝛽 − 𝛼 + 𝑗√4𝑎𝛼𝜌 + 12𝛼𝜌𝑏𝑛

2 − 4𝛼𝛽 − (𝛼 − 𝛽)2)
2

𝜆3
= (𝛽 − 𝛼 − 𝑗√4𝑎𝛼𝜌 + 12𝛼𝜌𝑏𝑛

2 − 4𝛼𝛽 − (𝛼 − 𝛽)2)
2 .

(13)

The stability of the equilibrium can be investigated
using Theorem 1: the fractional-order system is asymptoti-
cally stable if all the eigenvalues 𝜆Ψ of the Jacobian matrix 𝐽Ψ
satisfy the condition |arg(𝜆𝑖)| > (𝜋/2)𝑞 [30]. It determines
the stable and unstable regions as shown in Figure 5.

The black region in Figure 5 is the stable region that|arg(𝜆𝑖)| > (𝜋/2)𝑞, while light region is the unstable region
that |arg(𝜆𝑖)| > (𝜋/2)𝑞. When 𝑞 = 1, it is the stability of
integer-order case.

Here, we consider the simple case 𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 =
q, where the fractional-order system has a commensurate
order. According to Theorem 2, suppose that the unstable
eigenvalues of scroll saddle points are 𝜆3,4 = 𝑟3,4 ± 𝑗𝜔3,4 [30].
The necessary condition to exhibit the chaotic attractor of
(9) is the eigenvalues 𝜆3,4 remaining in the unstable region.
The condition for the commensurate derivatives order is 𝑞 >(𝜋/2)atan(|𝜔3,4|/𝑟3,4).
4.2. Phase Portraits. Setting the parameters 𝑎 = 4, 𝑏 = 0.01,𝛼 = 36, 𝛽 = 20, 𝛾 = 3, 𝜌 = 3, and 𝑞 = 0.85, the initial value

Im

Re

Unstable 
region

Stable 
region

(𝜋/2)q

Figure 5: Stable and unstable regions in fractional-order 4D
hyperchaotic memristive circuit.

of (9) is (1, 0, 1, 0). We get the chaotic attractor as shown in
Figure 6. In this case, the Lyapunov exponents of the system
are 𝐿1 = 0.8528, 𝐿2 = 0.3133, and 𝐿3 = 0, 𝐿4 = −59.55 and
the Lyapunov dimension is 𝑑𝐿 = 3.02. The fractional-order
4D hyperchaotic memristive circuit is in a hyperchaotic state
as shown in Figure 6. Obviously, in this case, the largest
Lyapunov exponent is much bigger than that of integer-order
system.

4.3. Lyapunov Exponents Spectra and Bifurcation Diagram.
According to the LE spectra calculation algorithm [48], we let𝑎 = 4, 𝑏 = 0.01, 𝛼 = 36, 𝛽 = 20, 𝛾 = 3, and 𝑞 = 0.85; the initial
value of (9) is (1, 0, 1, 0).The Lyapunov exponents spectra and
bifurcation diagram of the fractional-order 4D hyperchaotic
memristive circuit by changing 𝜌 simultaneously are shown
in Figure 7, where the last Lyapunov exponent is not displayed
because it is always a big negative number.

All of the dynamical behaviors of the system with dif-
ferent parameter 𝜌 are summarized in Table 1. It shows that
system (9) has abundant dynamical behaviors.

To display its dynamics further, 𝑦-𝑤 phase portraits of
different states with different parameter 𝜌 are presented in
Figure 8. With the increase of the parameter 𝜌, the system
transforms from hyperchaotic attractor to limit cycle. Obvi-
ously, there is a periodic window in the chaotic region when𝜌 = (2.0394–2.0407).

For above circuit parameters and 𝜌 = 3, the Lyapunov
exponents spectra and bifurcation diagram of the fractional-
order 4D hyperchaotic memristive circuit by changing 𝑞
simultaneously are shown in Figure 9, where the last Lya-
punov exponent is not displayed because it is always a big
negative number. The Lyapunov exponents spectra and the
bifurcation diagram match very well. Both of them show
that the system has complex behaviors. Obviously, once the
system is in hyperchaotic state, with the increase of the
parameter q, the largest Lyapunov exponent becomes smaller
and smaller until in the 𝑞 = 1. So the fractional-order
hyperchaotic system has a higher complexity compared to its
corresponding integer-order system.
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Table 1: Dynamical behaviors of the system with different 𝜌.
𝜌 Sign of Lyapunov exponents Dynamical behaviors
0∼2.03 + 0 0 − Chaos
2.04 0 0 −− Period 2 cycle
2.05∼2.34 + 0 0 − chaos
2.35 + + 0 − Hyperchaos
2.36∼2.45 + 0 0 − Chaos
2.46 + + 0 − Hyperchaos
2.47∼2.51 + 0 0 − Chao
2.52 + + 0 − Hyperchaos
2.53∼2.55 + 0 0 − Chaos
2.56 + + 0 − Hyperchaos
2.57∼2.65 + 0 0 − Chaos
2.66∼3.08 + + 0 − Hyperchaos
3.09 + 0 0 − chaos
3.1∼3.2 0 − − − Limit cycle
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Figure 6: Chaotic attractor of the circuit with the 4D hyperchaotic memristive circuit.
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Figure 7: Lyapunov exponents spectrum and bifurcation diagram with variation of the circuit parameter 𝜌.
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Figure 9: Lyapunov exponents spectrum and bifurcation diagram with variation of the circuit parameter q.



10 Mathematical Problems in Engineering

Table 2: Dynamical behaviors of the system with different q.

q Signs of Lyapunov exponents Dynamical behaviors
0.75∼0.778 0 − − − Sink
0.779∼0.799 0 − − − Type 1 periodic orbit
0.8∼0.801 + 0 −− Four-scroll chaos
0.802 0 − − − Type 1 periodic orbit
0.803∼0.804 + 0 −− Four-scroll chaos
0.805∼0.806 0 − − − Type 2 periodic orbit
0.807 + 0 −− Four-scroll chaos
0.808∼0.809 0 − − − Type 2 periodic orbit
0.81∼0.814 + 0 −− Four-scroll chaos
0.815∼0.818 + + 0 − Three scroll hyperchaos
0.819 + 0 −− Four-scroll chaos
0.82∼0.822 + + 0 − Three-scroll hyperchaos
0.823∼0.825 + 0 −− Four-scroll chaos
0.826∼0.829 + + 0 − Three-scroll hyperchaos
0.83 + 0 −− Four-scroll chaos
0.831∼0.84 + + 0 − Three-scroll hyperchaos
0.841 + 0 −− Four-scroll chaos
0.842∼0.85 + + 0 − Three-scroll hyperchaos
0.851 + 0 0 − Two-scroll chaos
0.852∼1 + + 0 − Two-scroll hyperchaos

All of the dynamical behaviors of the system with dif-
ferent parameter 𝑞 are summarized in Table 2. It shows that
system (9) has abundant and complex dynamical behaviors.

To further display its dynamics, 𝑦-𝑤 phase portraits of
different states with different parameter 𝑞 are presented in
Figure 10. The route to limit cycle from sink can be observed.
With the increase of the parameter 𝑞, the system transforms
from chaotic attractor to hyperchaotic attractor. Obviously,
there are several periodic windows in the chaotic region.

4.4. Spectral Entropy (SE) and C0 Complexity. Complexity
measure is an important reference to measure dynamics of
a chaotic system. If a chaotic system is used in information
security, it can reflect the security of the system to some
extent. At present, there are several algorithms for measuring
the complexity of chaotic sequences, including intensive sta-
tistical [49], multiscale entropy (MSE) [50], spectral entropy
(SE) algorithm [51], and C0 complexity arithmetic [52].
Among them, C0 and SE complexity algorithms have less
parameters, faster calculation speed, and higher accuracy. So
we employ the SE algorithm tomeasure the complexity of the
fractional-order 4D hyperchaotic system.

Let 𝑎 = 4, 𝑏 = 0.01, 𝛼 = 36, 𝛽 = 20, 𝛾 = 3, and 𝑞 = 0.85;
the initial value of (9) is (1, 0, 1, 0). According to the arithmetic
spectral entropy (SE) and C0 complexity arithmetic, the SE
and C0 complexity of the fractional-order 4D hyperchaotic
memristive circuit by changing 𝑞 and 𝜌 simultaneously are
shown in Figure 11.

Figures 7, 9, and 11 show that the Lyapunov exponents
spectrum, bifurcation diagram, and complexity are consis-
tent. Figures 11(a) and 11(b) show that the change trends of SE

complexity and C0 complexity are consistent, but the values
are different. It is mainly because of the differences defined by
the SE and C0 definitions, which mean that complexity can
also reflect the dynamic characteristics of a chaotic system.

5. Conclusions

In this paper, the dynamical characteristics of integer-order
4Dhyperchaoticmemristive circuit are analyzed firstly. Based
on Adomian decomposition method (ADM), the numerical
solution of a fractional-order 4D hyperchaotic memristive
system is investigated and all parameters values of the system
are determined.The equilibrium points are obtained, and the
distribution of stable and unstable regions of the system is
determined. Dynamical characteristics are studied by phase
portraits, Lyapunov exponents spectrum, bifurcation dia-
gram, SE complexity, and C0 complexity. We found that
the dynamical characteristics of fractional-order 4D hyper-
chaotic memristive system are more complex than that of the
integer-order system, and the SE and C0 complexity could
reflect the dynamical characteristics quite well. According to
the variation of the system dynamics, it is found that the
fractional-order hyperchaotic system has better application
prospect than its corresponding integer-order chaotic system
in the field of chaotic secure communication. Next, we will
try to study its implementation in hardware.
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