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In real-world structural problems, a number of factors may cause geometric imperfections, load variability, or even uncertainties in
material properties. Therefore, a deterministic optimization procedure may fail to account such uncertainties present in the actual
system leading to optimum designs that are not reliable; the designed systemmay show excessive safety or sometimes not sufficient
reliability to carry applied load due to uncertainties. In this paper, we introduce a hybrid reliability-based design optimization
(RBDO) algorithm based on the genetic operations of Genetic Algorithm, the position and velocity update of the Particle Swarm
Algorithm (for global exploration), and the sequential quadratic programming, for local search.The First-Order ReliabilityMethod
is used to account uncertainty in design and parameter variables and to evaluate the associated reliability. The hybrid method is
analyzed based onRBDObenchmark examples that range from simple to complex truss parametric sizing optimizations with stress,
displacements, and frequency deterministic and probabilistic constraints. The proposed final problem, which cannot be handled
by single loop RBDO algorithms, highlights the importance of the proposed approach in cases where the discrete design variables
are also random variables.

1. Introduction

In the engineering science, the cost reduction in manufac-
turing is pursued in order to obtain efficiency and save time
in production. Although the use of optimization methods is
increasing, in practical terms, the design parameters and/or
design variables used in deterministic optimization proce-
dures may present uncertainties. It means that analyzing the
responses obtained by deterministic optimization procedures
in terms of failure probability, nonacceptable levels may
be present in the engineering point of view. According
to [1], uncertainties in real-world optimization problems
include factors such as data incompleteness, mathematical
model inaccuracies, and environmental condition variation,
just to name a few. This directly affects the optimization
problem since in, a structural engineering design, economy
and safety are competing goals [2]. One way to link such
uncertainties in an optimization problem is using a reliability
index (𝛽), a measure of the degree of reliability in the design,

according to [1]. This procedure is referred to as reliability-
based design optimization (RBDO); in this case, the relia-
bility index becomes an extra constraint to the optimization
problem. According to [3], in the last decade, the RBDO
significance and conceptual and mathematical complexity
have been intensively studied. The optimization procedure
may require a high computational cost [4]. For this reason,
several authors have studied methods that use single loop
RBDO [3, 5–7]. These authors have applied reliability-based
design optimization strategies like SAP (Sequential Approx-
imate Programming) and SORA (Sequential Optimization
and Reliability Assessment), which are capable of solving the
majority of practical cases, when multiple modes of failure
are present, but for linear and smooth functions. According
to [8], the use of approximation procedures in the sequential
optimization and the evaluation of the reliability index in
a single step may result in spurious optimal points. That
is evident since these methods are deterministic and they
show a tendency of convergence to local minima points
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due to possible nonlinear function behavior in probabilistic
problems. In order to increase robustness, authors [9] pro-
posed to construct a response surface that is the product of
individual performance functions and be sued as surrogate
to get optimal design solutions. Despite the large amount of
literature in the theme, a good introduction to the RBDO
subject can be found in [10].

In this article, a hybrid RBDO methodology is proposed
and applied to a range of spatial trusses in order to find
the optimum parameters for minimum mass, considering
maximum allowable deflections and limited stress. The First-
Order Reliability Method (FORM) is used to evaluate the
reliability index (𝛽) along the optimization steps. Due to
the high computational cost of the traditional algorithms to
solve nonconvex optimization problems, we propose a hybrid
optimizationmethod. Comparisons about the computational
cost and quality of the solution are performed using as
baseline standard structural problems. The proposed hybrid
global optimization method based on existent global search
(metaheuristic) and deterministic algorithms is detailed.This
new method is presented and discussed by using reliability-
based optimization on structural truss examples.

2. Reliability Index Evaluation

As stated by [11], reliability analysis can be applied to many
engineering fields such as in aeronautical, mechanical, and
civil problems. By definition, the reliability is the complement
of the probability of failure, that is, the likelihood of failure
of a specific event or set of events from a complex system. A
limit state function that relates the failure event (violation of
specific set of constraints) as function of several variables is
stated by the mathematical expression:

𝑔 (𝑋1, . . . , 𝑋𝑛) = 0, (1)

where 𝑔 means the limit state function that defines a con-
straint. Some design variables may present random compo-
nents. In case 𝑋𝑖 is a set of 𝑛 random variables that affects
that constraint, this limit state function becomes also random
and some probability of violation is implicit [11, 12]. 𝑔(⋅) ≤ 0
means that the system is in the failure domain, 𝐷, and 𝑔(⋅) >0 means that the system is in the safe domain (constraint
was not violated). The probability of failure can be evaluated
by the integration of the joint probability density function𝑓𝑋(𝑋1, . . . , 𝑋𝑛) as indicated in [11]:

𝑃𝑓 = ∫ ⋅ ⋅ ⋅ ∫
𝐷
𝑓𝑋 (𝑋1, . . . , 𝑋𝑛) 𝑑𝑋1 ⋅ ⋅ ⋅ 𝑑𝑋𝑛 ≅ Φ (−𝛽) , (2)

where the failure domain is defined by 𝐷 means that 𝑔(⋅) ≤0, Φ is the cumulative standard distribution function, and𝛽 is a safety index metric. Equation (2) presents a close
solution in some particular cases where 𝑓𝑋(⋅) is Gaussian
and for linear and quadratic 𝑔(⋅). However, it is difficult
to be handled in case of several random variables 𝑛. In
this case, Monte Carlo (MC) Simulation can be used to get
approximate asymptotic solutions. Moreover, statistic values
for function𝑓𝑋(𝑋) are not known a priori and the number of
MC samples frequently is not enough to ensure confidence.
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Figure 1: Concept of probability of failure and the reliability index 𝛽
for the first-order approximation.

So, a very simple but not so robust way to get and estimate
for the reliability index (that is related to the probability
of survival) 𝛽 is using the probability density function first
and second moments (mean and variance) for the limit state
function 𝑔(𝑋1, . . . , 𝑋𝑛). When the limit state function 𝑔(𝑋)
is linear and the random variables are normally distributed
and uncorrelated, the reliability index 𝛽 can be approximated
by the following (see Figure 1):

𝛽 = 𝜇𝑔𝜎𝑔 , (3)

where 𝜇𝑔 and 𝜎𝑔 represent, respectively, the mean value and
the standard deviation (square root of variance) for function𝑔(𝑋).

Let 𝜎𝑖 be the mechanical stress that can be measured in
a loaded component 𝑖, assuming a failure situation where
this value exceeds the imposed material strength limit value
(𝜎lim). Equation (1) can be rewritten, for the limit state
function, as follows:

𝑔𝑖 (𝜎𝑖) = 1 − 𝜎𝑖𝜎lim . (4)

Linearization of function 𝑔(𝑋) by a Taylor expansion up
to linear terms can be used to get approximated values for𝜇𝑔 and 𝜎𝑔 when the limit state functions are nonlinear. The
point around the linearization performed affects 𝜇𝑔 and 𝜎𝑔
values. A method to obtain the reliability index 𝛽 that is
independent of the limit state function formulation is known
as AFOSM (Advanced First-Order SecondMoment) and was
first proposed by [13]. For uncorrelated Gaussian random
variables 𝑋𝑖, they are transformed into normalized ones 𝑈𝑖
by the transformation:

𝑈𝑖 = Φ−1 [𝐹𝑋𝑖 (𝑥𝑖)] = 𝑇 (𝑋𝑖) , (5)

where 𝐹𝑋𝑖(𝑥𝑖) and Φ−1(⋅) are the cumulative distribution
function of the random variable 𝑋𝑖 and the inverse of the
cumulative standard Gaussian distribution, respectively. In
this way, the limit state function in the real space 𝑋 is
transformed to the uncorrelated normalized space 𝑈, so

ℎ (𝑈) ≅ 𝑔 (𝑋) . (6)

The linearization of the limit state function ℎ(𝑈) is
performed at the 𝑈∗ point that presents the shorter distance
to the origin of the uncorrelated space 𝑈 and that ensures
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ℎ(𝑈) = 0. The 𝑈∗ point is called the design point and the
reliability index 𝛽 is evaluated as mentioned previously as

𝛽 = min (‖𝑈‖)
subject to ℎ (𝑈) ≤ 0. (7)

2.1. Rackwitz-Fiessler Algorithm. In order to solve (7), the
efficient algorithm proposed by Rackwitz and Fiessler [13] is
used. It can be described in the following steps.

Step 1. Define the limit state function for the problem 𝑔(X) =0.
Step 2. Assume initial values for the design point in the real
space X∗ = (𝑋1, . . . , 𝑋𝑛)𝑇 and evaluate the corresponding
values for the limit state function 𝑔(X) (e.g., assume an initial
design point as the mean values of random variables).

Step 3. Evaluate the equivalent Gaussian mean value and
standard deviation for the random variables:

𝜎𝑁𝑋𝑖 = 𝜙 (Φ−1 [𝐹𝑋𝑖 (𝑥𝑖)])𝑓𝑋𝑖 (𝑥𝑖) ,
𝜇𝑁𝑋𝑖 = 𝑋𝑖 − 𝜎𝑁𝑋𝑖Φ−1 [𝐹𝑋𝑖 (𝑥𝑖)] .

(8)

Step 4. Transform random variables from real space X to
normal uncorrelated U. The design variables values at the
design point will be evaluated as follows:

𝑈𝑖 = 𝑋𝑖 − 𝜇𝑁𝑋𝑖𝜎𝑁𝑋𝑖 . (9)

Step 5. Evaluate the sensitivities 𝜕𝑔(𝑋)/𝜕𝑋𝑖 at the design
point X∗.

Step 6. Evaluate the partial derivatives 𝜕𝑔(𝑋)/𝜕𝑈𝑖 in the
normal uncorrelated space using the chain rule:

𝜕𝑔 (𝑋)𝜕𝑈𝑖 = 𝜕𝑔 (𝑋)𝜕𝑋𝑖 𝜕𝑋𝑖𝜕𝑈𝑖 . (10)

Step 7. Evaluate the new value for the design point 𝑈∗𝑖 in the
normal uncorrelated space using the recurrent equation:

𝑈∗𝑖,𝑘+1 = [∇𝑔 (𝑈∗𝑖,𝑘)𝑇𝑈∗𝑖,𝑘 − 𝑔 (𝑈∗𝑖,𝑘)] ∇𝑔 (𝑈∗𝑖,𝑘)∇𝑔 (𝑈∗
𝑖,𝑘
) . (11)

Step 8. Evaluate the distance from the origin to this newpoint
and estimate the new reliability index:

𝛽 = ‖𝑈‖ = √ 𝑛∑
𝑖=1

(𝑈∗𝑖 )2. (12)

Step 9. Check convergence of 𝛽 along iterations using a
predefined tolerance.

Step 10. Evaluate the random variables at the new design
point using

𝑋𝑖 = 𝜇𝑁𝑋𝑖 + 𝜎𝑁𝑋𝑖𝑈∗𝑖 . (13)

Step 11. Evaluate𝑔(X) value for the new randomvariables and
verify a final convergence criterion, for instance, Δ𝑔(X) <
tolerance and ΔX < tolerance.

Step 12. If both criteria are met, stop iterating; otherwise,
repeat Steps 3–11.

This algorithm assumes all the random variables as
noncorrelated in the original actual space. If there exists cor-
relation between random variables, using Cholesky decom-
position of the covariancematrix, the correlated variables can
be transformed to uncorrelated ones and the algorithm is still
valid [8, 11, 14]. This transformation is presented in

Z = L−1 (X − 𝜇) with cov (X,X) = C = LL𝑇. (14)

3. Reliability-Based Design
Optimization (RBDO)

In the RBDO, the objective function should satisfy predefined
probabilistic constraints, which are set as new constraints to
the problem. Probability failure analyses are performed along
the optimization process in order to check if the probabilistic
constraints are met. This is used to guide the optimization to
the minimum weight that complies with the target reliability
levels. The easier formulation for RBDO implements the
algorithm with a double loop where the optimization is split
into two stages: (a) on a first stage, the objective function
optimization is performed focusing on the design variables;
(b) on a second stage, the optimization is performed focusing
on the random variables starting from the design variables
from the outer loop. More details can be found in [15]. A
deterministic model for the minimization can be defined
generally as follows [16]:

Minimize 𝑓 (V𝑑, p)
Subject to: ℎ𝑖 (V𝑑, p) = 0 𝑖 = 1, . . . , 𝑚

𝑔𝑗 (V𝑑, p) < 0 𝑗 = 1, . . . , 𝑛
V𝑑𝑙 ≤ V𝑑 ≤ V𝑑𝑢,

(15)

where V𝑑 is the vector of design variables, p is the vector
of parameters for the optimization problem, ℎ𝑖(⋅) = 0 is𝑖th model’s equality constraint from a total of 𝑚 equality
constraints, 𝑔𝑗 are the 𝑛 inequality constraints, and V𝑑𝑢 and
V𝑑𝑙 are the vectors that contains upper and lower values for
the design variables. However, a deterministic optimization
does not consider the uncertainties in the design variables
nor fixed design parameters. In RBDO, the probabilistic con-
straints are added increasing the set of constraint equations.
Since the reliability index can be defined in terms of the
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accumulated probability function for the limit state function
(and vice versa), the following holds:

𝑃𝑓 (V𝑑, p) = Φ (−𝛽)
or 𝛽 = −Φ−1 [𝑃𝑓 (V𝑑, p)] , (16)

where Φ is the cumulative standard distribution function. In
this article, the reliability constraint is formulated as follows:

𝑔𝑗 (V𝑑, p) = 1 − 𝛽𝛽target
< 0 𝑗 = 𝑛𝑟 + 1, . . . , 𝑛𝑝, (17)

where 𝑔𝑗(⋅) is the probabilistic constraint defined by the
dimensionless ratio between the evaluated reliability index 𝛽
and the target reliability index 𝛽target. This means that if the
evaluated reliability index 𝛽 during the optimization is larger
than the reliability target index 𝛽target, then 𝑔𝑗(⋅) ≤ 0 and the
probabilistic criterion is met. Otherwise, a penalization for
the objective function will take place. Numerically, during
the optimization process, the failure function needs to be
evaluated a number of times so one can find the probability
of failure value (or conversely the reliability index). In a
RBDO, both parameter vector p and design variables V𝑑 can
be random variables.

Figure 2 shows a geometric interpretation for the dif-
ference between a deterministic and a reliability-based opti-
mization. The implementation of the optimization may be
performed using two different approaches: RIA (Reliability
Index Approach) or PMA (PerformanceMeasure Approach).

3.1. Reliability Index Approach (RIA). This approximation
for the reliability constraint is treated as an extra constraint
that is formulated by the reliability index 𝛽 (for the sake of
simplicity, in the uncorrelated design space). So, the following
can be written:

Minimize 𝑓 (u, p)
Subject to p𝐿 < p < p𝑈

𝑔𝑖 (𝐸 [u, p]) < 0 𝑖 = 1, . . . , 𝑚
ℎ𝑗 (𝐸 [u, p]) = 0 𝑗 = 1, . . . , 𝑛
𝛽target − 𝛽 (𝑓𝑘 (u, p) = 0) < 0

𝑘 = 1, . . . , 𝑝
𝛽target − 𝛽 (𝑓𝑙 (u, p) = 0) = 0

𝑙 = 1, . . . , 𝑞,

(18)

where u is the standard uncorrelated random variables and𝑔𝑖 and ℎ𝑗 are the 𝑚 inequality and 𝑛 equality deterministic
constraints with corresponding 𝑝 probabilistic equalities
and 𝑞 probabilistic inequalities constraints. 𝐸[⋅] means the
expected values. In order to find 𝛽, the reliability problem
is defined as 𝛽 = min(‖𝑈‖), subject to 𝑔(𝑈) ≤ 0.

3.2. Performance Measure Approach (PMA). This formula-
tion is performed with the inverse of the previous analysis by
RIA, in such a way that the following can be written:

Minimize 𝑓 (u, p)
Subject to p𝐿 < p < p𝑈

𝑔𝑖 (𝐸 [u, p]) < 0 𝑖 = 1, . . . , 𝑚
ℎ𝑗 (𝐸 [u, p]) = 0 𝑗 = 1, . . . , 𝑛
𝑔𝑘 (‖u‖ = 𝛽target, p) − 𝑔𝑘 (u, p) < 0

𝑘 = 1, . . . , 𝑝
ℎ𝑙 (‖u‖ = 𝛽target, p) − ℎ𝑙 (u, p) = 0

𝑙 = 1, . . . , 𝑞,

(19)

where u is the vector the normalized uncorrelated random
variables, 𝑔𝑖 and ℎ𝑗 are the 𝑚 and 𝑛 inequality and equality
constraints, and 𝑔𝑘 and ℎ𝑙 are the 𝑝 and 𝑞 probabilistic
inequalities constraints, respectively. So, differently from
RIA, for a fixed reliability index ‖u‖ = 𝛽target, the equality
and inequality constraints are ensured beforehand, so a line
search for the point where hypersphere ‖u‖ = 𝛽target cuts
the constraints should be performed. The advantages and
disadvantages in using this or the previous PMA formulation
can be found in [17].

4. Proposed Hybrid Optimization Method

Evolutionary algorithms are widely considered powerful and
robust techniques for global optimization and can be used
to solve full-scale problems which contain several local
optima [18]. Although the implementation of such methods
is easy, they can demand a high computational cost due
to high number of function calls. Therefore, they are not
recommended for problems in which the objective function
presents high computational cost [19]. Besides, it is important
that the algorithmparameters be tuned adequately in order to
avoid premature convergence of the algorithm.

Pioneering works with hybrid algorithms for optimiza-
tion have been performed by [20] with the so-called Aug-
mented Lagrangian Genetic Algorithm that could deal with
constraints by penalization functions. The algorithm has
an outer loop to update penalization parameter based on
constraints values and an inner loop for traditional GA
using the penalized fitness function. The algorithm can
also avoid trial and error selection and manually increase
penalty constants in the optimization problem. In a different
way, the hybrid method proposed here is based on the use
of genetic operators of GA like mutation, crossover, and
elitism associated with a gradient search by SQP algorithm
performed on best individual of the GA population. Besides,
20% of the best individuals will pass by a hybrid PSO
operation, which allows position update based on velocity
and global and local cognitive coefficients. These operators
are inherited from the traditional PSO algorithm [21]. Using
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Figure 2: Geometric definition for the reliability-based design optimization.
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elitism, the best individual of the group passes to a cost
function enhancement by sequential quadratic programming
(SQP) and then is sent to the next generation. This method
is hereafter called HGPS. The main goal of hybrid method
is to accelerate the convergence rate of a global search while
maintaining the exploration capability. The SQP method is
justified by the intrinsic speed in finding local optima, while
GA and PSO preserve the diversity in the exploration of new
regions of the search space.

Although the convergence rate can be accelerated, getting
stuck in local optima still remains possible. For this reason,
the adaptive mutation is inherited from GA. PSO operators
(like momentum) are also used in order to help the escape
from local minima. Initial tests carried out by [22, 23]
showed that loss in diversity may still occur, resulting in
premature convergence; thus adaptive mutation operation
is recommended mainly in cases where the problem has
a complex solution (e.g., in nonsmooth or discontinuous
functions). Their use is also based on the good results found
in preliminary tests in literature [24].

A simple sketch illustrating the idea of mixing best
features from several algorithms is shown in Figure 3, consid-
ering 𝑚 individuals and 𝑛 generations. Algorithm 1 presents
the corresponding pseudocode with the steps followed by
the proposed algorithm. It is important to notice that the

codification for the design variables (in a GA sense) is the
real one; that is, each individual 𝑖 for the generation 𝑡 is
represented by b𝑖,𝑡 = (𝑥1, 𝑥2, . . . , 𝑥𝑛𝑐) where 𝑛𝑐 is the number
of genes (design variables).

In the pseudocode in Algorithm 1, 𝑥𝑘𝑖,𝑗 is the current value
of the design variable 𝑗 of the particle 𝑖 of the generation𝑘 of the GA. The V𝑘+1𝑖,𝑗 is the updated velocity of the design
variable 𝑗 of the particle 𝑖 of the generation 𝑘 of the GA. The𝑥𝑙𝑏𝑒𝑠𝑡𝑘𝑖,𝑗 is the best design variable 𝑗 from the selected 20%
of best individuals, and 𝑥𝑔𝑏𝑒𝑠𝑡𝑘𝑗 is the best design variable 𝑗
of generation 𝑘. Related to the stopping criteria, a criterion
is chosen that is based on the coefficient of variation (𝜎/𝜇) of
the objective function of the elite individuals within a defined
number of generations. For the following problems, it has
been considered that, within five consecutive generations,
if the change in the coefficient of variation of the objective
function of the elite individuals is lower than a defined
tolerance, the convergence criterion is met.

This hybridized methodology (HGPS) was proposed
aiming at convergence acceleration and maintaining the
diversity of individuals to avoid premature convergence.
Therefore, this approach takes advantage from the use of
adaptive mutation, PSO operator performed on individuals
from consecutive generations, and SQP improvements on the
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(1) Initialize generations, Initialize Population size: “𝑚”, mutation probability: “𝑃𝑚”, crossover probability: “𝑃𝑐”,
number of genes per individual: “𝑛𝑐”, upper and lower bounds values for each gene: “𝑥max(𝑛𝑐)”, “𝑥min(𝑛𝑐)”.

Main Loop (while stopping criteria are not met)(2) Evaluate and rank the population of individuals by the objective function vector.(3) Generation of new population
(3.1) SQP method:The best individual of the population is the starting point of search SQP method, which

replaces the same point in the next generation.
(3.2) PSO method: 20% of the best individuals suffers PSO operations, constrained to 𝑥max and 𝑥min,

According to:
V𝑘+1𝑖,𝑗 = 𝜒[𝜛V𝑘𝑖 + 𝑐1𝑟1(𝑥𝑙𝑏𝑒𝑠𝑡𝑘𝑖,𝑗 − 𝑥𝑘𝑖,𝑗) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡𝑘𝑗 − 𝑥𝑘𝑖,𝑗)]𝑥𝑘+1𝑖,𝑗 = 𝑥𝑘𝑖,𝑗 + V𝑘+1𝑖,𝑗
This work assumes 𝑐1 = 𝑐2 = 1,5 and 𝜛 = 0.4(1 +min ∗ (cov, 0.6), according to [25]).

(3.3) GAMethod (genetic operators)
(3.3.1) Crossover It is assumed 𝑃𝑐 = 0.8 according to [26]
“One point Recombination”
Loop 𝑖 = 1 to𝑚 − 1 Step 2

If random(0, 1) < 𝑃𝑐 do𝛼 = 0.5Δ = max[𝑏𝑖,𝑡(𝑘), 𝑏𝑖+1,𝑡(𝑘)] −min[𝑏𝑖,𝑡(𝑘), 𝑏𝑖+1,𝑡(𝑘)]𝑏𝑖,𝑡(𝑘) = random(min[𝑏𝑖,𝑡(𝑘), 𝑏𝑖+1,𝑡(𝑘)] − 𝛼Δ,max[𝑏𝑖,𝑡(𝑘), 𝑏𝑖+1,𝑡(𝑘)] + 𝛼Δ)
End If

End Loop 𝑖
(3.3.2) Adaptive Mutation [22]

Loop 𝑖 = 1 to𝑚
If 𝑓𝑖 > 𝑓min then 𝑃𝑚 = 0.2
Else

𝑃𝑚 = 0,5(𝑓𝑖 − 𝑓min)(𝑓 − 𝑓min)
End If

End Loop 𝑖
If random(0, 1) < 𝑃𝑚 do𝑘 = random(0, 1) ∗ 𝑛𝑐𝑏𝑖,𝑡(𝑘) = random(𝑥max(𝑘), 𝑥min(𝑘))
End If

End of the Main Loop

Algorithm 1: Pseudocode for the HGPS.

solution of the best individual found so far. The probability
of mutation is not a constant value but varies according to
the fitness function used by the GA, that is, the mean of
individual objective function value 𝑓. According to [22], the
value of 𝑃𝑚 should depend not only on 𝑓 − 𝑓min (a measure
of convergence) but also on the fitness function value 𝑓𝑖 of
the solution. The closer 𝑓𝑖 is to 𝑓min, the smaller 𝑃𝑚 should
be, assuming zero at 𝑓𝑖 = 𝑓min. To prevent the overshooting
of 𝑃𝑚 beyond 1.0, the constraint for 𝑃𝑚 is achieved by setting𝑃𝑚 = 0.2 whenever 𝑓𝑖 > 𝑓min (since such solutions need to
be completely disrupted); otherwise, it is set to 𝑃𝑚 = 0.5(𝑓𝑖 −𝑓min)/(𝑓 − 𝑓min).
5. Results

The comparisons are performed using only simple optimiza-
tion algorithms like GA (Genetic Algorithm), DE (Differen-
tial Evolution), PSO (Particle Swarm Optimization), FMA
(Firefly Metaheuristic Algorithm), and the proposed HGPS
algorithm.When possible, the deterministic SQP (sequential

quadratic programming) algorithm will be used for com-
parisons. Specifically, in example 3, where discrete design
variables are present, this comparison will not be possible.
Since there is no theorem that gives the best parameters values
for the algorithms that may serve to any problem, based
on literature recommendations and some trial and error,
some effort was made in finding those parameters for each
metaheuristic algorithm. In all studied cases, in order to have
fair comparisons, the same set of optimization parameters
was applied that were previously tuned for best performance
in each algorithm. Table 1 shows such parameters for the
tested algorithms.

5.1. Case 1: 10 Bar Truss Problem. This classical model was
presented by [6] that performed the minimization of the
truss mass with stress and displacement constraints taking
into account reliability index for stress and displacements.
The analyzed truss is presented in Figure 4. The bar length𝑎 = 9.144m(360 in).The ten bar cross sections are the design
variables. The lower and upper limit for the design variable
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Figure 4: 10 bar truss geometry, nodes, and connectivity.

are 6.45 × 10−6m2 (0.01 in2) and 1.61 × 10−2m2 (25 in2),
respectively. The member’s elastic modulus are 𝐸 = 6.895 ×1010 Pa (107 Psi) and assumed deterministic. The applied
loads are assumed random and uncorrelated, following a
lognormal distribution, with mean 𝜇 = 4.448 × 105N (1.0 ×105 lbf) and standard deviation 𝜎 = 2.224 × 104N (5.0 ×103 lbf). Material strength is assumed as Gaussian random
variable with mean and standard deviation being equal to1.724×108 Pa (2.5×104 Psi) and 1.724×107 Pa (2.5×103 Psi),
respectively. The vertical displacement has a constraint of±0.1143m (±4.5 in).

The deterministic constraints for stress and displace-
ments are treated as limit state functions from the probabilis-
tic point of view.The reliability indexes for the stress values in
any member (tension or compression) and for the maximum
vertical displacement at any node are set to 3.0.Therefore, the
mathematical RBDO problem can be stated as follows:

Minimize 𝑓 (A) = 𝜌 𝑛∑
𝑖=1

𝐴 𝑖𝐿 𝑖
Subject to 𝜎𝑖 ≤ 1.724 × 108 Pa 𝑖 = 1, . . . , 𝑛𝑑𝑗 ≤ 0.1143m 𝑗 = 1, . . . , 𝑛𝑛

𝛽𝑠 (u,p) ≥ 𝛽𝐿𝑠𝛽𝑑 (u,p) ≥ 𝛽𝐿𝑑
p𝐿 ≤ p ≤ p𝑈,

(20)

where p is the vector of design variable (member area),𝛽𝐿𝑑, 𝛽𝐿𝑠 are the target reliability indexes, and 𝛽𝑠(u, p) and𝛽𝑑(u, p) are the reliability indexes for stress and displace-
ment, respectively that are function of vector of design
variables p and vector of random variables u (two loads and
the material strength). The parameters p𝐿 and p𝑈 represent
lower and upper values for design variables, respectively. 𝑛𝑛
is the total number of nodes.

Table 2 shows the obtained results with the optimization
methods averaged for 20 independent runs. In the same
table, the efficiency parameter (ratio between total number
of objective function (deterministic) and limit state function
(probabilistic) evaluations to the corresponding value for
the best valid solution found so far, i.e., less weight and

not constrained) and the quality parameter (best objective
function values ratio) for each result are presented.

Results from GA, FMA, and SQP show to be heavier
then that reported by [6] using SORA/SQPmethod, but both
PSO and HGPS (particularly HGPS) achieved a lighter truss
solution. The author [8] reported that the methods based
on SORA may fall into local optima points; that is, local
optimum originated mainly due to the used gradient-based
methods involved in optimization of the objective function
and constraints. So, the best results are attributed to the use of
metaheuristic capabilities in the proposed HGPS algorithm.

In addition, it is possible to note that the GA and FMA
solutions were not better (objective function) than SORA
solution, meaning that the reported configuration seems
not to be the best for this problem. Apparently, GA and
FMA get stuck into local minima. It was also observed that
the PSO, SQP, and HGPS methods found slightly different
design variable solutions even with reliability index con-
straints being satisfied and having similar objective function
values. This seems to represent a flat design space near the
optimum solution. It is also possible to notice the not so
good HGPS efficiency when compared to PSO algorithm or
SPQ (the most efficient), although HGPS have a superior
solution (quality). It should the emphasized that any of the
deterministic and probabilistic constraints are violated for
the HGPS solution. For the 20 independent runs, the HGPS
presented the best mass value of 1252.31 kg, mean value
of 1262.15 kg (median 1264.97 kg), the worst mass value of
1269.68 kg, and a coefficient of variation of 0.012.

5.2. Case 2: 37 Bar Truss Problem. In this example, a Pratt
type truss with 37 members is analyzed. The goal of the
deterministic optimization problem is to minimize the mass.
There are nonstructural masses of 𝑚 = 10 kg attached to
each of the bottom node; see Figure 5. The lower chord
is modelled as bar elements with fixed cross-sectional area𝐴 = 4 × 10−3m2. The remaining symmetric bars are design
variables also modelled as bar elements with initial cross
section of 𝐴0 = 1 × 10−4m2. This problem is considered
a truss optimization on size and geometry since all nodes
of the upper chord are allowed to vary along the 𝑦-axis in
a symmetric way and all the diagonal and upper bars are
allowed to vary the cross-sectional area within upper and
lower values. Figure 5 describes the structure. In this example,
the design variables are (𝑦3, 𝑦5, 𝑦7, 𝑦9, 𝑦11, 𝐴1, 𝐴2, . . . , 𝐴14).
The lower limit for the design variables are (0, 0, 0, 0, 0, 1 ×10−4, 1 × 10−4, . . . , 1 × 10−4) in m and m2, respectively. The
upper limit is (5, 5, 5, 5, 5, 5 × 10−4, 5 × 10−4, . . . , 5 × 10−4) in
m and m2. A deterministic constraint for the 3 first natural
frequencies is imposed to the original problem; see Table 3.
The optimum mass found for the deterministic problem is
360.56 kgwith the design variables being (0.93911 1.3327 1.5211
1.6656 1.7584 2.9941 × 10−4 1.0019 ×10−4 1.0033 × 10−4 2.4837× 10−4 1.1804 × 10−4 1.2643 × 10−4 2.5903 × 10−4 1.5983 × 10−4
1.5209 × 10−4 2.5021 × 10−4 1.2443 × 10−4 1.3579 × 10−4 2.3928× 10−4 1.0014 × 10−4) m and m2 and the natural frequencies
constraints are satisfied (𝑓1 ≥ 20, 𝑓2 ≥ 40 and 𝑓3 ≥ 60).
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Table 2: Results obtained using the optimization methods (10 bar truss).

Parameters GA FMA PSO SQP SORA/SQP [6] HGPS
Best mass value (kg) 1447.04 1667.75 1253.75 1256.10 1253.91 1252.31𝛽𝑠 3.004 3.181 3.004 3.000 3.0∗∗ 3.000𝛽𝑑 3.001 3.000 3.000 3.000 3.0∗∗ 3.000
∗Mean number of objective function evaluations 9031 10005 2012 3207 4030 2454
∗Mean number of LSF∗ evaluations 15630 16028 12121 4580 1775 29640
Efficiency 4.24 4.48 2.43 1.34 1.00 5.53
Quality 1.155 1.332 1.001 1.003 1.001 1.000𝐴1 (𝑚2) 7.2529 × 10−3 8.3642 × 10−3 7.4611 × 10−3 7.4563 × 10−3 7.4580 × 10−3 7.4782 × 10−3𝐴2 (𝑚2) 5.1958 × 10−3 1.5359 × 10−3 4.9060 × 10−3 5.5108 × 10−3 4.9032 × 10−3 4.8697 × 10−3𝐴3 (𝑚2) 1.1237 × 10−2 1.0675 × 10−2 9.9456 × 10−3 9.3988 × 10−3 9.9483 × 10−3 1.0026 × 10−2𝐴4 (𝑚2) 1.2833 × 10−3 5.0408 × 10−3 7.8759 × 10−6 7.4939 × 10−6 6.4516 × 10−6 6.9707 × 10−6𝐴5 (𝑚2) 3.5329 × 10−3 3.7096 × 10−3 6.5592 × 10−6 2.0610 × 10−5 6.4516 × 10−6 6.4516 × 10−6𝐴6 (𝑚2) 3.0688 × 10−3 8.5805 × 10−3 6.4516 × 10−6 7.6501 × 10−6 6.4516 × 10−6 6.9707 × 10−6𝐴7 (𝑚2) 6.1501 × 10−3 5.6797 × 10−3 6.9485 × 10−3 6.6513 × 10−3 6.9548 × 10−3 6.9358 × 10−3𝐴8 (𝑚2) 4.5216 × 10−3 5.9744 × 10−3 5.3252 × 10−3 5.2952 × 10−3 5.3354 × 10−3 5.2899 × 10−3𝐴9 (𝑚2) 9.8911 × 10−4 5.9404 × 10−3 6.4516 × 10−6 7.8343 × 10−6 6.4516 × 10−6 6.9707 × 10−6𝐴10 (𝑚2) 6.4405 × 10−3 2.1937 × 10−3 6.9428 × 10−3 7.2971 × 10−3 6.9419 × 10−3 6.9180 × 10−3
∗Mean number of LSF evaluations: the mean number of times the probabilistic constraints are evaluated in order to get the reliability index (20 independent
runs).
∗∗It is assumed that the constraints become active. The original paper did not mention this value.
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Figure 5: 37 bar truss problem.

Table 3: Structural properties and constraints for the 37 bar Pratt
truss.

Parameter Value Unit𝐸 (modulus of elasticity) 2.1 × 1011 Pa𝐹 (applied load) 50 N𝜌 (material density) 7800 kg/m3

Natural frequency
constraints

𝑓1 ≥ 20, 𝑓2 ≥ 40 and𝑓3 ≥ 60 Hz

Material strength 3.0 × 108 Pa
Displacement limit 5.0 × 10−4 m

The probabilistic problem is then adapted from this
deterministic example, described in [27, 28], following the
same geometry and deterministic frequency constraint. Dis-
placement and stress constraints as well as concentrated loads
are added to the original problem in order to result in extra
probabilistic constraints for stress and displacements.

In this problem, the first three natural frequencies(𝑓1, 𝑓2 and 𝑓3) are of interest and a reliability constraint is
considered in the probabilistic problem. Therefore, the goal
of the optimization problem is to minimize the mass of the
truss taking into account constraints for stress, displacement,
and natural frequency reliability indexes. All remaining sym-
metric member areas are considered random variables with
lognormal distribution with coefficient of variation of 0.01.
Therefore, in this problem, the mean value of cross-sectional
areas is either of the design variables for the optimization
problem as random variables for the probabilistic problem
as well. The modulus of elasticity is considered following a
normal distribution withmean 2.1 × 1011 Pa and coefficient of
variation of 0.05 (as reported in [29]). The areas of the lower
chord bars are equal to 4× 10−3m2 and assumeddeterministic
and they are not design variables. The physical properties
and the constraints are shown in Table 3. The violation of
any of these constraints will represent a failure mode. In this
particular model, as previously described, three reliability
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Table 4: Final objective function, constraints, and parameters by optimization method (objective function values do not take into account
added masses).

Parameters GA FMA DE PSO HGPS
Best mass value (kg) 448.85 413.29 394.75 397.10 374.187𝛽𝑓 3.084 3.803 3.65 3.038 3.275𝛽𝑠 10.00 10.00 10.0 10.00 10.00𝛽𝑑 10.00 10.00 10.0 10.00 10.00
Mean number of objective function evaluations 1982 3084 10007 4003 1839
∗Mean number of LSF evaluations 767715 392793 1443497 591936 805459
Efficiency 1.94 1.0 3.67 1.51 2.00
Quality 1.20 1.10 1.05 1.06 1.00
Maximum absolute member stress (Pa) 7.79 × 105 1.26 × 106 1.11 × 106 2.11 × 106 1.13 × 106
Maximum absolute node displacement (m) 6.09 × 10−5 6.32 × 10−5 5.37 × 10−5 6.79 × 10−5 6.58 × 10−5𝑓1 (Hz) 21.76 21.01 23.27 21.78 21.85𝑓2 (Hz) 53.64 46.53 44.33 48.84 43.82𝑓3 (Hz) 70.69 66.99 66.30 64.93 65.63
∗Mean number of LSF evaluations: the mean number of times the probabilistic constraints are evaluated in order to get the reliability index (20 independent
runs).

indexes are considered as extra constraints for the problem:𝛽𝑓, 𝛽𝑠, and 𝛽𝑑. They represent the reliability for frequency,
stress, and displacement constraints.

Equation (21), in this case, can represent the RBDO
mathematical model, where 𝛽𝐿𝑓 = 3.0, 𝛽𝐿𝑠 = 2.0, and 𝛽𝐿𝑑 =2.0 represent the target reliability indexes for frequency,
stress, and displacement constraints:

Minimize 𝑓 (A) = 𝜌 𝑛∑
𝑖=1

𝐴 𝑖𝐿 𝑖
Subject to 𝑓1 ≥ 20Hz,

𝑓2 ≥ 40Hz,
𝑓3 ≥ 60Hz𝜎𝑖 ≤ 3.0 × 108 Pa 𝑖 = 1, . . . , 𝑛𝑑𝑗 ≤ 5.0 × 10−4m 𝑗 = 1, . . . , 𝑛𝑛
𝛽𝑓 (u, p) ≥ 𝛽𝐿𝑓
𝛽𝑠 (u, p) ≥ 𝛽𝐿𝑠𝛽𝑑 (u, p) ≥ 𝛽𝐿𝑑
p𝐿 ≤ p ≤ p𝑈,

(21)

where p represents the vector of design variables (five 𝑦
coordinates and 14 member areas) and u represents the
random variable vector (14 member areas and the Young
modulus). 𝑛𝑛 is the total number of nodes.

Table 4 presents a summary of the results and Table 5
shows the obtained values for each design variable for the
tested optimization algorithms. For the 20 independent runs,
the HGPS presented the best mass value of 374.187 kg, mean
value of 396.680 kg (median 398.13 kg), worst mass value of
405.097 kg, and a coefficient of variation of 0.037.
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Figure 6: Superimposed geometries obtained with the optimization
methods.

Figure 6 presents the resulting superimposed geometric
configurations obtained with the optimization methods.
HGPS in this case give the best mass value (quality) although
with not so good efficiency as the PSO algorithm. The
reliability for displacements and stress constraints resulted in
high values (𝛽 = 10 means negligible failure of probability),
indicating that the frequency constraint, in this case, is a
dominant mode of failure that prevails over the two other
constraints. As expected, the absolute value for displacement,
stress, and frequencies in the optimum designs are far below
the corresponding limits.

5.3. Case 3: 25 Bar Space Truss Problem. In this example, the
mass minimization of a 25 bar truss is performed, subject to
constraints in the reliability indexes for stress, displacement,
and first natural frequency. The deterministic optimization
problem was previously presented by [30] where the mass
minimization was performed not taking into account uncer-
tainties; see Figure 7. The problem is described as a discrete
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Table 5: Design variables for each optimization method.

Variable GA FMA DE PSO HGPS𝑌3, 𝑌19 (m) 2.16 0.75 1.08 2.10 0.91𝑌5, 𝑌17 (m) 2.25 1.48 1.26 2.69 1.18𝑌7, 𝑌15 (m) 2.37 1.70 1.60 2.64 1.48𝑌9, 𝑌13 (m) 2.11 2.33 1.80 2.75 1.60𝑌11 (m) 2.24 2.29 1.85 2.75 1.73𝐴1, 𝐴27 (m2) 3.34 × 10−4 3.08 × 10−4 4.20 × 10−4 2.78 × 10−4 3.34 × 10−4𝐴2, 𝐴26 (m2) 4.24 × 10−4 2.98 × 10−4 1.00 × 10−4 2.84 × 10−4 1.30 × 10−4𝐴3, 𝐴24 (m2) 4.33 × 10−4 1.52 × 10−4 1.66 × 10−4 1.23 × 10−4 1.18 × 10−4𝐴4, 𝐴25 (m2) 3.17 × 10−4 3.37 × 10−4 2.88 × 10−4 2.77 × 10−4 3.83 × 10−4𝐴5, 𝐴23 (m2) 3.45 × 10−4 2.57 × 10−4 1.00 × 10−4 2.07 × 10−4 1.44 × 10−4𝐴6, 𝐴21 (m2) 1.39 × 10−4 1.10 × 10−4 1.00 × 10−4 2.38 × 10−4 1.24 × 10−4𝐴7, 𝐴22 (m2) 3.44 × 10−4 3.66 × 10−4 5.00 × 10−4 2.75 × 10−4 3.25 × 10−4𝐴8, 𝐴20 (m2) 1.84 × 10−4 3.09 × 10−4 4.36 × 10−4 2.89 × 10−4 1.75 × 10−4𝐴9, 𝐴18 (m2) 3.94 × 10−4 4.01 × 10−4 2.99 × 10−4 2.70 × 10−4 1.88 × 10−4𝐴10, 𝐴19 (m2) 4.76 × 10−4 2.96 × 10−4 3.92 × 10−4 2.95 × 10−4 4.56 × 10−4𝐴11, 𝐴17 (m2) 4.41 × 10−4 4.48 × 10−4 1.00 × 10−4 2.41 × 10−4 2.11 × 10−4𝐴12, 𝐴15 (m2) 2.71 × 10−4 3.57 × 10−4 3.80 × 10−4 2.59 × 10−4 1.58 × 10−4𝐴13, 𝐴16 (m2) 4.08 × 10−4 2.16 × 10−4 5.00 × 10−4 2.78 × 10−4 3.63 × 10−4𝐴14 (m2) 2.64 × 10−4 4.20 × 10−4 1.02 × 10−4 2.63 × 10−4 1.00 × 10−4
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Figure 7: 25 bar space truss. Dimensions, numbering, and boundary conditions.

optimization problem since the member areas can vary
following a table of discrete values that ranges from 6.4516 ×10−5m2 (0.1 in2) to 2.258 × 10−3m2 (3.5 in2) by increments
of 6.4516 × 10−5m2 (0.1 in2). There are stress constraints in
all members such that a strength limit of ±2.7579 × 108 Pa

(±40 ksi) should be verified. A displacement constraint of±8.89 × 10−3m (±0.35 in) is imposed to nodes 1 and 2 in𝑥 and 𝑦 direction. The fundamental frequency should be
constrained to 𝑓1 ≥ 55Hz. Figure 7 shows the dimensions
of the 25 bar spatial truss example. The physical properties of
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the material, upper and lower limits for the design variables,
and the deterministic constraints are listed in Table 6.

In this example, eight sets of grouped bars are assumed,
resulting in eight design variables, namely, set 1, nodes 1-2; set
2, nodes 1–4, 2-3, 1–5, and 2–6; set 3, nodes 2–5, 2–4, 1–3, and
1–6; set 4, nodes 3–6 and 4-5; set 5, nodes 3-4 and 5-6; set 6,
nodes 3–10, 6-7, 4–9, and 5–8; set 7, nodes 3–8, 4–7, 6–9, and
5–10; set 8, nodes 3–7, 4–8, 5–9, and 6–10. Table 7 presents the
load direction and magnitude.The spatial truss is fixed at the
lower nodes and the loads are applied as indicated in Figure 7
(where dimension 𝑎 = 9.144m). The obtained final mass by
the deterministic optimization is 217.60 kg (479.72 lbm) with
the optimumdesign variable vector (discrete areas) as (6.4516× 10−5 1.9354 × 10−4 2.2580 × 10−3 6.4516 × 10−5 1.0322 × 10−3
5.8064 × 10−4 3.2258 × 10−4 2.2580 × 10−3)m2.

For the RBDO problem, the areas are either design
variables (deterministic) or random (probabilistic). They are
assumed uncorrelated, following a lognormal distribution
with coefficient of variation of 0.02; the elastic modulus
follows a Gaussian distribution with coefficient of variation
of 0.05. Thus, there are, in total, nine random variables. The
reliability index levels for each constraint (frequency, stress,
and displacement) are set to 𝛽𝐿𝑓 ≥ 1.5, 𝛽𝐿𝑠 ≥ 2.0, and 𝛽𝐿𝑑 ≥1.5. Therefore, the reliability-based optimization problem is
written as indicated by

Minimize 𝑓 (A) = 𝜌 𝑛∑
𝑖=1

𝐴 𝑖𝐿 𝑖
Subject to 𝑓1 ≥ 55Hz𝜎𝑖 ≤ 2.7579 × 108 Pa 𝑖 = 1, . . . , 𝑛𝑑𝑗 ≤ 8.89 × 10−3m

𝑗 = 1, 2 in 𝑥 and 𝑦 direction

𝛽𝑓 (u, p) ≥ 𝛽𝐿𝑓
𝛽𝑠 (u, p) ≥ 𝛽𝐿𝑠𝛽𝑑 (u, p) ≥ 𝛽𝐿𝑑
p𝐿 ≤ p ≤ p𝑈,

(22)

where p represents the vector of design variables (eight
discrete member areas) and u represents the random variable
vector (8 discrete member areas and the elastic modulus). p𝐿
and p𝑈 are the lower and upper limits for the design variables.𝑛𝑛 is the total number of nodes.

Table 8 presents a summary of the results and Table 9
shows the obtained design variables for each optimization
method. For the 20 independent runs, the HGPS presented
the best mass value of 253.80 kg, mean value of 255.76 kg
(median 254.01 kg), the worst mass value of 265.73 kg, and a
coefficient of variation of 0.014. Particularly in this example,
PSO and HGPS found the same close results (best quality
indexes), althoughHGPS resulted in a better efficiency index.
All reliability constraints were satisfied and the displacement
constraint presented as the most important and dominant

Table 6: Structural properties and constraints for the 25 bar space
truss.

Properties Values𝐸 (Young’s modulus) 6.895 × 1010 Pa (1 × 104 ksi)𝜌 (density) 2767.99 kg/m3 (0.1 lbm/in3)
Area lower limit 6.4516 × 10−5m2 (0.1 in2)
Area upper limit 2.258 × 10−3m2 (3.5 in2)
Material Strength 2.7579 × 108 Pa (40 ksi)
Displacement limit 8.89 × 10−3m (0.35 in)
1st natural frequency constraint 𝑓1 ≥ 55Hz

Table 7: Applied loads.

Node Load component𝐹𝑥 𝐹𝑦 𝐹𝑧
1 4448.22N

(1000 lbf)
−44482.22N
(−10000 lbf) −44482.22N

(−10000 lbf)
2 0.0N −44482.22N

(−10000 lbf) −44482.22N
(−10000 lbf)

3 2224.11 N
(500 lbf) 0.0N 0.0N

6 2668.93N
(600 lbf) 0.0N 0.0N

mode of failure. Stress and frequency constraints resulted in
high reliability indexes (negligible probability of failure).

6. Final Remarks and Conclusions

In this article, a hybridized method for RBDO is pro-
posed. It takes advantage of the main features presented
in some heuristic algorithms like PSO, GA, and gradient-
based methods, like SQP. Simple to gradually more complex
truss examples are analyzed using the proposedmethodology,
comparedwith literature examples.The best result is obtained
with the hybrid method HGPS in the analyzed examples,
albeit in the last example PSO and HGPS, presented the
same result. Moreover, it is relevant to mention that, due to
complexity of the optimization problems with uncertainties,
in most of situations, the heuristic methods solely were
not able to find the optimal design, although they resulted
in objective function with same order of magnitude. This
suggests that a different convergence criterion may be used
for each algorithm in order to avoid premature convergence.

In all problems, the resulting final mass obtained using
RBDO is larger than that obtained by deterministic optimiza-
tion; however, the corresponding reliability levels in stress,
displacements, or frequency have been met. These reliability
levels are not attained with the original deterministic opti-
mization.

Even with a large number of design variables in the
optimization analysis, all presented global search methods
were able to find feasible solutions.Theoptimizationmethods
found different optimum design variables for similar objec-
tive function. It can be argued that those design points do not
represent the best quality converged design points and may
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Table 8: Results for the optimization methods in 25 bar truss example.

Parameters GA FMA DE PSO HGPS
Best mass value (kg) 272.69 261.38 254.45 253.80 253.80𝛽𝑓 10.000 9.031 9.014 9.803 9.803𝛽𝑠 10.000 10.000 10.000 10.000 10.000𝛽𝑑 1.973 1.996 2.021 1.963 1.963
∗Mean number of objective function evaluations 3452 2002 5012 3002 1002
∗Mean number of LSF evaluations 499001 281583 185877 333634 74143
Efficiency 6.69 3.77 2.54 4.48 1.00
Quality 1.074 1.029 1.002 1.000 1.000
Maximum absolute stress (Pa) 5.2752 × 107 3.504 × 107 4.1136 × 107 3.904 × 107 3.904 × 107

Maximum absolute displacement (m) 7.992 × 10−3 7.998 × 10−3 8.882 × 10−3 7.998 × 10−3 7.998 × 10−3𝑓1 (Hz) 75.42 77.38 59.68 73.81 73.81
∗Mean number of LSF evaluations: the mean number of times the probabilistic constraints are evaluated in order to get the reliability index (20 independent
runs).

Table 9: Best design variables for tested optimization methods.

Design variable GA FMA DE PSO HGPS𝐴1 (m2) 6.45 × 10−5 1.93 × 10−4 6.45 × 10−5 6.45 × 10−5 6.45 × 10−5𝐴2 to 5 (m2) 1.29 × 10−3 7.74 × 10−4 6.45 × 10−4 5.16 × 10−4 5.16 × 10−4𝐴6 to 9 (m2) 1.80 × 10−3 2.06 × 10−3 2.25 × 10−3 2.25 × 10−3 2.25 × 10−3𝐴10 and 11 (m2) 6.45 × 10−4 1.29 × 10−4 6.45 × 10−5 6.45 × 10−5 6.45 × 10−5𝐴12 and 13 (m2) 2.58 × 10−4 3.87 × 10−4 7.74 × 10−4 1.16 × 10−3 1.16 × 10−3𝐴14 and 17 (m2) 9.03 × 10−4 7.09 × 10−4 7.09 × 10−4 7.09 × 10−4 7.09 × 10−4𝐴18 and 21 (m2) 6.45 × 10−4 9.03 × 10−4 6.45 × 10−4 5.80 × 10−4 5.80 × 10−4𝐴22 and 25 (m2) 2.19 × 10−3 2.19 × 10−3 2.25 × 10−3 2.26 × 10−3 2.26 × 10−3

represent a local minimum; however, for nonexplicit limit
state function problems, this can only be guaranteed checking
the results with different algorithms.

The hybrid method HGPS, when compared to the GA
in the conventional form, presented a lower mass value
(quality in result) with a low number of function evaluations
(efficiency in the optimization process). The better efficiency
was attained with the gradient- basedmethods at the expense
of worse quality.

The proposed final problem, which cannot be handled
by single loop RBDO algorithms (design variables are also
randomvariables), highlights the importance of the proposed
approach in cases where the discrete design variables are
also random variables. Some new improvements in the
HGPS method are being planned in future research like the
parallelization of the code. More challenging problems are
foreseen to test the proposed method.
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