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By replacing a series resistor in active band pass filter (BPF) with an improved memristive diode bridge emulator, a third-order
memristive BPF chaotic circuit is presented. The improved memristive diode bridge emulator without grounded limitation is
equivalently achieved by a diode bridge cascadedwith only one inductor, whose fingerprints of pinchedhysteresis loop are examined
by numerical simulations and hardware experiments. The memristive BPF chaotic circuit has only one zero unstable saddle point
but causes complex dynamical behaviors including period, chaos, period doubling bifurcation, and coexisting bifurcation modes.
Specially, it should be highly significant that two kinds of bifurcation routes are displayed under different initial conditions and the
coexistence of three different topological attractors is found in a narrow parameter range. Moreover, hardware circuit using discrete
components is fabricated and experimental measurements are performed, upon which the numerical simulations are validated.
Notably, the proposed memristive BPF chaotic circuit is only third-order and has simple topological structure.

1. Introduction

Due to the unique nonlinear characteristics ofmemristors [1],
an explosive growth study of memristor based circuits has
been boosted up in the past years [2–16]. Unfortunately,
induced by technical handicaps in fabricating nanoscale
memristor, the commercial memristor is not expected to be
available in the near future. Thus, various kinds of physically
implementable equivalent circuits which can manifest the
three fingerprints of memristors [17] have attracted much
attention [2, 6–18]. Popularly, the circuits implemented by
operational amplifiers and analog multipliers [7–12] as well
as the circuits consisting of diode bridge cascaded with RC
[13–15], LC [16], andRLC [18] filters have been used for exper-
imental measurements inmemristor based circuits.Themost
significant feature of thememristive diode bridge emulators is
ungrounded limitation, whichmakes it as a serial expandable
and flexible element in designing memristor based circuit
[19]. Focusing on simplifying the mathematical model, an
improved memristive diode bridge emulator achieved by
a diode bridge cascaded with only one inductor will be
illustrated in this paper.The newly proposedmemristor emu-
lator has simpler structures but more practical application in
memristor based circuit.

Numerous memristive dynamical circuits have been
reported by introducing memristor into classical linear or
nonlinear dynamical circuits [4, 5, 9, 13, 14, 16, 20–23], from
which complex dynamical behaviors, such as chaotic behav-
iors [4, 5, 20, 21], coexisting multiple attractors [9, 13], self-
excited and hidden attractors [14, 22, 23], and chaotic and
periodic bursting [16], have been revealed and analyzed by
theoretical analyses, numerical simulations, and experimen-
talmeasurements. It is worth noting that the stability depends
on thememristor initial condition in amemristive dynamical
circuit, leading to the occurrence of coexisting multiple
attractors [9, 13]. The coexistence of different kinds of attrac-
tors, called multistability, reveals a rich diversity of stable
states in nonlinear dynamical systems [12, 24–32] and makes
the system offer great flexibility, which can be used for image
processing or taken as an additional source of randomness
used for many information engineering applications [32–37].
Therefore, it is very attractive to seek for a simple memristive
chaotic circuit that has the striking dynamical behavior of
coexisting multiple attractors.

In [13, 19], two memristive Chua’s circuits are proposed
by bridging ungrounded limitation generalized memristors.
Meanwhile, a simplest third-order memristive BPF chaotic
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Figure 1: Circuit scheme of the memristor emulator and its chaotic circuit. (a) Improved memristive diode bridge emulator; (b) third-order
memristive BPF chaotic circuit.

circuit is realized by replacing the parallel resistor in classical
BPF with a grounded limitation memristor in [38]. Inspired
by the advantages of those methodologies in building chaotic
circuit, a novel and simple memristive BPF chaotic circuit
with complex dynamical behaviors is constructed from a
second-order active BPF by replacing a series resistor with
our proposed memristive diode bridge emulator. The newly
proposed circuit has extremely simple circuit realization, and
the dimension is only three. It is significant that the mem-
ristive BPF chaotic circuit has only one determined unstable
saddle point and can generate complex dynamical behaviors.
Particularly, the new finding of coexisting multiple attractors
in such a simple memristive BPF circuit has not been
previously reported.

The rest of the paper is organized as follows. In Section 2,
the realization and mathematical model of the improved
memristive diode bridge emulator is given and its finger-
prints by adding sinusoidal voltage stimuli are illustrated.
The schematic structure of the memristive BPF circuit and
dimensionless state equations are introduced, and stability of
the equilibrium point is investigated in Section 3. Complex
dynamical behaviors are revealed numerically in Section 4.
Coexisting multiple attractors are performed in Section 5.
Some hardware experiments are performed to validate the
correctness of the theoretical analyses and numerical sim-
ulations in Section 6. Finally, the conclusions are drawn in
Section 7.

2. Improved Memristive Diode
Bridge Emulator

Different from the diode bridge-based memristor emulators
reported in [16, 18, 39], an improvedmemristive diode bridge
emulator with much simpler circuit realization is designed as
shown in Figure 1(a), where V and 𝑖 represent the voltage and
current at the input port 11󸀠, respectively, and V𝐿 and 𝑖𝐿 stand
for the voltage and current across the inductor 𝐿.

Consider that the diode bridge is implemented by four
unified diodes, where V𝐷𝑘 and 𝑖𝑘 represent the voltage across

and the current through the diode 𝐷𝑘 (𝑘 = 1, 2, 3, 4), respec-
tively. The voltage and current relation for 𝐷𝑘 can be written
as

𝑖𝑘 = 𝐼𝑆 (𝑒2𝜌V𝐷𝑘 − 1) , (1)

where 𝜌 = 1/(2𝑛𝑉𝑇) and 𝐼𝑆, 𝑛, and 𝑉𝑇 are the model param-
eters of 𝐷𝑘, which stand for the reverse saturation current,
emission coefficient, and thermal voltage of the diode, respec-
tively.

According to [39], there are two relations of V𝐷1 = V𝐷3
and V𝐷2 = V𝐷4. By applyingKirchhoff ’s laws, two node current
equations are obtained as

𝑖 = 𝑖1 − 𝑖2, (2)

𝑖𝐿 = 𝑖1 + 𝑖2 (3)

and two loop voltage equations are yielded as

V𝐷2 = V𝐷1 − V, (4)

2V𝐷1 = V − V𝐿. (5)

By substituting (1) and (3) into (4), the voltage across 𝐷1
can be solved as

V𝐷1 = 1
2𝜌 ln[(2𝐼𝑆 + 𝑖𝐿) exp (𝜌V)

2𝐼𝑆 cosh (𝜌V) ] . (6)

Then, by combining (1), (2), and (4) with (6), the voltage and
current relation at the input port 11󸀠 can be expressed as

𝑖 = (2𝐼𝑆 + 𝑖𝐿) tanh (𝜌V) . (7)

By leading (6) into (5) and using V𝐿 = 𝐿d𝑖𝐿/d𝑡, the state equa-
tion of inductor 𝐿 is modeled as

𝐿d𝑖𝐿
d𝑡 = V − 1𝜌 ln[(2𝐼𝑆 + 𝑖𝐿) exp (𝜌V)

2𝐼𝑆 cosh (𝜌V) ] . (8)

Themathematical models (7) and (8) are used to characterize
the voltage and current relation of the improved memristive
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Figure 2: Pinched hysteresis loops of the improvedmemristive diode bridge emulator in the v-i plane. (a)𝑉𝑚 = 4Vwith different frequencies;
(b) 𝑓 = 200Hz with different amplitudes.
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Figure 3: Experimentally measured pinched hysteresis loops of the improved memristive diode bridge emulator. (a) 𝑉𝑚 = 4V with different
stimulus frequencies; (b) 𝑓 = 200Hz with different stimulus amplitudes.

diode bridge emulator, which accords with the defining
equations of the class of generalized memristors [4] and
it can be implemented by inexpensive off-the-shelf discrete
components easily.

In order to illustrate the frequency-dependent pinched
hysteresis loops of the improved memristive diode bridge
emulator, the circuit element parameters 𝐿 = 10mHand four
1N4148 diodes with 𝐼𝑆 = 5.84 nA, 𝑛 = 1.94, and 𝑉𝑇 = 25mV
are selected, and a sinusoidal voltage source is considered as
V = 𝑉𝑚 sin(2𝜋𝑓𝑡), where𝑉𝑚 and𝑓 are the stimulus amplitude
and frequency, respectively.

When 𝑉𝑚 = 4V is fixed and 𝑓 is set to 200Hz, to 1 kHz,
and to 3 kHz, respectively, the v-i curves are displayed in
Figure 2(a), fromwhich it can be seen that the hysteresis loops
are pinched at the origin, and the lobe area decreases with the
increase of the frequency, while when f = 200Hz is fixed and𝑉𝑚 is set to 3V, to 4V, and to 5V, respectively, the v-i curves
are plotted in Figure 2(b), which explains that the pinched
hysteresis loop is regardless of the stimulus amplitude.
The simulation results in Figure 2 show that the improved

memristive diode bridge emulator can exhibit three finger-
prints for identifying memristors [17].

Also, a hardware level on a breadboard is fabricated and
Tektronix AFG 3102C is used to generate a sinusoidal voltage.
The experimental results, as shown in Figure 3, are captured
by Tektronix TDS 3034C to validate three fingerprints of
the memristor emulator, from which the results from hard-
ware circuit are unanimous to those revealed by numerical
simulations. It is emphasized that the minor deviations are
caused by small difference between numerical simulations
and experimentalmeasurements of the inductor𝐿 parameter.

3. Third-Order Memristive BPF
Chaotic Circuit

A second-order active BPF circuit has a simple circuit
topology, which contains only one amplifier, two capacitors,
and four resistors [40]. In this paper, by replacing a series
resistor with the proposedmemristive diode bridge emulator,
a third-order memristive BPF circuit is proposed, as shown
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in Figure 1(b). Therefore, the proposed memristive chaotic
circuit is much simpler and more intuitive in practical
realization than other memristive chaotic circuits reported in
[13–16].

3.1. Mathematical Model. The proposed circuit has three
dynamic elements of capacitor𝐶1, capacitor𝐶2, andmemris-
tor𝐺𝑀, respectively, corresponding to three state variables of
V1, V2, and 𝑖𝐿. According to Kirchhoff ’s circuit laws and con-
stitutive relationships of basic circuit elements, a state equa-
tion set is written as

𝐶1 dV1d𝑡 = (2𝐼𝑆 + 𝑖𝐿) tanh (𝜌V) ,
𝐶2 dV2d𝑡 = 𝑘V2 − (𝑘 + 1) V1𝑅 − (2𝐼𝑆 + 𝑖𝐿) tanh (𝜌V) ,
𝐿d𝑖𝐿
d𝑡 = V − 1

𝜌 ln[(2𝐼𝑆 + 𝑖𝐿) exp (𝜌V)
2𝐼𝑆 cosh (𝜌V) ] ,

(9)

where V = V2 − V1 and 𝑘 = 𝑅𝑖/𝑅𝑓.
Denote 𝑥 = 𝜌V1,

𝑦 = 𝜌V2,
𝑧 = 𝜌𝑅𝑖𝐿,

𝐶1 = 𝐶2 = 𝐶,
𝜏 = 𝑡𝑅𝐶,
𝑎 = 𝑅2𝐶𝐿 ,
𝑐 = 2𝜌𝑅𝐼𝑆,
𝑢̇ = d𝑢

d𝜏 , (𝑢 ≡ 𝑥, 𝑦, 𝑧) .

(10)

Equation (9) can be rewritten in a dimensionless form as
𝑥̇ = (𝑐 + 𝑧) tanh (𝑦 − 𝑥) ,
̇𝑦 = 𝑘𝑦 − (𝑘 + 1) 𝑥 − (𝑐 + 𝑧) tanh (𝑦 − 𝑥) ,

𝑧̇ = 𝑎 ln [𝑐 cosh (𝑦 − 𝑥)] − 𝑎 ln (𝑐 + 𝑧) .
(11)

Thus the parameter amount of the dimensionless equation
(11) will decrease to three.

The circuit parameters shown in Figure 1 are selected as𝐶1 = 𝐶2 = 20 nF, 𝐿 = 10mH, 𝑅 = 50Ω, 𝑅𝑖 = 50Ω, 𝑅𝑓 = 1 kΩ,
and four 1N4148 diodes with 𝐼𝑆 = 5.84 nA, 𝑛 = 1.94, 𝑉𝑇 =
25mV, which are used as typical circuit parameters. There-
fore, the normalized parameters are calculated by (10) as

𝑎 = 5 × 10−3,
𝑐 = 6.02 × 10−6,
𝑘 = 0.05.

(12)

In our following work, the parameters given in (12) will be
taken as typical system parameters to reveal dynamical
behaviors in the third-order memristive BPF circuit.

3.2. Stability Analysis. Obviously, system (11) has only one
zero equilibrium point S(0, 0, 0). By linearizing (11) around
the equilibrium point S and keeping 𝑘 = 0.05 unchanged, the
Jacobian matrix is obtained as

J = [[[[
[

−𝑐 𝑐 0
𝑐 − 1.05 0.05 − 𝑐 0

0 0 −𝑎𝑐
]]]]
]

. (13)

Thus, the eigenvalues at equilibrium point S are yielded by
solving the following characteristic equation:

det (1𝜆 − J) = (𝜆 + 𝑎
𝑐 ) [𝜆2 + (2𝑐 − 0.05) 𝜆 + 𝑐] = 0. (14)

Correspondingly, the eigenvalues at equilibrium point S are
expressed as

𝜆1,2 = 0.025 − 𝑐 ± √(𝑐 − 0.025)2 − 𝑐,
𝜆3 = −𝑎

𝑐 . (15)

It is notable that the values of𝜆1,2 and the symbol of𝜆3 at S are
considered to remain unchangedwith c= 6.02× 10–6 and pos-
itive 𝑎. For the typical system parameters, the eigenvalues at S
are calculated as

𝜆1 = 0.0499,
𝜆2 = 0.0001,
𝜆3 = –830.5648

(16)

which implies that S is always an unstable saddle.

3.3. Typical Chaotic Attractor. For the typical system parame-
ters of (12) and the initial conditions of (0, 0.01, 0), phase por-
traits of the typical chaotic attractor in three different planes
are numerically simulated by solving system (11) and shown
in Figures 4(a), 4(b), and 4(c), respectively, and Poincaré
mapping on 𝑦 = 0 section is depicted in Figure 4(d). It is
noted that the proposed third-order memristive BPF circuit
can generate chaos indeed.

4. Dynamical Behaviors in Memristive BPF
Chaotic Circuit

Consider that the parameter 𝑎 increases from 0.001 to 0.1 and
the other parameters are selected as given in (12). Bifurcation
diagrams of the system variable 𝑥 and first two Lyapunov
exponents calculated by Wolf ’s method [41] are presented
as shown in Figure 5. Two sets of initial states, positive
initial conditions (0, 0.01, 0) colored in red and negative
initial conditions (0, −0.01, 0) colored in blue, are utilized
in Figure 5(a). From Figure 5, striking dynamical behaviors
including period, chaos, period doubling bifurcation, and
coexisting bifurcation modes are observed. Different transi-
tions to chaotic states, such as forward period doubling and
crisis scenario are also discovered. The dynamical behaviors
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Figure 4: Numerically simulated chaotic attractor under typical system parameters. (a) Phase portrait in the 𝑦-𝑥 plane; (b) phase portrait in
the 𝑦-𝑧 plane; (c) phase portrait in the 𝑥-𝑧 plane; (d) Poincaré mapping in the 𝑥-𝑧 plane.
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Figure 5: Dynamics with 𝑎 increasing in the memristive BPF chaotic circuit. (a) Bifurcation diagrams of x; (b) first two Lyapunov exponents.

determined by the Lyapunov exponents are consistent well
with those revealed by the bifurcation diagrams.Note that the
bifurcation diagrams in the narrow region of 0.0145 < 𝑎 <
0.017 have imperfect bifurcation structures, that is, without
bifurcation route from period to chaos.Therefore, there must
exist an attractive basin with special initial conditions to be
located [9]. Under these special initial conditions, a period

doubling bifurcation route can be found in system (11), which
leads to the coexistence of multiple attractors.

When 0.001 ≤ 𝑎 ≤ 0.004, system (11) shows periodic
behavior, while when 0.004 < 𝑎 ≤ 0.015, the first Lyapunov
exponent is zero or positive alternately, which indicates the
occurrences of periodic and chaotic behaviors. With the
intervals of 𝑎 in 0.015 < 𝑎 ≤ 0.025 and 0.056 ≤ 𝑎 ≤ 0.096, the



6 Mathematical Problems in Engineering

−15 0 15 30−30
y

−6

−3

0

3

6

x

(a)

−15 0 15 30−30
y

−8

−4

0

4

8

x

(b)

−15 0 15 30−30
y

−8

−4

0

4

8

x

(c)

−15 0 15 30−30
y

−8

−4

0

4

8

x

(d)

−15 0 15 30−30
y

−8

−4

0

4

8

x

(e)

20100 30−30 −20 −10
y

−8

−4

0

4

8

x

(f)

Figure 6: Numerically simulated phase portraits with different 𝑎 in the 𝑦-𝑥 plane. (a) Period-1 limit cycle at a = 0.014; (b) coexisting period-1
limit cycles at a = 0.018; (c) coexisting period-2 limit cycles at a = 0.022; (d) coexisting chaotic attractors at a = 0.025; (e) chaotic attractor at
a = 0.028; (f) period-3 limit cycle at a = 0.031.

occurrences of period doubling bifurcation, reverse period
doubling, and coexisting bifurcation modes are discovered.
In 0.025 < 𝑎 < 0.056, system (11) locates in the region of chaos
with a larger periodic windows near 𝑎 = 0.03.

For different values of 𝑎, phase portraits of system (11)
in the 𝑦-𝑥 plane are numerically simulated, as shown in
Figure 6, where the initial conditions of the red and blue

trajectories are the same as those used in Figure 5(a). These
results just emulate the dynamical behaviors of period,
chaos, period doubling bifurcation, and coexisting bifurca-
tion modes emerging from system (11). Note that the chaotic
attractor in Figure 6(e) is spiral structure, similar to that
revealed in the delay system [42].
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5. Multiple Attractors Depending on
the Initial Conditions

In this section, the special phenomenon of coexisting mul-
tiple attractors in system (11) is mainly concerned. The
bifurcation diagrams of 𝑥 and Lyapunov exponents in the
region of 0.0145 ≤ a ≤ 0.017 under different initial conditions
are presented in Figure 7 to highlight the phenomenon of
multiple attractors. The initial conditions are specified as(0, ±0.01, 0) and (0.01, ±0.01, 0) and the color settings are
marked in Figure 7(a), respectively. Note that there exists
different bifurcation route in concerned parameter region for
different initial conditions, which leads to the existence of
multiple attractors.

In Figure 7(a), the narrow parameter range of 𝑎 can be
divided into four different regions of I, II, III, and IV. In
region I, two kinds of coexisting attractors, including chaotic
attractor and limit cycle, are revealed. Coexisting limit cycles
with different periods are given in region III, while, in regions
II and IV, coexisting twin limit cycles and limit cycle are

observed. Within two regions, phase portraits of coexisting
multiple attractor with different topological structures are
plotted in Figure 8.

6. Experimental Verifications

A hardware level on a breadboard is fabricated to validate the
complex dynamics of the proposed memristive BPF chaotic
circuit. The experimental prototype for the memristive BPF
chaotic circuit is photographed and shown in Figure 9, where
the passive elements of precision potentiometer and mono-
lithic ceramic capacitor and manually winding inductor as
well as the active devices of operational amplifier AD711KN
with ±15 V DC power supplies are chosen in our experiment.
Note that two auxiliary gadget circuits are hired in exper-
imental measurements to obtain the terminal voltages of
capacitors 𝐶1 and 𝐶2. Additionally, the experimental results
are captured by a Tektronix TDS 3034C digital oscilloscope
in 𝑋𝑌 mode.

Phase portraits in different planes under typical circuit
parameters are easily observed, as shown in Figure 10. For



8 Mathematical Problems in Engineering

(a)

R

Improved

generalized

memristor

C1

C2

Rf

Ri

(b)

Figure 9: Photograph of the experimental prototype for the memristive BPF chaotic circuit: (a) is a global graph of digital oscilloscope
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Figure 11: Experimentally measured phase portraits in the V2-V1 plane with different 𝐶1 and 𝐶2, where 𝑅 = 50Ω, 𝑅𝑖 = 50Ω, 𝑅𝑓 = 1 kΩ, and𝐿 = 10mH. (a) Period-1 limit cycle at 𝐶1 = 𝐶2 = 56 nF; (b) coexisting period-1 limit cycles at 𝐶1 = 𝐶2 = 72 nF; (c) coexisting period-2 limit
cycles at 𝐶1 = 𝐶2 = 94 nF; (d) coexisting chaotic attractors at 𝐶1 = 𝐶2 = 105 nF; (e) chaotic attractor at 𝐶1 = 𝐶2 = 115 nF; (f) period-3 limit
cycle at 𝐶1 = 𝐶2 = 126 nF.
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convenience, the two capacitors 𝐶1 and 𝐶2 are adjusted
to meet the variation of dimensionless parameter 𝑎 in our
experimental measurements. When the two capacitors 𝐶1
and 𝐶2 turned as six different values, phase portraits in the
V2-V1 plane are measured, as shown in Figure 11, where the
phase portraits of coexisting attractors in Figures 11(b)–11(d)
are captured separately and handed with after-treatment. It
is emphasized that the desired different initial capacitor volt-
ages and inductor current are difficult to assign in hardware
circuit, which are randomly sensed through turning on the
hardware circuit power supplies again [9, 13]. Ignoring
the minor deviations caused by parasitic parameters, the
experimental results shown in Figures 10 and 11 match well
with the results of numerical simulations in Figures 4 and 6.

7. Conclusion

In this paper, a third-order memristive BPF chaotic circuit
is presented, which is constructed by replacing a resistor in
second-order active BPF with an improvedmemristive diode
bridge emulator. Numerical simulations of the mathematical
model and the corresponding hardware experiments are
performed, which show that the memristive BPF chaotic
circuit has only one zero unstable saddle and generates com-
plex dynamical behaviors of period, chaos, period doubling
bifurcation, and coexisting bifurcation modes. The most sig-
nificant feature of the proposed memristive chaotic circuit is
that the stability depends on the initial conditions of dynamic
elements, thereby leading to the occurrence of coexisting
multiple attractors. Besides, the proposedmemristor is much
simpler in practical circuit realization and the constructing
memristive BPF chaotic circuit is realized with less discrete
components.
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