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Efficient recommendation algorithms are fundamental to solve the problem of information overload in modern society. In physical
dynamics, mass diffusion is a powerful tool to alleviate the long-standing problems of recommendation systems. However,
popularity bias and redundant similarity have not been adequately studied in the literature, which are essentially caused by excessive
diffusion and will lead to similarity estimation deviation and recommendation performance degradation. In this paper, we penalize
the popular objects by appropriately dividing the popularity of objects and then leverage the second-order similarity to suppress
excessive diffusion. Evaluation on three real benchmark datasets (MovieLens, Amazon, and RYM) by 10-fold cross-validation
demonstrates that our method outperforms the mainstream baselines in accuracy, diversity, and novelty.

1. Introduction

With the rapid development of Internet technology and the
explosion of information, information overload is increas-
ingly exacerbated and can not be ignored [1]. That massive
data makes it difficult for people to obtain the most rele-
vant information promptly has turned into a hindrance to
the development of Internet technology [2]. Personalized
recommendation [3–5] is fundamental to solve the problem
of information overload which adopts previous interactions
records to extract users’ interests for making recommenda-
tions. Despite the fact that vast amount of work has been done
[5, 6], it is still far from enough to satisfy the increasing needs
of commodity information service [7–10].

Due to the urgent demands of the E-economy, various
recommendation algorithms have been proposed: content-
based (CB) approach [10] captures user’s preferences to
recommend similar objects, but it does not apply to audio,
image, or video information; spectral analysis (SA) [4] is not
suitable for huge-size systems because of high computational
complexity; collaborative filtering (CF) [11, 12] is based on
similarity and consequently suffers from a popularity bias
problem; network-based (NB) approach [13–15] constructs a
network based on the relationships between the users and

the objects and then analyzes the network to recommend
for users but there exists the “cold-start” problem. In this
paper, motivated by mass diffusion [13, 16–18] we focus on
recommendation methods that directly build on a network
representation of the input data. This elementary approach
has been modified and generalized many times since then
in order to improve the accuracy and diversity of the
recommendations [19].

In this paper, the problem widely existing in mass
diffusion-based recommendation algorithms is raised as
“excessive diffusion” (defined in Section 2) and we propose a
novel algorithm to relieve it. Popularity bias [19] and redun-
dant similarity [20] can both be attributed to excessive diffu-
sion which will definitely lead to overestimated similarity and
depress recommendation performance. With the motivation
of improving the recommendation performance, in this
paper, we firstly penalize the weight of popular objects and
consider the heterogeneity of users’ degrees simultaneously
to restrain popularity bias and then we leverage the second-
order similarity to further eliminate redundant similarities.
Extensive experiments on three real datasets (MovieLens,
Amazon, and RYM) demonstrate the effectiveness of the
proposed algorithm in improving recommendation accuracy,
diversity, and novelty thus applicable in practice.
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2. Related Work

Theoretical physics has provided us with some useful tools
to improve the recommendation performance, such as mass
diffusion (MD) [16–18] and heat conduction (HC) [21, 22].
Network-Based Inference (NBI) [13] is a classical recommen-
dation algorithm based on mimicking the mass diffusion
resource-allocation process between objects via neighboring
users, which is biased towards popular objects. There are a
lot of variants of it: Heterogenous Network-Based Inference
(HNBI) [16] initiates the resource distribution heteroge-
neously; Redundant Eliminated Network-Based Inference
(RENBI) [23] eliminates redundant correlations by consid-
ering high order correlations between objects; Corrected
Similarity-based Inference (CSI) [24] combines the forward
and backward diffusion to correct similarity estimation
deviation and so forth. HC [21] imitates the process of heat
conduction, which achieves high diversity but low accuracy.
Combining theMD andHC processes is an intuitive idea and
there are many hybrid algorithms that have been developed
to decrease the NBI’s bias towards popular objects, like
hybrid heat-spreading and probabilistic-spreading (HHP)
[25], balanced diffusion (BD) [26], preferential diffusion (PD)
[27], similarity-preferential hybrid processes (SPHY) [28],
and so on [19, 23].

2.1. The Problem of Excessive Diffusion. The essential point
that hinders the improvement of recommendation perfor-
mances lies in the bias on some objects. Putting it in the
diffusion paradigm, excessive resources are spread to them.
That is why we call it excessive diffusion. Although there
have been many successful improvements, excessive diffu-
sion is ubiquitous in realistic recommendation systems. The
appearance it takes on is mainly manifested in two aspects:
on the one hand, the resources diffusion is excessive biased
towards popular objects making the popular objects more
likely to be recommended, which leads to popularity bias
and will not necessarily promote the accuracy but undermine
recommendation diversity and novelty. On the other hand,
the resources derived from the same user may be repeatedly
counted in the diffusion process; that is, excessive resources
are distributed to the object, which results in redundant
similarity. An illustration of redundant similarity is shown in
Figure 1. Excessive diffusion causes some objects to have too
many resources than they deserve which seriously depresses
the recommendation performance and should be suppressed
to improve the recommendation performance.

3. Method

Suppose that a recommendation system contains𝑚 users and𝑛 objects and each user has collected some objects. Let 𝑈 ={𝑢1, 𝑢2, . . . , 𝑢𝑚} and 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛} represent the users
and objects, respectively. According to user’s purchase history
we can construct the user-object bipartite network with𝑚+𝑛
nodes. If 𝑜𝑗 is collected by 𝑢𝑖, there is a link between 𝑢𝑖 and 𝑜𝑗,
and the corresponding element 𝑎𝑖𝑗 in the adjacent matrix𝐴 is
set as 1, otherwise 0. Mathematically speaking, the essential
task of a recommendation system is to generate a ranking list

of the target user’s uncollected objects. The top 𝐿 objects are
recommended to this user.

Network-Based Inference (NBI) [13] is based on simu-
lating the mass diffusion resource-allocation process, where
each object distributes its initial resource equally to all the
users who have collected it, and then each user equally
reallocates what he/she has received to all the objects he/she
has collected, the transfer weight 𝑤𝑖𝑗 can be defined as

𝑤𝑖𝑗 = 1
𝑘 (𝑜𝑗)

𝑚∑
𝑙=1

𝑎𝑙𝑖𝑎𝑙𝑗𝑘 (𝑢𝑙) , (1)

where 𝑘(𝑢𝑙) represents the number of objects collected by 𝑢𝑙
and 𝑘(𝑜𝑗) denotes the number of users who have collected 𝑜𝑗.

For a specific user 𝑢𝑖, we initially assign each object that
has been collected by 𝑢𝑖 one unit of resource, while others
are assigned 0; namely, 𝑓𝑗 = 𝑎𝑖𝑗, and then we redistribute
these resources via the transformation 𝑓󸀠 = 𝑊𝑓, where 𝑊
is the transfer matrix, 𝑓 = (𝑓𝑗)𝑛×1, and 𝑓󸀠 represents the
final resource distribution of objects and the top-𝐿 values of
uncollected objects will be recommended to 𝑢𝑖.

Motivated by enhancing the algorithm’s recommendation
performance, we find a suitable way to suppress excessive
diffusion. We penalize the popular objects by assigning
more resource to the low-degree objects at the last step
(a user redistributes his/her resource to his/her neighbor
object 𝑜𝑖 the amount proportional to 𝑘(𝑜𝑖)𝛽) and consider
the heterogeneity of users’ degrees simultaneously [27] to
mitigate popularity bias and strengthen the capability of
finding unpopular and niche objects. In this case, (1) is
transformed into

𝑤𝑖𝑗 = 1
𝑘 (𝑜𝑗) 𝑘 (𝑜𝑖)−𝛽

𝑚∑
𝑙=1

𝑎𝑙𝑖𝑎𝑙𝑗
𝑘 (𝑢𝑙) 𝐸 (𝑎𝑙𝑟𝑘 (𝑜𝑟)𝛽)

= 1
𝑘 (𝑜𝑗) 𝑘 (𝑜𝑖)−𝛽

𝑚∑
𝑙=1

𝑛∑
𝑟=1

𝑎𝑙𝑖𝑎𝑙𝑗
𝑎𝑙𝑟𝑘 (𝑜𝑟)𝛽 ,

(2)

where −1 ≤ 𝛽 ≤ 0 is a free parameter and 𝐸(𝑎𝑙𝑟𝑘(𝑜𝑟)𝛽)
denotes the average of 𝑘(𝑜𝑟)𝛽 over all objects that have been
collected by user 𝑢𝑙.

As we know, some resources that object obtained may be
derived from diverse users and others may stem from the
same user. Considering the example in Figure 1, from our
point of view, A and B are independent of C in the sense
that they appear in distinct transactions that have C (no
common user collecting A, B, and C together) and therefore
their adjacent relations in the graph with C are independent.
Then, the second-order similarity between A and C, derived
from the path A→B→C, should be insignificant because A
and B are independent of C. On the contrary, D and F have
strong second-order similarity in that they appear in the same
transactions that have F (D, E, and F are collected by the same
user), which leads to strong correlation between both. That
is, if there exists redundant similarity between two specific
objects, the second-order similarity of them should be strong.
Hence, we can subtract the second-order similarities in an
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Figure 1: Illustration of redundant similarities. Objects and users are marked with circles and squares, respectively. The solid line represents
the object that has been collected by user and the dotted line denotes the similarity between objects. As we can see that the resources of C
obtained through the diffusion following paths A→user 1→C and B→user 2→C are independent for there is no common user collecting A,
B, and C together in Figure 1(a), however, in Figure 1(b), the resources of F are obtained from the same user and are counted twice. If user
4 chooses F just because F has some similarities with D (or E), the similarity E-F (or D-F) is redundant when calculating the resource of F,
which degrades the recommendation accuracy.
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Figure 2: Illustrations ofNBI and SEDonuser-object bipartite networks.Objects andusers are represented by circles and squares, respectively.
In SED algorithm, we set 𝛼 = 0 and 𝛽 = −1.

appropriate way to eliminate redundant similarities to some
extent [20]. As a result, we design an improved algorithm
via suppressing excessive diffusion (SED), and the transfer
matrix is modified as

𝑊SED = 𝑊 + 𝛼𝑊2, (3)

where 𝛼 ≤ 0 is a free parameter and𝑊 = (𝑤𝑖𝑗)𝑛×𝑛 is achieved
via (2). Clearly, when 𝛼 = 0 and 𝛽 = 0, it will degenerate

to NBI. Figure 2 gives illustrations about how to calculate
transfer matrix of NBI and SED.

4. Data and Evaluation

4.1. Dataset. Three real datasets, including MovieLens
(http://www.grouplens.org/), Amazon (http://www.amazon
.com/), and RYM (http://rateyourmusic.com/), are employed
to test the algorithm’s performance. They all leverage ratings

http://www.grouplens.org/
http://www.amazon.com/
http://www.amazon.com/
http://rateyourmusic.com/
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Table 1: Primary information of the three datasets.

Data Users Objects Links Sparsity
MovieLens 943 1682 82520 6.3 × 10−1
Amazon 3604 4000 134689 9.24 × 10−3
RYM 33786 5381 613387 3.37 × 10−3

from 1 to 5 stars in MovieLens and Amazon and from 1 to
10 in RYM. A higher rating conveys stronger confidence for
user’s preference towards an object. Here we only consider
objects collected by users with ratings of at least 3 stars in
MovieLens and Amazon and no less than 5 stars in RYM for
the sake of capturing user’s preference more precisely. After
processing, detailed information of the datasets is shown
in Table 1. Before the experiments, datasets are randomly
divided into two parts: a training set 𝐸𝑇 containing 90% of
all links and a probe set 𝐸𝑃 containing the rest.
4.2. Evaluation Metrics. Accuracy is critical in evaluating the
performance of the algorithm. We introduce four indicators
to assess algorithm’s accuracy.

(1) Averaged Ranking Score (⟨𝑟⟩) [25]. ⟨𝑟⟩ evaluates the ability
of ranking users’ preferable objects in higher places than
disliked ones. For an arbitrary link 𝑙𝑖𝑗 in 𝐸𝑃, if 𝑜𝑗’s rank in𝑢𝑖’s recommendation list is rank𝑖𝑗, then the averaged ranking
score is defined as

⟨𝑟⟩ = 1󵄨󵄨󵄨󵄨𝐸𝑃󵄨󵄨󵄨󵄨 ∑𝑙𝑖𝑗∈𝐸𝑃
rank𝑖𝑗𝑛 − 𝑘 (𝑢𝑖) , (4)

where |𝐸𝑃| denotes the number of links in probe set. The
smaller ⟨𝑟⟩, the better the algorithm’s accuracy.
(2) Area under ROC Curve (AUC) [24]. AUC measures the
capacity of identifying the relevant objects from the irrelevant
objects. For 𝑁 independent experiments, each of which
compares a relevant object and an irrelevant one, if there are𝑛1 times when the relevant object has a higher score than the
irrelevant one and 𝑛2 times when the scores are equal, then

AUC = 𝑛1 + 0.5𝑛2𝑁 . (5)

Clearly, the greater the AUC, the higher the algorithm’s
accuracy.

(3) Precision (𝑃) [13]. Precision is the ratio of the number of𝑢𝑖’s hidden links (objects collected by 𝑢𝑖 and present in the
probe set) to 𝑇𝑖(𝐿), contained in the top-𝐿 recommendation
list. Therefore, the precision 𝑃 of the whole system is

𝑃 = 1𝑚
𝑚∑
𝑖=1

𝑇𝑖 (𝐿)𝐿 . (6)

(4) Recall [24]. Recall is the proportion of the number of all
hitting links and the number of links in probe set, as

Recall (𝐿) = 1󵄨󵄨󵄨󵄨𝐸𝑃󵄨󵄨󵄨󵄨
𝑚∑
𝑖=1

𝑇𝑖 (𝐿) . (7)

Diversity quantifies how different the recommended
objects are with respect to each other. It is mainly measured
from two aspects in this paper.

(1) Intrasimilarity (𝐼) [24]. 𝐼 measures the diversity of the
objects in one user’s recommendation list. For an arbitrary
user, denote the recommended objects as𝐿 𝑖 = {𝑜1, 𝑜2, . . . , 𝑜𝐿}.
Then the whole system’s intrasimilarity is written as

𝐼 = 1𝑚𝐿 (𝐿 − 1)
𝑚∑
𝑙=1

∑
𝑜𝑖 ,𝑜𝑗∈𝐸𝑃,𝑖 ̸=𝑗

𝑠𝑜𝑖𝑗, (8)

where 𝑠𝑜𝑖𝑗 is the cosine similarity between 𝑜𝑖 and 𝑜𝑗 and it is
defined as

𝑠𝑜𝑖𝑗 = 1
√𝑘 (𝑜𝑖) 𝑘 (𝑜𝑗)

𝑚∑
𝑙=1

𝑎𝑙𝑖𝑎𝑙𝑗. (9)

The lower the intrasimilarity, the higher the algorithm’s
diversity.

(2) Hamming Distance (𝐻) [29]. 𝐻 refers to how different
the recommended lists are between users. Let 𝐷𝑖𝑗 denote the
number of distinct objects in the recommendation lists of 𝑢𝑖
and 𝑢𝑗, and then the averaged hamming distance is

𝐻 = 1𝑚 (𝑚 − 1)∑𝑖 ̸=𝑗
𝐷𝑖𝑗𝐿 . (10)

The larger𝐻, the higher the algorithm’s diversity.
Novelty is closely related to personality which measures

the capacity of generating novel and niche recommendations.

(1) Average Degree (⟨𝑘⟩) [29]. Let 𝑜𝑖𝑗 signify the 𝑗th recom-
mended object for 𝑢𝑖, and then the average degree of all
recommended objects is equal to

⟨𝑘⟩ = 1𝑚𝐿
𝑚∑
𝑖=1

𝐿∑
𝑗=1

𝑘 (𝑜𝑖𝑗) . (11)

The smaller ⟨𝑘⟩, the higher the algorithm’s novelty.
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4.3. Benchmark Methods. For comparison, we briefly intro-
duce six recommendation algorithms.

(1) Collaborative Filtering (CF) [12]. CF is based onmeasuring
the similarity between users or objects. For any two users 𝑢𝑖
and 𝑢𝑗, the cosine similarity is

𝑠𝑖𝑗 = 1
√𝑘 (𝑢𝑖) 𝑘 (𝑢𝑗)

𝑛∑
𝑙=1

𝑎𝑖𝑙𝑎𝑗𝑙. (12)

Thus the extent to which the target 𝑢𝑖 will like 𝑜𝑗 is
V𝑖𝑗 = ∑

𝑚
𝑙=1,𝑙 ̸=𝑖 𝑠𝑙𝑖𝑎𝑙𝑗∑𝑚𝑙=1,𝑙 ̸=𝑖 𝑠𝑙𝑖 . (13)

(2) Network-Based Inference (NBI) [13]. NBI have been
introduced before.

(3)HeterogenousNetwork-Based Inference (HNBI) [16]. HNBI
is a modified NBI dependent on the initial resource configu-
ration with weight:

𝑤HNBI
𝑖𝑗 = [𝑘 (𝑜𝑗)]𝛽 𝑤𝑖𝑗, (14)

where 𝑤𝑖𝑗 is achieved via (1).

(4) Corrected Similarity-Based Inference (CSI) [24]. CSI
combines the forward and backward diffusion to correct
similarity estimation deviation. Then the resource transfer
weight is defined as

𝑤CSI
𝑖𝑗 = √𝑤𝑖𝑗 × 𝑤𝑗𝑖∑𝑛𝑙=1 𝑤𝑙𝑖 , (15)

where 𝑤𝑖𝑗 is achieved via (1).

(5) Redundant Eliminated Network-Based Inference (RENBI)
[20]. RENBI considers high order correlations between
objects, and then the transfer weight is

𝑊RENBI = 𝑊 + 𝛼𝑊2, (16)

where 𝛼 ≤ 0 is a free parameter and𝑊 is obtained according
to (1).

(6) Preferential Diffusion (PD) [27]. PD’s transfer weight 𝑤𝑖𝑗
is equal to (2).

Although RENBI and PD are similar to our proposed
algorithm, they do not have a complete understanding of the
problem of excessive diffusion, so they can only partially alle-
viate it. SED cleverly combines the advantages of RENBI and
PD,which penalizes the popularity degree of objects to relieve
popularity bias and further reduces redundant similarities,
and can be more effective in suppressing excessive diffusion.

5. Results

In order to obtain credible experimental results, 10-fold
cross-validation is performed to decrease deviation. Results

presented in here are achieved via averaging over 10 indepen-
dent 𝐸𝑇/𝐸𝑃 divisions. The recommendation performances,
measured by seven metrics, of seven methods for three
datasets are summarized in Table 2.

As shown in Table 2, for the three datasets, SED performs
the best on all seven metrics. Concretely speaking, SED
surpasses the original mass diffusion-based algorithmNBI in
all aspects, especially with ⟨𝑟⟩ reduced by 23.6%, 𝑃 increased
by 24.3%, Recall increased by 24.3%, 𝐻 increased by 37.6%,
and ⟨𝑘⟩ reduced by 32.8% in MovieLens; Recall increased by
20.1% and ⟨𝑘⟩ reduced by 50% inAmazon; and ⟨𝑟⟩ reduced by
40.6%, 𝑃 increased by 25.8%, Recall increased by 26.4%, and⟨𝑘⟩ reduced by 40.8% in RYM. It achieves different degrees of
improvement on all other algorithms as well. In a word, the
proposed algorithm exhibits outstanding accuracy, diversity,
and novelty.

To explain our algorithm’s performance under different
recommendation list length, we fix the optimal parameters
and then vary 𝐿 from 5 to 100 to obtain the recommendation
performance for three datasets, the results of which are shown
in Figures 3, 4, and 5, respectively. Since ⟨𝑟⟩ and AUC are
constant values and do not change with 𝐿, they are not shown
in Figures 3–5. Each data point is obtained by averaging over
ten independent runs with data division.

From the three figures, we can see that for two “the
smaller the better” metrics, 𝐼 and ⟨𝑘⟩, SED’s curves are at
the bottom, while, for the remaining three “the higher the
better” metrics, they are always on the top. That is to say,
the proposed method also performs best among the schemes
under different recommendation list lengths which further
supports the results reported in Table 2. From this we can
draw a conclusion that the moderate inhibition of excessive
diffusion to ensure the fairness of diffusion ismore conducive
to effective recommendation.

6. Conclusion and Discussion

Motivated by preventing the resources excessively diffused
to the popular objects and the objects where there exists
redundant similarity, in this paper, we firstly penalize the
popular objects’ degrees and take the heterogeneity of users’
degrees into account simultaneously to restrain popularity
bias and then we eliminate redundant similarities to some
extent by subtracting the second-order similarity. Extensive
experiments on three real datasets consistently demonstrate
the effectiveness of SED considering its improvement in
accuracy, diversity, and novelty. SED also performs the best
compared to the benchmarks under different recommenda-
tion list lengths, and thus it is applicable and versatile in
practice.

Our method can more accurately match the user with
the right objects complying with his/her preferences and in a
commercial sense can further grasp user’s loyalty to promote
substantial profits growth. Because of its effectiveness, SED
can be applied in various kinds of recommendation envi-
ronments, like using purchase records to recommend books,
using reading histories to recommend news, recommending
TV shows and movies on the basis of users’ viewing patterns
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Table 2: Algorithms’ performances on three datasets with 𝐿 = 50. For fair comparison with parameter-free algorithms, the corresponding
parameters which achieve the lowest ranking score are chosen with resolution of 0.01 (𝛽opt = −0.86 for HNBI, 𝛼opt = −0.76 for RENBI,𝛽opt = −0.83 for PD, and 𝛼opt = −0.85 and 𝛽opt = −0.55 for SED in MovieLens; 𝛽opt = −0.08 for HNBI, 𝛼opt = −0.53 for RENBI, 𝛽opt = −0.62
for PD, and 𝛼opt = −0.89 and 𝛽opt = −0.36 for SED in Amazon; and 𝛽opt = −0.77 for HNBI, 𝛼opt = −0.67 for RENBI, 𝛽opt = −0.77 for PD,
and 𝛼opt = −0.69 and 𝛽opt = −0.67 for SED in RYM). The sampling number 𝑁 in AUC is fixed as 106. The best values of each metric are
emphasized in boldface.

MovieLens ⟨𝑟⟩ AUC 𝑃 Recall 𝐼 𝐻 ⟨𝑘⟩
CF 0.1225 0.8990 0.0639 0.3856 0.3758 0.5796 243
NBI 0.1143 0.9094 0.0670 0.4048 0.3554 0.6185 235
HNBI 0.1075 0.9144 0.0693 0.4183 0.3392 0.6886 220
CSI 0.0970 0.9278 0.0759 0.4584 0.3315 0.7530 200
RENBI 0.0875 0.9349 0.0812 0.4901 0.3250 0.7923 188
PD 0.0877 0.9341 0.0798 0.4819 0.2902 0.8392 161
SED 0.0873 0.9352 0.0833 0.5031 0.2895 0.8508 158
Amazon ⟨𝑟⟩ AUC 𝑃 Recall 𝐼 𝐻 ⟨𝑘⟩
CF 0.1212 0.8811 0.0157 0.2711 0.0928 0.8650 82
NBI 0.1170 0.8844 0.0162 0.2795 0.0900 0.8620 82
HNBI 0.1169 0.8843 0.0162 0.2803 0.0896 0.8653 81
CSI 0.1036 0.8936 0.0190 0.3284 0.0881 0.9667 49
RENBI 0.1103 0.8848 0.0181 0.3124 0.0861 0.9245 68
PD 0.1031 0.8935 0.0190 0.3277 0.0855 0.9745 43
SED 0.1024 0.8962 0.0194 0.3356 0.0753 0.9782 41
RYM ⟨𝑟⟩ AUC 𝑃 Recall 𝐼 𝐻 ⟨𝑘⟩
CF 0.0756 0.9548 0.0130 0.3932 0.1605 0.8216 1114
NBI 0.0675 0.9612 0.0132 0.3989 0.1580 0.7912 1196
HNBI 0.0588 0.9641 0.0132 0.3997 0.1548 0.8114 1155
CSI 0.0463 0.9715 0.0156 0.4731 0.1467 0.8922 869
RENBI 0.0456 0.9701 0.0157 0.4748 0.1527 0.8820 918
PD 0.0440 0.9719 0.0156 0.4719 0.1359 0.9114 734
SED 0.0401 0.9720 0.0166 0.5042 0.1340 0.9214 708

and ratings, and so on. Although SED has achieved good rec-
ommendation performance, there are some improvements
worthy of further investigation, such as considering the time
dimension, which is indeed necessary as it can greatly affect
the recommendation performance andmeasure the methods
ability to reflect both network topology and the systems
natural growth patterns and the users shifting interests [30].
In summary, we hope our method can enlighten readers to a
certain extent.
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