
Research Article
Chicken Swarm Optimization Based on Elite
Opposition-Based Learning

Chiwen Qu,1 Shi’an Zhao,2 Yanming Fu,3 andWei He1

1School of Information Engineering, Baise University, Baise 533000, China
2School of Mathematics and Statistics, Baise University, Baise 533000, China
3Computer and Electronic Information College, Guangxi University, Nanning 530004, China

Correspondence should be addressed to Chiwen Qu; quchiwen@163.com

Received 14 October 2016; Revised 13 February 2017; Accepted 1 March 2017; Published 26 March 2017

Academic Editor: George S. Dulikravich

Copyright © 2017 Chiwen Qu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic
algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken
swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on
adaptive 𝑡 distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and
local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population
diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in
order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure
optimization problems, this algorithmhas better effect on optimization precision and speed comparedwith basic chicken algorithm
and other intelligent optimization algorithms.

1. Introduction

Many problems in areas of scientific computing, engineering
science, and businessmanagement can be concluded as global
optimum problems. The consumption time of traditional
accurate computation approaches for solving large-scale opti-
mization problems increases exponentially. So this approach
cannot meet the real requirements. To solve these problems,
many scholars, by simulating life habits of creatures in the
nature, presented intelligent swarm optimization algorithms
including particle swarm optimization (PSO) [1], ant colony
optimization (ACO) [2], artificial bee colony (ABC) [3],
invasive weed colonization optimization (IWO) [4], firefly
algorithm (FA) [5, 6], cuckoo search (CS) algorithm [7, 8],
fish swarm algorithm (FSA) [9], bat algorithm (BA) [10, 11],
monkey algorithm (MA) [12], krill herd (KH) algorithm, and
flower pollination algorithm (FPA) [13]; all these have gained
favorable results. As a new kind of burgeoning metaheuristic
algorithm, intelligent swarm optimization algorithms have
characteristics of high precision, fast convergence rate, and

good stability and can obtain the exact solution or approxi-
mate solution of large-scale optimum problems within lim-
ited time.

Chicken swarm optimization (CSO) is a new intelligent
bionic algorithm proposed by Meng et al. [14] in 2014,
which simulates chickens swarm hierarchy and their food
search behavior. The whole chicken swarm is divided into
cock swarm, hen swarm, and chick swarm. Chickens with
highest fitness values and lowest fitness values are taken as
cock swarm and chick swarm, respectively, and the rest are
taken as hen swarm. When solving optimization problems,
each chicken in the swarm corresponds to a solution. Dif-
ferent search strategies are adopted for different subswarm
according to different population. In contrast with standard
particle swarm optimization, differential evolution, and bat
algorithm, chicken swarm has advantage in either searching
precision or convergence rate [14, 15]. In basic chicken swarm
algorithm, a random search strategy based on Gaussian dis-
tribution is adopted for particles of cock swarm. This search
strategy has strong ability of local development, but its global

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 2734362, 20 pages
https://doi.org/10.1155/2017/2734362

https://doi.org/10.1155/2017/2734362

2 Mathematical Problems in Engineering

development ability is weak tomake it liable to fall into a local
optimum. For hen swarm particles, the searching is done
by common guidance of cocks of their own population and
other populations, which helps hen particles close to global
optimum.However, the population diversity will lack and the
hen particles will fall into a local optimum when most cock
particles (with cock particles of own race and other races)
are in a local optimum. Consequently, the global optimal
solution cannot be obtained and its search performance will
be affected for basic chicken swarm algorithm.

In this paper, a chicken swarm optimization algorithm
on the basis of elite opposition-based learning (EOCSO)
is presented to solve global optimum problems. A random
search strategy based on dynamic adaptive 𝑡 distribution
is adopted in this algorithm for cock swarm to replace
the random search based on Gaussian distribution. The
local exploitation ability and global development ability are
balanced. In order to improve the optimization precision
and convergence rate of the algorithm, an opposition-based
learning method is used to improve population diversity for
hen swarm and a greedy dimension-by-dimension search
mode is applied to individual of optimal chicken swarm
for local search. Through experiments of 18 basic test func-
tions and 2 engineering structure optimization measurement
problems, the comparison among improved chicken swarm
algorithm, basic chicken swarm algorithm, and other typical
intelligent algorithms is conducted to show that improved
chicken swarm algorithm has more excellent optimization
precision, convergence rate, and robustness.

2. Chicken Swarm Algorithm

Chicken swarm optimization is a new intelligent bionic
algorithm proposed according to various behaviors of cocks,
hens, and chicks in the process of searching food. In this
algorithm, chicken swarm in searching space is mapped as
specific particle individual. Cock particle swarm, hen particle
swarm, and chicken particle swarm are sorted according to
fitness value of particle, and each subswarm uses different
searching mode [16, 17].

In this algorithm, several particles with best fitness are
selected as cock particle swarm, which is given by

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + randn (0, 𝜎2) ⋅ 𝑥𝑡𝑖,𝑗, (1)

where 𝑥𝑡+1𝑖,𝑗 and 𝑥𝑡𝑖,𝑗 are the position of 𝑗th dimension of
particle 𝑖 in 𝑡+1 and 𝑡 iterations, respectively, and randn(0, 𝜎2)
is a random number of Gaussian distribution whose variance
is 𝜎2. The parameter 𝜎2 can be calculated by

𝜎2 = {{{{{
1, fit𝑖 < fit𝑘

exp((fit𝑘 − fit𝑖)(fit𝑖 + 𝜉)) , fit𝑖 ≥ fit𝑘, (2)

where 𝑖, 𝑘 ∈ [1, 𝑟size] and 𝑖 ̸= 𝑘. 𝑟size represents the number
of cock swarms. fit𝑖 and fit𝑘 are the fitness values of cock
particle 𝑖 and 𝑘, respectively; 𝜉 represents a number which is
small enough.

Moreover, most particles with good fitness are selected as
hen swarm. Its random search is done via cocks of population
of hen and that of others, which can be expressed as

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑆1 ⋅ rand ⋅ (𝑥𝑡𝑟1,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆2 ⋅ rand
⋅ (𝑥𝑡𝑟2,𝑗 − 𝑥𝑡𝑖,𝑗) , (3)

where 𝑥𝑡𝑟1,𝑗 and 𝑥𝑡𝑟2,𝑗 are the position of cock individual 𝑟1
in the population of hen 𝑥𝑖 and cock individual 𝑟2 in the
other population, respectively. rand is an uniform random
number over [0, 1]. 𝑆1 and 𝑆2 denote the weight calculated
by

𝑆1 = exp((fit𝑖 − fit𝑟1)(fit𝑖 + 𝜉)) ,𝑆2 = exp (fit𝑟2 − fit𝑖) ,
(4)

where fit𝑟1 and fit𝑟2 are, respectively, the fitness value of cock
individual 𝑟1 in the population of hen 𝑥𝑖 and cock individual𝑟2 in the other population.

All individuals, except for cock swarm and hen swarm,
are defined as chick swarm. Its search mode follows that of
hen swarm, which is given by

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + FL ⋅ (𝑥𝑡𝑚,𝑗 − 𝑥𝑡𝑖,𝑗) , FL ∈ [0, 2] , (5)

where FL stands for a parameter, meaning that the chick
would follow its mother to forage for food. 𝑥𝑡𝑚,𝑗 represents
the position of the 𝑖th chick’s mother (𝑚 ∈ [1,𝑁]).
3. Chicken Swarm Optimization Based on Elite
Opposition-Based Learning

3.1. RandomSearch Strategy Based onDynamicAdaptive 𝑡Dis-
tribution. In chicken swarm optimization, a random search
mode on the basis of Gaussian distribution is adopted for
cock particle searching. This search mode has strong ability
in local development, but it is weak in global exploitation.
Therefore, enlargement of search space for cock particle will
effectively reduce the risk to fall into a local optimum. Thus,
the search mode with 𝑡 distribution is used for cock particle
in order to balance the global development ability and local
exploitation ability of the algorithm.

The 𝑡 distribution, also called student distribution [18],
owns degree of freedom parameter 𝑛; its probability density
function is as follows:

𝑝𝑡 (𝑥) = Γ ((𝑛 + 1) /2)√𝑛𝜋 ⋅ Γ (𝑛/2) ⋅ (1 + 𝑥2𝑛)
−((𝑛+1)(𝑛+1)/2) ,

−∞ < 𝑥 < +∞,
(6)

where Γ is the Gamma function and Γ(𝑛 + 1/2) = (2𝑛)!√𝜋/(𝑛)!4𝑛.
Apparently, the 𝑡 distribution is defined as Cauchy dis-

tribution density function (𝑡(𝑛 = 1) = 𝐶(0, 1)) when
degree of freedom parameter 𝑛 = 1 and is defined as

Mathematical Problems in Engineering 3

Gaussian distribution density function when 𝑛 = ∞ (𝑡(𝑛 →∞) → 𝑁(0, 1)). Thus, Cauchy distribution and Gaussian
distribution are two special boundary cases of 𝑡 distribution.
The characteristics of Cauchy distribution and Gaussian
distribution are integrated into 𝑡 distribution, and different
mutation range can be obtained via changing degree of
freedom parameter 𝑛.

In the algorithm, random search based on dynamic
adaptive 𝑡 distribution is selected for the position of cock
particles 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑑), which is expressed as

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜓𝑖,𝑗 ⋅ 𝑡 (𝑛) ⋅ 𝑥𝑖,𝑗, (7)

where 𝑥𝑖,𝑗 is the position after random search of dynamic
adaptive 𝑡 distribution used by 𝑗th dimension of cock particle𝑖, 𝑥𝑖,𝑗 is the position of 𝑗th dimension of 𝑖th cock particle,𝑡(𝑛) is random function of 𝑡 distribution with iteration 𝑛 as
its degree of freedom, and 𝜓 is mutation control factor. Each
dimension value performs differently in searching process
of multidimensional objective function. Thus, the mutation
control factor 𝜓 has the same control strategy to each
dimension, and it cannot meet the requirement of algorithm
obviously. In this paper, dynamic adaptive mutation control
factor is used to adjust mutation range, as given by

𝜓𝑖,𝑗 = 𝛽 ⋅
1𝑛 ⋅
𝑛∑
𝑘=1

𝑥𝑘,𝑗 − 𝑥best,𝑗 , (8)

where 𝛽 is proportionality coefficient, 𝑛 is the number of cock
members, (1/𝑛) ⋅ ∑𝑛𝑘=1 𝑥𝑘,𝑗 is mean value of 𝑗th dimension of
cock particle in the current iteration, and 𝑥best,𝑗 is a mutated
value of 𝑗th dimension of cock particle in optimal position of
the current iteration.

In random search of dynamic adaptive 𝑡 distribution,
iteration 𝑛 is taken as degree of freedom parameter, and
dynamic adaptive mutation control factor is used to adjust
searching range. In the early stage of evolution, the search
is conducted by 𝑡 distribution (which is similar to that
via Cauchy distribution) and maintains population diver-
sity due to small 𝑛. Thus, the algorithm has good ability
of global exploitation. With increase of 𝑛, random search
of 𝑡 distribution transits gradually from that of Cauchy
distribution to that of Gaussian distribution, and random
search of 𝑡 distribution is similar to that of Gaussian distri-
bution with good ability of local development in the later
stage.

3.2. Elite Opposition-Based Learning. Elite opposition-based
learning proposed by Tizhoosh [19] is a new technology
applied to intelligent computing area, and it has been suc-
cessfully applied in many intelligent algorithm optimizations
[20–22]. Theoretically verified by Zhong and others [23],
opposition-based learning can acquire a solution that closes
to global optimal solution with a higher probability. In the
paper, elite opposition-based learning is adopted to enlarge
search range for hen swarm and enhance population diversity
so as to improve searching performance of the algorithm.The
basic thoughts are as follows.

Set the optimal cock position and its opposite position in𝑡th iteration as 𝑥𝑡best = (𝑥𝑡best,1, 𝑥𝑡best,2, . . . , 𝑥𝑡best,𝑑) and op𝑡best =(op𝑡best,1, op𝑡best,2, . . . , op𝑡best,𝑑), respectively; then
op𝑡best,𝑗 = 𝑘 ⋅ (𝑙𝑎𝑗 + 𝑢𝑏𝑗) − 𝑥𝑡best,𝑗, (9)

where 𝑥𝑡best,𝑗 ∈ [𝑙𝑎𝑗, 𝑢𝑏𝑗], 𝑘 is a coefficient which denotes (0, 1)
uniformly distributed random variable, and [𝑙𝑎𝑗, 𝑢𝑏𝑗] is the
boundary of 𝑗th dimension of search space in the current
population. The result is obtained by

𝑙𝑎𝑗 = min (𝑥𝑖,𝑗) ,
𝑢𝑏𝑗 = max (𝑥𝑖,𝑗) , (10)

where 𝑖 ∈ (1, 2, . . . , size) and 𝑗 ∈ (1, 2, . . . , 𝑑). Equation
(10) is applied to replace fixed boundary, which ensures
that cocks generate opposite solution in decreased space
range. Besides, threshold value of the opposite solution may
go beyond the range of [𝑙𝑎𝑗, 𝑢𝑏𝑗] to form a nonfeasible
solution. Traditional handling is to set the searching particle
which goes beyond borders as boundary value. As a result,
numerous searchers gather on the border. To avoid above
problem, border buffering wall is used for handling, and its
basic thoughts are as follows.

Suppose that 𝑎𝑗 is upper bound of 𝑗th dimension of
search range in the population and 𝑏𝑗 is the lower bound. If
opposite solution of the optimal individual in the population
is opbest,𝑗, the value after border buffering wall handling will
be

op𝑡best,𝑗 =
{{{{{{{{{{{{{

𝑎𝑗 ⋅ ((1 − sgn (𝑎𝑗 ⋅ 𝐿)) + sgn(𝑎𝑗 ⋅ 𝐿 ⋅ (
𝛼𝑖,𝑗 ⋅ op𝑡best,𝑗𝑎𝑗 − 𝑏𝑗)) ⋅ rand) , op𝑡best,𝑗 > 𝑎𝑗

𝑏𝑗 ⋅ ((1 + sgn (𝑏𝑗 ⋅ 𝐿)) − sgn(𝑏𝑗 ⋅ 𝐿 ⋅ (
𝛼𝑖,𝑗 ⋅ op𝑡best,𝑗𝑎𝑗 − 𝑏𝑗)) ⋅ rand) , op𝑡best,𝑗 < 𝑏𝑗,

(11)

where sgn is sign function and 𝐿 ∈ [0, 1] is a proper constant,
which relates to the thickness of buffering wall.

With border buffering wall to process off normal indi-
vidual, search individuals are able to decide their values

4 Mathematical Problems in Engineering

(1) Set the generation counter 𝑡, the maximum generation max_gen, dynamic adaptive
change step step, max step step_max, the chicken individual 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑑).

(2) step = (max_gen − 𝑡)
max_gen

⋅ step_max (*)

(3) for 𝑘 = 1 : 𝑑
(4) temp = 𝑥𝑖;
(5) temp(𝑘) = temp(𝑘) + (2 ∗ rand − 1) ∗ step;
(6) if 𝑓(temp) < 𝑓(𝑥𝑖)
(7) 𝑥𝑖(𝑘) = temp(𝑘);
(8) end
(9) end

Algorithm 1

(1) Set the initial parameters, including the total population size popsize, the roosters accounts𝑁𝑟,
the hens accounts𝑁ℎ, the mother hens accounts𝑁𝑚, updating frequency of the
chicken swarm 𝐺 and the maximum number of generations itermax et al.

(2) Generate a population 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥popsize) of popsize chickens with random solutions.
(3) Calculate the fitness fitness(𝑥𝑖) and find the best solution 𝑥best of the population.
(4) for iter = 1 : itermax
(5) if iter% 𝐺 == 1 or iter == 1
(6) Sort all population individuals according to their fitness.
(7) Divide total population individuals into three subpopulations (called rooster population, hen

population, and chickens population) according to their sort criteria, and establish
the relationship between the chickens and its mother (hens).

(8) end
(9) Update the rooster population individuals according to Eq. (7) and calculate their fitness.
(10) Update the hen population individuals according to Eq. (12) and calculate their fitness.
(11) Update the chicken population individuals according to Eq. (5) and calculate their fitness.
(12) Update the personal best position 𝑥∗𝑖 and the global optimal position 𝑥best.
(13) Perform local search for the global optimal individual according to Section 3.3.
(14) end
(15) Output the best solution 𝑥best

Algorithm 2

dynamically according to the practical searching conditions
and can better overcome deficiencies brought by tradi-
tional handling. The search mode of hen swarm using elite
opposition-based learning can be expressed as follows:

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑆1 ⋅ rand ⋅ (𝑥𝑡𝑟1,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆2 ⋅ rand
⋅ (𝑥𝑡𝑟2,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆3 ⋅ rand ⋅ (op𝑡best,𝑗 − 𝑥𝑡𝑖,𝑗) , (12)

where 𝑆1, 𝑆2, and 𝑆3 are weights, 𝑆3 and 𝑆2 have the same
value, rand is an uniform random number over [0, 1], and
op𝑡best,𝑗 is the opposite solution of the optimal particle of the
population of chick swarm particle 𝑖 in 𝑡th iteration.

3.3. Local Search via Greedy Dimension-by-Dimension Search.
In basic chicken swarm optimization algorithm, the cock
swarm, the hen swarm, and the chick swarm use different
random search modes to acquire comparatively high-quality
solution and convergence rate. But the three subswarms
are all assessed by overall upgrading assessment method.

For high-dimensional global optimization problem, overall
upgrading assessment method will affect the quality of
solution and convergence rate due to the interference among
each dimension [24]. Suppose that the objective global
optimization function is 𝑓(𝑥𝑖) = ∑3𝑗=1 𝑥2𝑖,𝑗 (sphere test
function) and independent variable equals 𝑥𝑖 = (0.2, 0.2, 0.2).
Then, 𝑓(𝑥𝑖) = 0.12. In iterations, the independent variable is
updated as 𝑥𝑖 = (0.1, 0.3, 0.4) after overall upgrading. Then,𝑓(𝑥𝑖) = 0.26, and 𝑥𝑖 = (0.1, 0.3, 0.4) will be abandoned in
chicken swarm optimization as 𝑓(𝑥𝑖) > 𝑓(𝑥𝑖). The overall
upgrading assessment method will cause a slow convergence
rate for the algorithm as the first-dimensional contribution
is ignored due to deterioration of the second- and third-
dimensional contributions.

The greedy dimension-by-dimension searchmode in this
paper makes full use of updated achievement of each dimen-
sion. The basic idea is as follows. (1) Suppose that 𝑥𝑖,𝑗 is the
value after updating of the value of 𝑗th dimension of chicken
swarm particle 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑖,𝑑) (fitness value

Mathematical Problems in Engineering 5

Table 1: The parameters set of all other algorithms.

Algorithms Parameters
BA 𝑄min = 0, 𝑄max = 2, 𝑅0 = 0.1, 𝐴 = 0.9, 𝛼 = 0.95, 𝛾 = 0.9
PSO 𝑐1 = 1.49445, 𝑐2 = 1.49445, 𝜛 = 0.729
DE pCR = 0.2, 𝛽min = 0.2, 𝛽max = 0.8
ACO The intensification factor 𝑞 = 0.5, the deviation-distance ratio zeta = 1
CS pa = 0.25, 𝛼 = 1
FPA 𝑝 = 0.8
CSO 𝑁𝑟 = 0.15popsize, 𝑁ℎ = 0.7popsize, 𝑁𝑚 = 0.15popsize, 𝐺 = 10

is fit(𝑥𝑖)). Then, 𝑥𝑖,𝑗 and the values of other dimensions of
chicken swarm particle 𝑥𝑖 before updating are integrated into
a new chicken swarm particle 𝑦 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑖,𝑑).
(2) Calculate its fitness value fit(𝑦). If fit(𝑦) < fit(𝑥𝑖), then the
updated result will be saved. Otherwise, it will be abandoned
and the updating of (𝑗 + 1)th dimension will be conducted.
The procedures are shown in Algorithm 1.

To ensure that each dimension of chicken particles in
initial period of iteration updates in a relatively big step-
length and in a small step-length in later period of iteration,
dynamic adaptive step-length updating as (*) in Algorithm 1
is adopted to further improve the algorithm’s convergence
rate and quality of solution.

3.4. AlgorithmFlow. Based on Sections 3.1–3.3, the procedure
of the chicken swarm optimization algorithm is shown in
Algorithm 2.

4. Results and Discussions

4.1. Parameter Setting. To test the algorithm’s performance,
seven typical intelligent algorithms, bat algorithm (BA) [10,
11], particle swarm optimization (PSO) [1], differential evolu-
tion (DE) [25], ant colony optimization (ACO) [2], cuckoo
search (CS) algorithm [7], flower pollination algorithm (FPA)
[13], and chick swarmalgorithm (CSO) [14], are selected to do
contrast experiments with EOCSO algorithm. The parame-
ters of EOCSO algorithm are set as follows. Population size
is set as 100, and each of the scale of cock swarm and that of
chick swarmoccupies 15%, while the scale of hen swarm takes
up 70%. All of the common parameters of these algorithms
(including the population size, dimensions, and maximum
number of generations) are set to be the same for a fair
comparison.Other parameters are described in Section 3.The
parameters set of all other five algorithms is shown in Table 1.

4.2. Test Function. To verify the optimization precision and
convergence rate of the proposed algorithm, 18 standard test
functions in [26, 27] are chosen for contrast experiments.𝑓1 ∼ 𝑓7 are high-dimensional unimodal functions and
are extremely hard to converge to a global optimum, which
are used to inspect the searching precision. 𝑓8 ∼ 𝑓13 are
high-dimensional multimodal functions with several local
extreme points. So they are used to test the global searching

performance and avoid premature of the algorithms [28–30].𝑓14 ∼ 𝑓18 are low-dimensional multimodal functions. The
standard test functions are seen in Table 2.

4.3. Influence of Dynamic Adaptive 𝑡 Distribution Search
Strategy on Bird Swarm Algorithm. Influence of dynamic
adaptive 𝑡 distribution search strategy on bird swarm algo-
rithm contains two parts. The first part is the influence
of different parameter values of variable control factor 𝜓
on Gaussian distribution algorithm. The second part is the
empirical comparison and analysis of CSO under dynamic
adaptive 𝑡 distribution (ATD-CSO) and dynamic adaptive
Gaussian distribution (AGD-CSO) as well as the original
algorithm (O-CSO). High-dimensional unimodal functions(𝑓3, 𝑓5), high-dimensional multimodal functions (𝑓11, 𝑓13),
and low-dimensional multimodal functions (𝑓15, 𝑓17) are
selected as test functions.

4.3.1. Impact Analysis of Control Factor 𝜓. Other parameters
remain invariant, 0.2, 0.5, and 0.8, and dynamic adaptive
change is used as control factor 𝜓 for Gaussian distribution
algorithm. Test function parameters are set the same as
Section 4.1, and test result is assessed from optimal value,
mean value, worst value, and standard variance. Table 3 shows
the statistical result of different 𝜓 on the test functions.

As can be seen from Table 3, search effect is better when𝜓 is smaller. But it is not quite ideal for Gaussian distribution
with fixed 𝜓 to improve algorithm performance. Through
dynamic adaptive parameter setting, the algorithm can be
ensured to maintain a large search step size in initial search
stage. In later stage, dynamic adaptive step size of control
factor𝜓 is reduced, while the local search ability is enhanced.
The test result proved that dynamic adaptive control factor
has more advantages than single fixed control factor.

4.3.2. Comparison of ATD-CSO, AGD-CSO, and O-CSO.
Table 4 indicates the statistical result of dynamic adaptive𝑡 distribution, dynamic adaptive Gaussian distribution, and
original CSO algorithm on three different kinds of test
function. As the data shows, in terms of optimal values, 6 and
4 orders of magnitude are improved for 𝑓3 and 𝑓13 separately
by ATD-CSO compared with AGD-CSO. For function 𝑓5,
searching precision of ATD-CSO is higher than that of AGD-
CSO. For 𝑓11, 𝑓15, and 𝑓17, optimal solution is searched by

6 Mathematical Problems in Engineering

Table 2: Benchmark test functions.

Number Name Benchmark test functions Dimension Scope Optimum

𝑓1(𝑥) Sphere
model 𝑓 (𝑥) = 𝐷∑

𝑖=1

𝑥2𝑖 30 [−100, 100] 0

𝑓2(𝑥) Schwefel’s
problem
2.22

𝑓 (𝑥) = 𝐷∑
𝑖=1

|𝑥𝑖| + 𝐷∏
𝑖=1

|𝑥𝑖| 30 [−10, 10] 0

𝑓3(𝑥) Schwefel’s
problem 1.2 𝑓 (𝑥) = 𝐷∑

𝑖=1

(𝑖∑
𝑗=1

𝑥𝑖)2 30 [−100, 100] 0

𝑓4(𝑥) Schwefel’s
problem
2.21

𝑓 (𝑥) = 𝐷max
𝑖=1

{𝑥𝑖} 30 [−100, 100] 0

𝑓5(𝑥)
Generalized
Rosen-
brock’s
function

𝑓 (𝑥) = 𝑛−1∑
𝑖=1

[100 (𝑥𝑖+1 − 𝑥2𝑖)2 + (1 − 𝑥𝑖)2] 30 [−30, 30] 0

𝑓6(𝑥) Step
function 𝑓 (𝑥) = 𝐷∑

𝑖=1

⌊𝑥𝑖 + 0.5⌋ 30 [−100, 100] 0

𝑓7(𝑥)
Quartic
function,
that is,
noise

𝑓 (𝑥) = 𝐷∑
𝑖=1

𝑖 ⋅ 𝑥4𝑖 + random (0, 1) 30 [−1.28, 1.28] 0

𝑓8(𝑥)
Generalized
Schwefel’s
problem
2.26

𝑓 (𝑥) = 𝐷∑
𝑖=1

− 𝑥𝑖 ⋅ sin(√𝑥𝑖) 30 [−500, 500] −418.9829 ∗𝑛
𝑓9(𝑥) Generalized

Rastrigin’s
function

𝑓 (𝑥) = 𝑛∑
𝑖=1

(𝑥2𝑖 − 10 ⋅ cos (2 ⋅ 𝜋 ⋅ 𝑥𝑖) + 10) 30 [−5.12, 5.12] 0

𝑓10(𝑥) Ackley’s
function 𝑓(𝑥) = −20 exp(−0.2√ 1𝑑

𝑑∑
𝑖=1

𝑥2𝑖) − exp(1𝑑
𝑑∑
𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒 30 [−32, 32] 0

𝑓11(𝑥) Generalized
Griewank
function

𝑓(𝑥) = 14000 ⋅
𝑛∑
𝑖=1

𝑥2𝑖 − 𝑛∏
𝑖=1

cos
𝑥𝑖√𝑖 + 1 30 [−600, 600] 0

𝑓12(𝑥) Generalized
penalized
function

𝑓 (𝑥) =𝜋𝐷 {10 sin2 (𝜋 ⋅ 𝑦1) + 𝐷−1∑
𝑖=1

(𝑦𝑖 − 1)2 [1 + 10 sin2 (𝜋 ⋅ 𝑦𝑖+1) + (𝑦𝑛 − 1)2]} +
𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4)
𝑦𝑖 = 1 + 𝑥𝑖 + 14

𝑢 (𝑥𝑖, 𝛼, 𝑘, 𝑚) =
{{{{{{{{{

𝑘(𝑥𝑖 − 𝛼)𝑚, 𝑥𝑖 > 𝛼
0, −𝛼 ≤ 𝑥𝑖 ≤ 𝛼
𝑘(−𝑥𝑖 − 𝛼)𝑚, 𝑥𝑖 ≤ 𝛼

30 [−50, 50] 0

𝑓13(𝑥) Generalized
penalized
Function

𝑓(𝑥) =
0.1{10 sin2(3𝜋 ⋅ 𝑥1) + 𝐷−1∑

𝑖=1

(𝑥𝑖 − 1)2 [1 + 10 sin2 (3𝜋 ⋅ 𝑥𝑖+1)] + (𝑥𝑛 − 1)2}+
𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4)
30 [−50, 50] 0

𝑓14(𝑥) Shekel’s
foxholes
function

𝑓(𝑥) = [1500 +
25∑
𝑗=25

1𝑗 + ∑2𝑖=1(𝑥𝑖 − 𝑎𝑖𝑗)6]
−1

2 [−65.56, 65.56] 0.9980

𝑓15(𝑥) Kowalik’s
function 𝑓(𝑥) = 11∑

𝑖=1

[𝑎𝑖 − 𝑥1(𝑏2𝑖 + 𝑏𝑖𝑥2)𝑏2𝑖 + 𝑏𝑖𝑥3 + 𝑥4]
2

4 [−5, 5] 0.0003075

𝑓16(𝑥) Hartman’s
function 𝑓(𝑥) = − 4∑

𝑖=1

𝑐𝑖 ⋅ exp[− 3∑
𝑗=1

𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2] 3 [0, 1] −3.8628

Mathematical Problems in Engineering 7

Table 2: Continued.

Number Name Benchmark test functions Dimension Scope Optimum

𝑓17(𝑥) Hartman’s
function

𝑓(𝑥) = − 4∑
𝑖=1

𝑐𝑖 ⋅ exp[− 6∑
𝑗=1

𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2] 6 [0, 1] −3.32
𝑓18(𝑥) Shekel’s

family 𝑓(𝑥) = − 10∑
𝑖=1

[(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1 10 [0, 10] −10.5364
Table 3: Influence of various 𝜓 on the test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
𝜓 = 0.2

Best 0.01631162 25.28779662 0 0.608008583 0.000307777 −3.321995171
Mean 5.826567112 26.47886719 0 2.347145417 0.000428489 −3.308813113
Worst 25.52896184 28.91557367 0 4.237078833 0.001223174 −3.202409203
Std. 7.284604701 0.4586344 0 0.92771315 0.000277897 0.036625398

𝜓 = 0.5
Best 0.530928436 25.99904272 0 0.69896625 0.00031048 −3.321877282
Mean 132.4241294 27.1885086 0 1.34834884 0.00044856 −3.315628525
Worst 729.2974459 28.55843288 0 1.96348532 0.001223763 −3.201008218
Std. 197.5724792 0.696629183 0 0.287524396 0.000224541 0.026987801

𝜓 = 0.8
Best 0.018825799 26.28800133 0 0.717391541 0.000315938 −3.321995171
Mean 500.9268589 27.17671059 0 1.083153802 0.000534308 −3.301356117
Worst 1228.354641 28.77558754 0 1.33573296 0.00071324 −3.199239821
Std. 400.9524735 0.60589184 0 0.219814939 0.000140829 0.044548317

Original strategy

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

Dynamic adaptive

Best 1.455387𝐸 − 22 0.09980032 0 1.90772𝐸 − 12 0.000307486 −3.321995172
Mean 2.932745𝐸 − 20 0.57800657 0 9.09553𝐸 − 12 0.000307486 −3.321995172
Worst 9.453261𝐸 − 20 1.08886543 0 6.57632𝐸 − 10 0.000307486 −3.321995172
Std. 5.187532𝐸 − 21 0.19345322 0 2.42964𝐸 − 12 0 5.264821𝐸 − 12

Table 4: Influence of different distributions on test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

AGD-CSO

Best 1.455387𝐸 − 22 0.09980032 0 1.90772𝐸 − 12 0.000307486 −3.321995172
Mean 2.932745𝐸 − 20 0.57800657 0 9.09553𝐸 − 12 0.000307486 −3.321995172
Worst 9.453261𝐸 − 20 1.08886543 0 6.57632𝐸 − 10 0.000307486 −3.321995172
Std. 5.187532𝐸 − 21 0.19345322 0 2.42964𝐸 − 12 0 5.264821𝐸 − 12

ATD-CSO

Best 3.81028𝐸 − 28 0.050669099 0 5.43358𝐸 − 16 0.000307486 −3.321995172
Mean 1.24542𝐸 − 27 0.18932938 0 5.16541𝐸 − 15 0.000307486 −3.321995172
Worst 1.06346𝐸 − 27 0.67578053 0 4.81746𝐸 − 13 0.000307486 −3.321995172
Std. 9.19088𝐸 − 28 0.037375926 0 4.52782𝐸 − 15 0 9.858438𝐸 − 14

both ATD-CSO and AGD-CSO. Also, for mean value, worst
value, and standard variance, 𝑓11 and 𝑓15 obtain the same
through these two algorithms. But, for the standard variance
for 𝑓17, ATD-CSO is better than AGD-CSO. Compared
with O-CSO, ATD-CSO produces optimal mean value, worst

value, and variance. It can be seen from Figures 1–6 that,
in early evolution period, convergence rate of ATD-CSO is
faster than that of AGD-CSO when calculating the above 6
functions. In later period, the convergence rate is similar, but
the overall convergence rate of ATD-CSO is more optimal.

8 Mathematical Problems in Engineering

Table 5: Statistical results of the influence of dynamic adaptive 𝑡 distribution and opposition-based learning on CSO.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

ATD-EO-CSO

Best 7.108233𝐸 − 42 2.844564𝐸 − 6 0 2.095481𝐸 − 25 0.000307486 −3.321995172
Mean 1.039602𝐸 − 40 9.654632𝐸 − 6 0 2.006629𝐸 − 24 0.000307486 −3.321995172
Worst 4.540331𝐸 − 39 3.239232𝐸 − 5 0 9.910062𝐸 − 24 0.000307486 −3.321995172
Std. 3.919585𝐸 − 41 3.6784872𝐸 − 7 0 1.887675𝐸 − 25 0 6.455396𝐸 − 14

Number of iterations
200 400 600 800 1000

1010

100

10−10

10−20

10−30

CSO
AGD-CSO
ATD-CSO

Be
st

va
lu

e o
f f

un
ct

io
n
f
3

Figure 1: Convergence rates for 𝑓3(𝑥).

However, the convergence rate of O-CSO is slower than that
of ATD-CSO and AGD-CSO.Therefore, ATD-CSO has some
advantages in terms of solution precision, robustness, and
convergence rate generally.

4.4. The Influence of Dynamic Adaptive 𝑡 Distribution
and Opposition-Based Learning on CSO (ATD-EO-CSO). As
demonstrated in Table 5, the best value, mean value, worst
value, and variance of 𝑓3, 𝑓5, 𝑓13, 𝑓15 obtained by dynamic
adaptive 𝑡 distribution and elite opposition-based learning
are apparently better than those obtained by original CSO.
Target value can be searched on function 𝑓11 by both ATD-
EO-CSO and O-CSO. Therefore, the O-CSO is suitable to
solve this function, and the improvement of the solution
after optimization is not obvious. For function 𝑓17, the best
value can be searched by both. However, in terms of mean
value, worst value, and variance, the results will be better
based on cowork of both 𝑡 distribution and elite opposition-
based learning. Since searching can be done more widely via
elite opposition-based learning, boundary buffering wall is
adopted to deal with individuals crossing the border, avoiding
the deficiency that individuals gather on boundary value to

Number of iterations
200 400 600 800 1000

108

103

10−2

CSO
AGD-CSO
ATD-CSO

Be
st

va
lu

e o
f f

un
ct

io
n
f
5

Figure 2: Convergence rates for 𝑓5(𝑥).
improve the diversity of population. As a result, ATD-EO-
CSO is superior in solution precision.

4.5. Influence of Local Search via Greedy Dimension-by-
Dimension Search on Bird Swarm Algorithm. Influence of
local search via greedy dimension-by-dimension search on
bird swarm algorithm contains two parts. The first part is
the influence of fixed step size step = 0.1, step = 0.3,
step = 0.6, and the adaptive step on algorithm. The second
part is the comparison between adaptive step strategy and
original CSO. Table 6 shows the statistical result by means
of various step values. According to Table 6, when step value
is small, higher search precision can be obtained, but it is
liable to get into premature convergence. In case of larger
step value, the range of search step size is larger, and it is
liable to skip optimal solution range, which causes lower
searching effect in later stage of evolution and reduced local
search ability. Through adaptive step, the algorithm’s global
research can be ensured to conduct in long step size at initial
stage and in short step size at later stage, which improves the
search efficiency of dimension-by-dimension search. Hence,
adaptive step dimension-by-dimension search is superior to
the fixed step size strategy in terms of search precision.

Mathematical Problems in Engineering 9

Table 6: Influence of various step values on test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
step = 0.1

Best 1.1009139𝐸 − 30 2.5022290𝐸 − 4 0 7.1919782𝐸 − 22 0.000307486 −3.321995172
Mean 2.5675751𝐸 − 26 7.1700102𝐸 − 4 0 2.0929358𝐸 − 20 0.000307486 −3.321995163
Worst 5.9338088𝐸 − 25 5.0003902𝐸 − 3 0 9.0510335𝐸 − 20 0.000307486 −3.321995061
Std. 5.4742928𝐸 − 26 4.8413835𝐸 − 5 0 6.9769787𝐸 − 22 7.537751𝐸 − 10 9.6237934𝐸 − 7

step = 0.3
Best 3.0856694𝐸 − 28 4.3623649𝐸 − 5 0 4.9527803𝐸 − 18 0.000307486 −3.321995172
Mean 6.4211983𝐸 − 25 3.3217367𝐸 − 4 0 5.8674385𝐸 − 15 0.000307486 −3.321995172
Worst 5.9480356𝐸 − 24 7.1641617𝐸 − 4 0 6.7902546𝐸 − 12 0.000307486 −3.321995163
Std. 1.2289958𝐸 − 26 8.0512434𝐸 − 5 0 2.6579955𝐸 − 16 7.967684𝐸 − 10 5.616744𝐸 − 8

step = 0.6
Best 4.0232351𝐸 − 26 9.7209661𝐸 − 4 0 5.2857901𝐸 − 25 0.000307486 −3.321995172
Mean 1.3561952𝐸 − 22 3.5667080𝐸 − 3 0 9.2285451𝐸 − 20 0.000307499 −3.321956549
Worst 7.4188975𝐸 − 21 8.5082852𝐸 − 3 0 2.1028715𝐸 − 18 0.000307495 −3.321906894
Std. 6.2712862𝐸 − 22 2.4668710𝐸 − 4 0 7.0434808𝐸 − 20 4.460765𝐸 − 8 8.512414𝐸 − 5

Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

Adaptive step

Best 9.5838158𝐸 − 40 8.9257907𝐸 − 3 0 9.4224685𝐸 − 25 0.000307486 −3.321995172
Mean 1.8439439𝐸 − 36 3.7218918𝐸 − 2 0 5.3242987𝐸 − 23 0.000307486 −3.321995172
Worst 8.5706881𝐸 − 36 7.5851102𝐸 − 2 0 8.1986156𝐸 − 22 0.000307486 −3.321995172
Std. 1.0682863𝐸 − 37 2.3586933𝐸 − 2 0 2.1204222𝐸 − 23 9.124585𝐸 − 18 8.884563𝐸 − 15

Number of iterations
200 400 600 800 1000

105

100

10−5

10−10

10−15

10−20

CSO
AGD-CSO
ATD-CSO

Be
st

va
lu

e o
f f

un
ct

io
n
f
11

Figure 3: Convergence rates for 𝑓11(𝑥).

4.6. Analysis of Experimental Results. In order to avoid being
influenced by random factors, the experimental test for each
case is conducted by 20 trials independently. The algorithm’s
searching performance is assessed according to the best
value, mean value, standard deviation, and the worst value
produced by the test result. The number of iterations of 𝑓14 ∼𝑓18 and 𝑓1 ∼ 𝑓13 is 50 and 1000 in each trial, respectively.The
algorithm is examined by Matlab 2012a on the platform with
Win 8OS, Intel Core i5-4210U 2.4GHZCPU, and 4GBmem-
ory. The test statistical results are shown in Tables 7, 8, and 9.

Number of iterations
200 400 600 800 1000

1010

105

100

10−5

10−10

10−15

10−20

CSO
AGD-CSO
ATD-CSO

Be
st

va
lu

e o
f f

un
ct

io
n
f
13

Figure 4: Convergence rates for 𝑓13(𝑥).

The test statistical results of functions 𝑓1 ∼ 𝑓7 are shown
in Table 7. As can be seen from Table 7, the best value, mean
value, standard variance, and the worst value of EOCSO are
all superior to those of other intelligent algorithms (including
BA, PSO, DE, ACO, CS, FPA, and CSO). Particularly, global
minimum of the test function 𝑓5(𝑥) lies in the bottom of
parabola, which is quite reliable to fall into a local optimum
in the searching process. The optimal result of EOCSO is9.53224𝐸 − 09, which is 8, 11, 10, 10, 7, 3, and 10 orders
of magnitude higher than that of BA, PSO, DE, ACO, CS,

10 Mathematical Problems in Engineering

Table 7: Test statistical results of functions 𝑓1 ∼ 𝑓7.
Benchmark
function BA PSO DE ACO CS FPA CSO EOCSO

𝑓1(𝑥)
Best 9.41672𝐸 −06 6.774921774 3.036519𝐸 − 12 4.98686𝐸 −08 0.040549145 6.34628𝐸 − 06 1.1893𝐸−55 1.19𝐸 − 201
Mean 1.20474𝐸 −05 20.80098597 5.713553𝐸 − 12 1.8224𝐸−07 0.08183638 0.000732691 3.08046𝐸 −52 7.0639𝐸 −198
Worst 0.000014224 31.55593153 9.811158𝐸 − 12 3.76894𝐸 −07 0.120709249 0.009162134 3.16469𝐸 −51 7.2029𝐸 −197
Std. 1.40714𝐸 −06 9.102140636 2.040785𝐸 − 12 8.35921𝐸 −08 0.021679322 0.002091063 8.83269𝐸 −52 0

𝑓2(𝑥)
Best 0.012593909 6.594522786 3.042127𝐸 − 08 4.92993𝐸 −05 1.479134511 1.97228𝐸 − 07 1.91405𝐸 −43 6.5805𝐸 −116
Mean 31.7282206 15.68696047 4.943835𝐸 − 08 0.000507759 2.180229997 7.11331𝐸 − 06 6.5601𝐸−41 2.13𝐸 − 112
Worst 131.069574 35.29663724 7.117019𝐸 − 08 0.00191464 3.029290054 1.51764𝐸 − 05 8.03444𝐸 −40 9.5751𝐸 −112
Std. 48.01800899 11.87133052 1.339655𝐸 − 08 0.000549138 0.403631239 4.85023𝐸 − 06 1.78694𝐸 −40 2.8682𝐸 −112

𝑓3(𝑥)
Best 2.27𝐸 − 05 4.13𝐸 + 02 15255.144282 11951.29445 5.99𝐸 + 02 2.57𝐸 − 02 7.00𝐸 + 01 4.49𝐸 − 51
Mean 3.94𝐸 + 02 9.17𝐸 + 02 24696.821583 16566.43552 8.59𝐸 + 02 6.70𝐸 − 02 8.06𝐸 + 02 9.55𝐸 − 49
Worst 4.77𝐸 + 03 1.75𝐸 + 03 29125.784537 22644.44883 1.10𝐸 + 03 1.10𝐸 − 01 1.67𝐸 + 03 1.28𝐸 − 47
Std. 1081.678915 411.6200929 3515.8752513 3287.33213 122.9938329 0.023267666 430.7691621 2.85739𝐸 −48

𝑓4(𝑥)
Best 6.573087982 5.90965909 1.2612253015 3.058888831 5.273452649 12.24579118 0.000935694 1.41944𝐸 −17
Mean 12.41978556 9.027042499 2.0432637030 5.055981092 6.116103354 15.33881514 3.027225289 2.20256𝐸 −16
Worst 22.65352526 12.9169796 2.5042954408 7.296151756 7.215730774 19.26838273 10.74127991 7.30302𝐸 −16
Std. 3.804254343 2.121495266 0.3514754143 0.953357307 0.52178179 2.184822605 3.480451504 1.96521𝐸 −16

𝑓5(𝑥)
Best 0.196158304 343.6027646 25.837681251 17.1433613 0.013792405 2.12808𝐸 − 06 26.50669099 9.53224𝐸 −09
Mean 1.836717634 530.442542 39.933721918 17.86118196 0.59160704 0.398901513 27.28932938 0.000161047
Worst 20.41255589 1427.570578 70.708954223 19.24540999 1.749078665 3.986765311 28.77578053 0.001214443
Std. 4.605435894 299.0234027 13.215780402 0.617903448 0.57410589 1.227005992 0.537375926 0.000359017

𝑓6(𝑥)
Best 7.69118𝐸 −06 13.55667233 1.888545𝐸 − 12 5.85581𝐸 −08 0 5.47537𝐸 − 06 1.671870558 0
Mean 9.79475𝐸 −06 19.24687067 5.975184𝐸 − 12 1.68807𝐸 −07 3.77265𝐸 −10 0.000265874 2.125011694 0
Worst 1.13079𝐸 −05 25.44278333 1.122444𝐸 − 11 4.86966𝐸 −07 1.85832𝐸 −09 0.000603906 2.710216862 0
Std. 9.19879𝐸 −07 4.68251131 2.832052𝐸 − 12 9.4266𝐸−08 4.55015𝐸 −10 0.000212809 0.301038821 0

𝑓7(𝑥)
Best 0.021225243 0.198906064 0.0171466731 0.01217843 0.001333226 0.029750255 0.000690044 0.001333226
Mean 0.039176522 0.294912344 0.0240711071 0.024336378 0.003336074 0.108161359 0.002471843 0.003336074
Worst 0.0606201 0.372732671 0.0301412708 0.034138264 0.004764046 0.160329105 0.005679536 0.004764046
Std. 0.011065883 0.061817637 0.0041777349 0.007196828 0.000889975 0.044585434 0.001443844 0.000889975

FPA, and CSO, respectively. The mean value of EOCSO is1.61047𝐸 − 5, which is 5, 7, 4, 4, 4, 4, and 6 orders of
magnitude higher than that of the compared algorithms,
respectively. Besides, EOCSO algorithm is also superior to
seven other intelligent algorithms in terms of the worst
value and standard variance. It comes to a conclusion that
EOCSO algorithm has high precision and good robustness
in searching high-dimensional unimodal function.

The test statistical result of functions 𝑓8 ∼ 𝑓13 is
demonstrated inTable 8, fromwhichwe can find that EOSCO

algorithm can obtain global optimal extreme value for 𝑓8, 𝑓7,
and𝑓11, which is free from interference of local extreme value.
For other algorithms, onlyCSO can obtain global optimum in
searching of𝑓9 and𝑓11. For𝑓10, the result is almost equivalent
to that of EOCSO, CSO, and CS. Therefore, the original CSO
is suitable to solve this function; the improvement of the
solution after optimization is not obvious. With regard to𝑓12 ∼ 𝑓13, EOSCO does better than five other algorithms in
precision and standard variance of its solution, which reflects
the advantage of EOCSO.

Mathematical Problems in Engineering 11

Ta
bl
e
8:
Te
st
sta

tis
tic

al
re
su
lts

of
fu
nc
tio

ns
𝑓 8∼

𝑓 13.
Be

nc
hm

ar
k
fu
nc
tio

n
BA

PS
O

D
E

AC
O

CS
FP

A
CS

O
EO

CS
O

𝑓 8(𝑥
)

Be
st

−850
2.897

133
−796

3.943
031

−125
69.47

9219
−609

0.034
663

−900
9.250

145
−106

94.82
285

−913
3.943

944
−125

69.48
662

M
ea
n

−706
0.928

51
−668

2.009
356

−125
46.70

5396
−806

0.242
464

−844
9.968

964
−100

97.82
587

−818
6.965

487
−124

74.61
802

W
or
st

−596
9.754

314
−562

2.614
213

−123
69.79

3372
−351

.7590
3

−798
6.143

265
−946

6.344
181

−708
7.508

251
−124

05.53
547

St
d.

779.3
4696

24
760.0

2723
6

53.13
1673

569.1
1835

89
345.8

1354
05

423.0
4983

9
596.4

3764
56

51.69
7959

7
𝑓 9(𝑥

)
Be

st
30.84

5981
72

71.56
7413

19
47.02

9598
55

108.4
7582

59
6.691

2494
69

15.91
9437

94
0

0
M
ea
n

75.66
8830

74
134.1

7367
91

60.42
4572

92
124.3

7567
51

13.42
9285

34
22.83

5140
81

0
0

W
or
st

146.2
6024

58
177.1

4072
32

71.54
9306

22
138.2

0300
82

20.70
5247

53
27.46

7636
0

0
St
d.

32.32
8010

39
35.88

8651
5

7.058
8392

27
7.737

6680
73

4.409
1052

46
3.170

1926
21

0
0

𝑓 10(𝑥
)

Be
st

11.60
9898

73
4.914

0396
21

4.528
1𝐸−

07
6.545

39𝐸
−05

4.440
89𝐸

−15
2.013

3155
03

4.440
89𝐸

−15
4.440

89𝐸
−15

M
ea
n

13.64
7459

22
5.590

1797
83

6.074
84𝐸

−07
0.000

1390
3

4.747
31𝐸

−15
2.981

7226
85

5.506
71𝐸

−15
4.705

07𝐸
−15

W
or
st

15.09
8607

99
6.074

4855
44

7.843
82𝐸

−07
0.000

2211
4

5.093
61𝐸

−15
4.298

1046
68

7.993
61𝐸

−15
7.993

61𝐸
−15

St
d.

0.891
1269

43
0.311

5637
18

1.110
25𝐸

−07
3.807

77𝐸
−05

2.256
09𝐸

−16
0.762

3418
32

1.670
35𝐸

−15
7.999

19𝐸
−16

𝑓 11(𝑥
)

Be
st

44.79
0002

42
0.997

4969
62

6.550
65𝐸

−12
0.192

4909
67

0
0.000

1526
41

0
0

M
ea
n

79.03
6945

57
1.203

7846
05

1.424
00𝐸

−10
0.360

2438
29

0
0.016

6359
09

0
0

W
or
st

136.5
8212

55
1.333

7713
15

5.741
06𝐸

−10
0.540

7313
19

0
0.029

6922
65

0
0

St
d.

23.79
3022

99
0.092

6910
68

1.636
74𝐸

−10
0.092

2819
83

0
0.009

1925
96

0
0

𝑓 12(𝑥
)

Be
st

5.506
7661

96
2.320

3910
97

1.494
15𝐸

−13
1.118

88𝐸
−06

1.027
81𝐸

−09
2.914

91𝐸
−06

0.072
4869

35
1.570

54𝐸
−32

M
ea
n

2371
.1209

96
5.817

9997
46

5.972
28𝐸

−13
8.949

1𝐸−
06

0.024
3152

41
0.288

0221
93

0.127
6821

99
8.790

42𝐸
−30

W
or
st

2384
4.459

81
9.370

1642
48

2.126
38𝐸

−12
2.616

83𝐸
−05

0.103
6690

22
5.455

2854
01

0.294
3654

91
5.22𝐸

−29
St
d.

6390
.9376

13
2.137

9937
61

4.267
2𝐸−

13
7.292

49𝐸
−06

0.033
9059

83
1.217

9021
88

0.063
7138

49
1.379

18𝐸
−29

𝑓 13(𝑥
)

Be
st

64.83
3293

41
7.038

5807
66

9.448
77𝐸

−13
9.899

13𝐸
−06

4.116
1𝐸−

08
0.153

3462
38

0.809
4971

51
1.349

78𝐸
−32

M
ea
n

5713
41.87

89
13.34

7882
67

3.571
22𝐸

−12
6.392

3𝐸−
05

0.056
0269

31
11.23

6151
56

1.073
1873

4
4.630

24𝐸
−28

W
or
st

5468
139.5

56
20.53

9508
99

1.568
88𝐸

−11
0.000

3096
68

0.393
9674

38
24.58

4055
68

1.574
4274

31
9.172

5𝐸−
27

St
d.

1242
194.3

66
4.368

6035
18

3.041
6𝐸−

12
6.799

6𝐸−
05

0.097
1889

74
8.579

6011
22

0.193
2508

44
2.050

01𝐸
−27

12 Mathematical Problems in Engineering

Ta
bl
e
9:
Te
st
sta

tis
tic

al
re
su
lts

of
fu
nc
tio

ns
𝑓 14∼

𝑓 18.
Be

nc
hm

ar
k

fu
nc
tio

n
BA

PS
O

D
E

AC
O

CS
FP

A
CS

O
EO

CS
O

𝑓 14(𝑥
)

Be
st

0.998
0038

38
0.998

0038
38

0.998
0038

38
1.000

6474
39

0.998
0038

38
0.998

0038
38

0.998
0038

38
0.998

0038
38

M
ea
n

6.991
4913

27
0.998

0038
39

0.998
0038

38
1.937

8123
39

0.998
0038

38
0.998

0038
38

0.998
0038

38
0.998

0038
38

W
or
st

20.15
3486

96
0.998

0038
4

0.998
0038

38
3.969

8930
97

0.998
0038

38
0.998

0038
38

0.998
0038

38
0.998

0038
38

St
d.

5.441
6197

71
5.350

15𝐸
−10

0
0.739

5740
7

0
0

0
0

𝑓 15(𝑥
)

Be
st

0.000
3078

34
0.000

3074
98

0.000
3682

58
0.001

3250
92

0.000
4837

32
0.000

3074
86

0.000
3301

35
0.000

3074
86

M
ea
n

0.001
4789

32
0.000

5102
63

0.000
6297

79
0.002

4837
53

0.000
7073

71
0.000

3074
86

0.000
6158

81
0.000

3074
86

W
or
st

0.007
7755

18
0.000

7803
25

0.000
7646

69
0.004

4876
98

0.001
2277

85
0.000

3074
86

0.001
2625

43
0.000

3074
86

St
d.

0.001
5221

32
0.000

1973
39

0.000
1071

55
0.000

9076
77

0.000
1956

84
1.084

2𝐸−
19

0.000
2087

36
0

𝑓 16(𝑥
)

Be
st

−3.8
6278

2147
−3.8

6278
1836

−3.8
6278

2148
−3.8

6278
2111

−3.8
6278

2148
−3.8

6278
2148

−3.8
6278

2148
−3.8

6278
2148

M
ea
n

−3.8
6278

2125
−3.8

6277
6258

−3.8
6278

2148
−3.8

6278
1771

−3.8
6278

2148
−3.8

6278
2148

−3.8
6278

2148
−3.8

6278
2148

W
or
st

−3.8
6278

2102
−3.8

6276
3876

−3.8
6278

2148
−3.8

6278
0215

−3.8
6278

2148
−3.8

6278
2148

−3.8
6278

2146
−3.8

6278
2148

St
d.

1.448
04𝐸

−08
4.860

58𝐸
−06

2.278
13𝐸

−15
4.043

55𝐸
−07

2.278
13𝐸

−15
2.278

13𝐸
−15

4.922
4𝐸−

10
2.278

13𝐸
−15

𝑓 17(𝑥
)

Be
st

−3.3
2199

4333
−3.3

2195
0303

−3.3
2199

5172
−3.3

1701
2353

−3.3
2199

515
−3.3

2199
5172

−3.3
2199

5172
−3.3

2199
5172

M
ea
n

−3.2
6254

6901
−3.2

2848
4991

−3.3
2144

0415
−3.2

4287
723

−3.2
8632

7027
−3.3

2199
5172

−3.2
9175

2652
−3.3

2199
5172

W
or
st

−3.2
0309

8591
−3.1

3221
8821

−3.3
1100

0677
−2.9

4984
9459

−3.2
0309

9953
−3.3

2199
5172

−3.2
0011

1233
−3.3

2199
5172

St
d.

0.060
9907

36
0.081

3266
77

0.002
4573

11
0.089

8974
5

0.055
8992

37
4.556

26𝐸
−16

0.053
4784

49
9.112

52𝐸
−16

𝑓 18(𝑥
)

Be
st

−10.
5364

095
−10.

5350
8305

−10.
5364

0982
−10.

4339
5927

−10.
5364

0982
−10.

5364
0982

−10.
5364

0982
−10.

5364
0981

M
ea
n

−6.2
8264

9281
−9.2

7374
6833

−10.
5364

0982
−9.4

6415
9333

−10.
5364

0982
−10.

5364
0982

−10.
5353

6203
−10.

5363
6531

W
or
st

−2.4
2733

5106
−2.4

2592
9198

−10.
5364

0982
−5.1

3977
6016

−10.
5364

0982
−10.

5364
0982

−10.
5208

1005
−10.

5359
5233

St
d.

3.666
6093

04
2.640

5075
1

3.991
58𝐸

−13
1.221

3265
02

3.645
01𝐸

−15
0.000

1027
6

0.003
5342

47
1.822

5𝐸−
15

Mathematical Problems in Engineering 13

Number of iterations

10−2

10−1

10−3

10−4

CSO
AGD-CSO
ATD-CSO

10 20 30 40 50

Be
st

va
lu

e o
f f

un
ct

io
n
f
15

Figure 5: Convergence rates for 𝑓15(𝑥).

Number of iterations

CSO
AGD-CSO
ATD-CSO

10 20 30 40 50

−1.5

−2.0

−2.5

−3.0

−3.5

Be
st

va
lu

e o
f f

un
ct

io
n
f
17

Figure 6: Convergence rates for 𝑓17(𝑥).

In Table 9, the test statistical result of low-dimension
multimodal functions 𝑓14 ∼ 𝑓18 is described. EOCSO and
seven other algorithms can be seen to be able to get the global
optimum in searching process, but EOCSO has fixed advan-
tages in its mean value, worst value, and standard variance.
“Error” on𝑦-axis is the error between actual globalminimum
and converged minimum. The convergence graphs of the 6
algorithms are expressed in Figures 7–24. In EOCSO algo-
rithm, its convergence rate of all 18 functions ismore excellent
than that in the other five algorithms, especially for 𝑓1 ∼ 𝑓4,𝑓6, and 𝑓8 ∼ 𝑓13. The convergence curve is quite smooth and
drops rapidly, reflecting its good convergence rate.

Number of iterations

20

0

−20

−40

−60

−80

−100

−120

−140

−160

−180

−200

−220

(lo
g 1

0
(f

1
(x
))
);

er
ro

r=
1.
19
e
−
20
1

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

200 400 600 800 1000

Be
st

va
lu

e o
f f

un
ct

io
n
f
1

Figure 7: Convergence rates for 𝑓1(𝑥).

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

(lo
g 1

0
(f

2
(x
))
);

er
ro

r=
6
.5
8e

−
11
6

20

10

0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100

−110

−120
200 400 600 800 1000

Be
st

va
lu

e o
f f

un
ct

io
n
f
2

Figure 8: Convergence rates for 𝑓2(𝑥).

4.7. Structural Design Examples. In order to validate the
performance of proposed method for constraint problems,
EOCSO is examined by solving constrained engineering
design problems, such as speed reducer design problem and
pressure vessel design problem.

4.7.1. Speed Reducer Design Problem. Speed reducer design
problem is proposed by the famous scholar Mezura-Montes,
which is a classic constrained optimization and is used
to verify the design engineering constrained optimization
algorithm performance, as shown in Figure 25. There are 7

14 Mathematical Problems in Engineering

Table 10: Comparison of the best solutions obtained by different methods for speed reducer design problem.

EOCSO PSO-DE [31] MBA [32] HEAA [33] HGA [34]𝑥1 3.500000000000003 3.5000000 3.500000 3.5000228993 3.500000𝑥2 0.700000000000000 0.700000 0.700000 0.7000003924 0.700000𝑥3 17.00000000000000 17.000000 17.000000 17.0000128592 17𝑥4 7.300000000000000 7.300000 7.300033 7.3004277414 7.300000𝑥5 7.715319911478278 7.800000 7.715772 7.7153774494 7.71533234𝑥6 3.350214666096451 3.350214 3.350218 3.3502309666 3.35021511𝑥7 5.286654464980222 5.2866832 5.286654 5.2866636970 5.28666404𝑔1(𝑥) −0.073915280397874 −0.07391528 −0.07391528 −0.07392283 −0.07391528𝑔2(𝑥) −0.197998527141950 −0.19799853 −0.19799853 −0.19800568 −0.19799853𝑔3(𝑥) −0.499172248102422 −0.49917185 −0.49916745 −0.49909455 −0.49917251𝑔4(𝑥) −0.904643904556068 −0.90147170 −0.90462711 −0.90464255 −0.90464413𝑔5(𝑥) −3.33066907388𝑒 − 15 5.96466298𝑒 − 07 −2.93020139𝑒 − 06 −1.3895524𝑒 − 05 −3.97499993𝑒 − 07𝑔6(𝑥) 0 1.68865328𝑒 − 08 3.505341306𝑒 − 07 −5.2295669𝑒 − 06 −5.43110185𝑒 − 06𝑔7(𝑥) −0.702500000000000 −0.7025000 −0.70250000 −0.7024996 −0.70250000𝑔8(𝑥) −8.881784197001𝑒 − 16 0 0 −6.1140457𝑒 − 06 0𝑔9(𝑥) −0.583333333333333 −0.58333333 −0.58333333 −0.58333078 −0.58333333𝑔10(𝑥) −0.051325753541825 −0.05132589 −0.05132936 −0.05137799 −0.05132566𝑔11(𝑥) −4.21884749358𝑒 − 15 −0.01085237 −5.86590687𝑒 − 005 −6.14133272𝑒 − 06 −2.45744437𝑒 − 07𝑓(𝑥) 2994.341315684048 2996.348167 2994.482453 2994.499107 2994.47

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
3
(e

rr
or

=
4
.4
9
e
−
5
1)

1010

105

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50

10−55

10−60

200 400 600 800 1000

Figure 9: Convergence rates for 𝑓3(𝑥).
variables and 11 inequality constraints of the problem. The
mathematical model is represented as follows:

min 𝑓 (𝑥)= 0.7854𝑥1𝑥22 (3.3333𝑥23 + 14.9334𝑥3 − 43.0934)− 1.508𝑥1 (𝑥26 + 𝑥27) + 7.477 (𝑥36 + 𝑥37)+ 0.7854 (𝑥4𝑥26 + 𝑥5𝑥27)
s.t. 𝑔1 (𝑥) = 27𝑥1𝑥22𝑥3 − 1 ≤ 0,𝑔2 (𝑥) = 397.5𝑥1𝑥22𝑥23 − 1 ≤ 0,

𝑔3 (𝑥) = 1.93𝑥34𝑥2𝑥3𝑥46 − 1 ≤ 0,
𝑔4 (𝑥) = 1.93𝑥35𝑥2𝑥3𝑥47 − 1 ≤ 0,
𝑔5 (𝑥) = [(745𝑥4/𝑥2𝑥3)2 + 16.9 × 106]1/2110𝑥36 − 1 ≤ 0,
𝑔6 (𝑥) = [(745𝑥5/𝑥2𝑥3)2 + 157.5 × 106]1/285𝑥37 − 1
≤ 0,
𝑔7 (𝑥) = 𝑥2𝑥340 − 1 ≤ 0,
𝑔8 (𝑥) = 5𝑥2𝑥1 − 1 ≤ 0,𝑔9 (𝑥) = 𝑥112𝑥2 − 1 ≤ 0,
𝑔10 (𝑥) = 1.5𝑥6 + 1.9𝑥4 − 1 ≤ 0,
𝑔11 (𝑥) = 1.5𝑥6 + 1.7𝑥5 − 1 ≤ 0,

(13)

where 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤𝑥4, 𝑥 5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, and 5.0 ≤ 𝑥7 ≤ 5.5. This
case study has been previously solved using other methods
such as PSO-DE [31], MBA [32], HEAA [33], and HGA [34].
The best results of the various methods for solving the speed
reducer design problem are shown in Table 7. Table 8 shows
the statistical results of the different methods.

It can be seen from Table 10 that the optimal solution
of the EOCSO algorithm is better than the other 4 kinds

Mathematical Problems in Engineering 15

Table 11: Comparison of statistical results for speed reducer design problem by the various algorithms.

Algorithm Best Mean Worst Std.
EOCSO 2994.3413156840 2994.3413169852 2994.3413180138 1.2012791𝐸 − 06
PSO-DE [29] 2996.348167 2996.348174 2996.348204 6.4𝐸 − 06
MBA [34] 2994.482453 2996.769019 2999.652444 1.56
HEAA [30] 2994.499107 2994.613368 2994.752311 7.0𝐸 − 02
HGA [25] 2994.47 NA NA NA

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
4
(e

rr
or

=
1.
4
19
e
−
17
)

104

102

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−18

10−20

200 400 600 800 1000

Figure 10: Convergence rates for 𝑓4(𝑥).

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
5
(e

rr
or

=
9
.5
3
e
−
09
)

1010

108

106

104

102

100

10−2

10−4

10−6

10−8

10−10

200 400 600 800 1000

Figure 11: Convergence rates for 𝑓5(𝑥).
of algorithms. From Table 11, the optimal value, the average
value, and the worst value of EOCSO are better than those
of the other 4 algorithms. In terms of stability, the standard
deviation of EOCSO is smaller than those ofMBA andHEAA
algorithms by 6 and 4 orders of magnitude, respectively.

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

1010

105

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

10−40

10−45

10−50
f
6
(e

rr
or

=
0)

200 400 600 800 1000

Figure 12: Convergence rates for 𝑓6(𝑥).

Number of iterations

BA PSO
DE ACO

FPA
CSO EOCSO
CS

Be
st

va
lu

e o
f f

un
ct

io
n

f
7
(e

rr
or

=
1.
3
3
e
−
3
)

102

101

100

10−1

10−2

10−3

10−4

200 400 600 800 1000

Figure 13: Convergence rates for 𝑓7(𝑥).
4.7.2. Pressure Vessel Design Problem. Another benchmark
structural optimization problem is the pressure vessel design
problem proposed by Kannan and Kramer. Figure 26 shows
a pressure vessel design problem which has four variables
(𝑥1, 𝑥2, 𝑥3, 𝑥4) and four nonlinear inequality constraints

16 Mathematical Problems in Engineering

Table 12: Comparison of the best solutions for pressure vessel design problem by different algorithms.

Algorithm 𝑥1 𝑥2 𝑥3 𝑥4 𝑔1 (𝑥) 𝑔2 (𝑥) 𝑔3 (𝑥) 𝑔4 (𝑥) 𝑓 (𝑥)
EOCSO 0.778169 0.384649 40.31962 200 −7.20𝐸 − 11 −1.12𝐸 − 09 −4.29𝐸 − 04 −40 5885.3328
CS [7] 0.8125 0.4375 42.098446 176.636596 — — — — 6059.714
MBA [32] 0.7802 0.3856 40.4292 198.4964 0 0 −86.3645 −41.5035 5889.3216
HCS-LSAL [38] 0.8125 0.4375 42.09844 176.6366 −2.01𝐸 − 09 −0.0331588 −0.002495 −63.3634 6059.7143
NM-PSO [39] 0.8036 0.3972 41.6392 182.412 3.65𝐸 − 05 3.79𝐸 − 05 −1.5914 −57.5879 5930.3137
CSA [41] 0.8125 0.4375 42.098445 176.636598 −4.02𝐸 + 09 −0.0358808 −7.12𝐸 + 04 −63.3634 6059.7144

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
8
(e

rr
or

=
3
.8
e
−
4
)

−2000

−3000

−4000

−5000

−6000

−7000

−8000

−9000

−10000

−11000

−12000
200 400 600 800 1000

Figure 14: Convergence rates for 𝑓8(𝑥).
(𝑔1, 𝑔2, 𝑔3, 𝑔4). The objective function of the problem can be
expressed as follows:

min 𝑓 (𝑥)
= 0.6224𝑥1𝑥3𝑥4 + 1.7881𝑥2𝑥23 + 3.1661𝑥21𝑥4
+ 19.84𝑥21𝑥3

s.t. 𝑔1 (𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0𝑔2 (𝑥) = −𝑥2 + 0.0095𝑥3 ≤ 0
𝑔3 (𝑥) = −𝜋𝑥23𝑥4 − 43𝜋𝑥33 + 129000 ≤ 0𝑔4 (𝑥) = 𝑥4 − 240 ≤ 0,

(14)

where 0 ≤ 𝑥1, 𝑥2 ≤ 100 and 10 ≤ 𝑥3, 𝑥4 ≤ 200.
The approaches have previously been applied to solve this
problem including many different numerical optimization
techniques, such as the new modification approach on bat
algorithm (EBA) [35], the cuckoo search (CS) algorithm
[7], interior search algorithm (ISA) [36], the mine blast
algorithm (MBA) [32], the improved ant colony optimization
(IACO) [37], an effective hybrid cuckoo search algorithm
for constrained global optimization (HCS-LSAL) [38], the
hybrid Nelder-Mead simplex search and particle swarm

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

105

103

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

f
9
(e

rr
or

=
0)

200 400 600 800 1000

Figure 15: Convergence rates for 𝑓9(𝑥).

Number of iterations

Be
st

va
lu

e o
f f

un
ct

io
n

105

103

101

10−1

10−3

10−5

10−7

10−9

10−11

10−13

10−15

BA PSO
DE ACO

FPA
CSO EOCSO
CS

f
10

(e
rr

or
=
4
.4
4
e
−
15
)

200 400 600 800 1000

Figure 16: Convergence rates for 𝑓10(𝑥).
optimization (NM-PSO) [39], an improved accelerated PSO
algorithm [40], and crow search algorithm (CSA) [41].

The best solutions obtained by the various methods are
reported in Table 12. Table 13 shows the statistical results. It

Mathematical Problems in Engineering 17

Table 13: Statistical results of different approaches for pressure vessel design problem.

Algorithm Best Mean Worst Std.
EOCSO 5885.3328 5885.3328 5885.33279 5.14𝐸 − 06
EBA [35] 6059.71 6173.67 6370.77 142.33
CS [7] 6059.714 6447.736 6495.347 502.693
ISA [36] 6059.71 6410.08 7332.84 384.6
MBA [32] 5889.32 6200.64 6392.5 160.34
IACO [37] 6059.73 6081.78 6150.13 67.2418
HCS-LSAL [38] 5930.3137 5946.7901 5960.0557 9.1614
NM-PSO [39] 6059.7143 6087.3225 6137.4069 2.21𝐸 − 02
IAPSO [40] 6059.7143 6068.7539 6090.5314 14.0057
CSA [41] 6059.714363 6342.499106 7332.841621 384.9454163

Number of iterations

Be
st

va
lu

e o
f f

un
ct

io
n

104

102

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−18

10−20

f
11
(e

rr
or

=
0)

BA PSO
DE ACO

FPA
CSO EOCSO
CS

200 400 600 800 1000

Figure 17: Convergence rates for 𝑓11(𝑥).

f
12

(e
rr

or
=
1.
5
7
e
−
3
2)

109

105

101

10−3

10−7

10−11

10−15

10−19

10−23

10−27

10−31

10−35

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

200 400 600 800 1000

Figure 18: Convergence rates for 𝑓12(𝑥).

Number of iterations

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
13

(e
rr

or
=
1.
3
5
e
−
3
2)

1010

107

104

101

10−2

10−5

10−8

10−11

10−14

10−17

10−20

10−23

10−26

10−29

10−32

10−35

200 400 600 800 1000

Figure 19: Convergence rates for 𝑓13(𝑥).

Number of iterations
10 20 30 40 50

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
14

(e
rr

or
=
0)

30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0

Figure 20: Convergence rates for 𝑓14(𝑥).

18 Mathematical Problems in Engineering

Number of iterations
10 20 30 40 50

BA PSO
DE ACO

FPA
CSO EOCSO
CS

Be
st

va
lu

e o
f f

un
ct

io
n

10−1

10−2

10−3

10−4

f
15

(e
rr

or
=
0)

Figure 21: Convergence rates for 𝑓15(𝑥).

Number of iterations
10 20 30 40 50

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
16

(e
rr

or
=
0)

−3.50

−3.55

−3.60

−3.65

−3.70

−3.75

−3.80

−3.85

−3.90

Figure 22: Convergence rates for 𝑓16(𝑥).
is shown in Tables 12 and 13 that EOCSO performance for
the pressure vessel design problem surpassed the other 10
methods in terms of the minimum obtained value, solution
average, and the standard deviation.

5. Conclusion

In this paper, an improved chicken swarm algorithm based
on elite opposition-based learning is proposed to overcome
the disadvantages of the deficiencies of lack of population
diversity, being easy to stick to “premature,” and low search-
ing precision in later stage of evolution in chicken swarm
algorithm. Search mode of dynamic adaptive 𝑡 distribution
is applied for cock swarm to balance the global development

Number of iterations
10 20 30 40 50

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
17

(e
rr

or
=
0)

−1.6

−1.8

−2.0

−2.2

−2.4

−2.6

−2.8

−3.0

−3.2

−3.4

Figure 23: Convergence rates for 𝑓17(𝑥).

Number of iterations
10 20 30 40 50

BA
PSO
DE
ACO

CS
FPA
CSO
EOCSO

Be
st

va
lu

e o
f f

un
ct

io
n

f
18

(e
rr

or
=
0)

0

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

Figure 24: Convergence rates for 𝑓18(𝑥).

z

d

d

l1

l2

Figure 25: Speed reducer design problem.

Mathematical Problems in Engineering 19

L

RR

Ts Th

Figure 26: The pressure vessel design problem.

ability and local exploitation ability of the algorithm. Search
mode of elite opposition-based learning is used to enrich
population diversity for hen swarm. Greedy dimension-
by-dimension searching is used for individual of optimal
chicken swarm to do local search, which improves the search
precision and convergence rate of the algorithm. Numerical
experiments of 18 standard test functions and 2 engineering
structure optimization problems are conducted to verify
the availability and feasibility of the algorithm. The search
precision, convergence rate, and robustness are all better than
those in other typical intelligent algorithms.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is financially supported by the Natural
Science Foundation of Guangxi Province (Grant no.
2014GXNSFBA118283) and the Higher School Scientific
Research Project of Guangxi Province (Grant no.
2013YB247).

References

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, December 1995.

[2] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no.
1, pp. 29–41, 1996.

[3] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[4] A. R.Mehrabian and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Infor-
matics, vol. 1, no. 4, pp. 355–366, 2006.

[5] X. S. Yang, “Firefly algorithm,” in Engineering Optimization, pp.
221–230, John Wiley & Sons, Hoboken, NJ, USA, 2010.

[6] X. S. Yang, “Firefly algorithms for multimodal optimization,”
in Stochastic Algorithms: Foundations and Applications: 5th
International Symposium, SAGA 2009, Sapporo, Japan, October
26–28, 2009. Proceedings, vol. 5792 of Lecture Notes in Computer
Science, pp. 169–178, Springer, Berlin, Germany, 2009.

[7] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural opti-
mization problems,” Engineering with Computers, vol. 29, no. 1,
pp. 17–35, 2013.

[8] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[9] X.-L. Li, Z.-J. Shao, and J.-X. Qian, “Optimizing method
based on autonomous animats: fish-swarm Algorithm,” System
EngineeringTheory and Practice, vol. 22, no. 11, pp. 32–38, 2002.

[10] X. S. Yang, “A new metaheuristic bat-inspired algorithm,” in
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), pp. 65–74, Springer, Berlin, Germany, 2010.

[11] X.-S. Yang and A. H. Gandomi, “Bat algorithm: a novel
approach for global engineering optimization,” Engineering
Computations, vol. 29, no. 5, pp. 464–483, 2012.

[12] R. Zhao andW. Tang, “Monkey algorithm for global numerical
optimization,” Journal of Uncertain Systems, vol. 2, no. 3, pp.
165–176, 2008.

[13] X. Yang, “Flower pollination algorithm for global optimization,”
in Unconventional Computation and Natural Computation,
vol. 7445 of Lecture Notes in Computer Science, pp. 240–249,
Springer, Berlin, Germany, 2012.

[14] X. Meng, Y. Liu, X. Gao et al., “A new bio-inspired algorithm:
chicken swarm optimization,” in Advances in Swarm Intelli-
gence, vol. 8794 of Lecture Notes in Computer Science, pp. 86–94,
Springer, 2014.

[15] Y. Chen, P. He, and Y. Zhang, “Combining penalty function
with modified chicken swarm optimization for constrained
optimization,” in Proceedings of the 1st International Conference
on Information Sciences, Machinery, Materials and Energy, pp.
1899–1907, Atlantis Press, Chongqing, China, April 2015.

[16] S. Liang, T. Feng, and G. Sun, “Sidelobe-level suppression
for linear and circular antenna arrays via the cuckoo
search–chicken swarm optimisation algorithm,” IET
Microwaves, Antennas & Propagation, vol. 11, no. 2, pp.
209–218, 2017.

[17] Y. L. Chen, P. L. He, and Y. H. Zhang, “Combining penalty func-
tionwithmodified chicken swarm optimization for constrained
optimization,” Advances in Intelligent Systems Research, vol. 126,
pp. 1899–1907, 2015.

[18] F.-J. Zhou, X.-J. Wang, and M. Zhang, “Evolutionary program-
ming using mutations based on the t probability distribution,”
Acta Electronica Sinica, vol. 36, no. 4, pp. 667–671, 2008.

[19] H. R. Tizhoosh, “Opposition-based learning: a new scheme
for machine intelligence,” in Proceedings of the International
Conference on Computational Intelligence for Modelling, Control
and Automation (CIMCA ’05) and International Conference
on Intelligent Agents, Web Technologies and Internet Commerce
(IAWTIC ’05), pp. 695–701, November 2005.

[20] R. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition-based differential evolution,” IEEETransactions on
Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[21] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca,
“Enhancing particle swarm optimization using generalized
opposition-based learning,” Information Sciences, vol. 181, no.
20, pp. 4699–4714, 2011.

[22] X.-W. Xia, J.-N. Liu, K.-F. Gao, Y. Li, and H. Zeng, “Particle
swarm optimization algorithm with reverse-learning and local-
learning behavior,” Chinese Journal of Computers, vol. 38, no. 7,
pp. 1397–1407, 2015.

20 Mathematical Problems in Engineering

[23] Y. Zhong, X. Liu, L. Wang, and C. Wang, “Particle swarm
optimisation algorithm with iterative improvement strategy for
multi-dimensional function optimisation problems,” Interna-
tional Journal of Innovative Computing and Applications, vol. 4,
no. 3-4, pp. 223–232, 2012.

[24] S. Rahnamayan,H. R. Tizhoosh, andM.M.A. Salama, “Opposi-
tion versus randomness in soft computing techniques,” Applied
Soft Computing Journal, vol. 8, no. 2, pp. 906–918, 2008.

[25] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[26] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

[27] L. Li, Y. Zhou, and J. Xie, “A free search krill herd algorithm for
functions optimization,”Mathematical Problems in Engineering,
vol. 2014, Article ID 936374, 21 pages, 2014.

[28] X. Li, J. Zhang, andM. Yin, “Animal migration optimization: an
optimization algorithm inspired by animalmigration behavior,”
Neural Computing and Applications, vol. 24, no. 7-8, pp. 1867–
1877, 2014.

[29] P. Civicioglu and E. Besdok, “A conceptual comparison of the
Cuckoo-search, particle swarmoptimization, differential evolu-
tion and artificial bee colony algorithms,” Artificial Intelligence
Review, vol. 39, no. 4, pp. 315–346, 2013.

[30] E. Nabil, “A modified flower pollination algorithm for global
optimization,” Expert Systems with Applications, vol. 57, pp. 192–
203, 2016.

[31] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm opti-
mization with differential evolution for constrained numerical
and engineering optimization,” Applied Soft Computing, vol. 10,
no. 2, pp. 629–640, 2010.

[32] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi,
“Mine blast algorithm: a new population based algorithm
for solving constrained engineering optimization problems,”
Applied Soft Computing, vol. 13, no. 5, pp. 2592–2612, 2013.

[33] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan, “Constrained opti-
mization based on hybrid evolutionary algorithm and adap-
tive constraint-handling technique,” Structural and Multidisci-
plinary Optimization, vol. 37, no. 4, pp. 395–413, 2009.

[34] K. Deep and K. N. Das, “A novel hybrid genetic algorithm
for constrained optimization,” International Journal of System
Assurance Engineering and Management, vol. 4, no. 1, pp. 86–
93, 2013.

[35] S. Yılmaz and E. U. Küçüksille, “A new modification approach
on bat algorithm for solving optimization problems,” Applied
Soft Computing, vol. 28, pp. 259–275, 2015.

[36] A. H. Gandomi, “Interior search algorithm (ISA): a novel
approach for global optimization,” ISA Transactions, vol. 53, no.
4, pp. 1168–1183, 2014.

[37] A. Kaveh and S. Talatahari, “An improved ant colony optimiza-
tion for constrained engineering design problems,” Engineering
Computations, vol. 27, no. 1, pp. 155–182, 2010.

[38] W. Long, X. Liang, Y. Huang, and Y. Chen, “An effective hybrid
cuckoo search algorithm for constrained global optimization,”
Neural Computing andApplications, vol. 25, no. 3-4, pp. 911–926,
2014.

[39] E. Zahara and Y.-T. Kao, “Hybrid Nelder-Mead simplex search
and particle swarm optimization for constrained engineering
design problems,” Expert Systems with Applications, vol. 36, no.
2, pp. 3880–3886, 2009.

[40] N. Ben Guedria, “Improved accelerated PSO algorithm for
mechanical engineering optimization problems,” Applied Soft
Computing Journal, vol. 40, pp. 455–467, 2016.

[41] A. Askarzadeh, “A novel metaheuristic method for solving
constrained engineering optimization problems: crow search
algorithm,” Computers & Structures, vol. 169, pp. 1–12, 2016.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

