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Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic
algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken
swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on
adaptive 𝑡 distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and
local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population
diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in
order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure
optimization problems, this algorithmhas better effect on optimization precision and speed comparedwith basic chicken algorithm
and other intelligent optimization algorithms.

1. Introduction

Many problems in areas of scientific computing, engineering
science, and businessmanagement can be concluded as global
optimum problems. The consumption time of traditional
accurate computation approaches for solving large-scale opti-
mization problems increases exponentially. So this approach
cannot meet the real requirements. To solve these problems,
many scholars, by simulating life habits of creatures in the
nature, presented intelligent swarm optimization algorithms
including particle swarm optimization (PSO) [1], ant colony
optimization (ACO) [2], artificial bee colony (ABC) [3],
invasive weed colonization optimization (IWO) [4], firefly
algorithm (FA) [5, 6], cuckoo search (CS) algorithm [7, 8],
fish swarm algorithm (FSA) [9], bat algorithm (BA) [10, 11],
monkey algorithm (MA) [12], krill herd (KH) algorithm, and
flower pollination algorithm (FPA) [13]; all these have gained
favorable results. As a new kind of burgeoning metaheuristic
algorithm, intelligent swarm optimization algorithms have
characteristics of high precision, fast convergence rate, and

good stability and can obtain the exact solution or approxi-
mate solution of large-scale optimum problems within lim-
ited time.

Chicken swarm optimization (CSO) is a new intelligent
bionic algorithm proposed by Meng et al. [14] in 2014,
which simulates chickens swarm hierarchy and their food
search behavior. The whole chicken swarm is divided into
cock swarm, hen swarm, and chick swarm. Chickens with
highest fitness values and lowest fitness values are taken as
cock swarm and chick swarm, respectively, and the rest are
taken as hen swarm. When solving optimization problems,
each chicken in the swarm corresponds to a solution. Dif-
ferent search strategies are adopted for different subswarm
according to different population. In contrast with standard
particle swarm optimization, differential evolution, and bat
algorithm, chicken swarm has advantage in either searching
precision or convergence rate [14, 15]. In basic chicken swarm
algorithm, a random search strategy based on Gaussian dis-
tribution is adopted for particles of cock swarm. This search
strategy has strong ability of local development, but its global
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development ability is weak tomake it liable to fall into a local
optimum. For hen swarm particles, the searching is done
by common guidance of cocks of their own population and
other populations, which helps hen particles close to global
optimum.However, the population diversity will lack and the
hen particles will fall into a local optimum when most cock
particles (with cock particles of own race and other races)
are in a local optimum. Consequently, the global optimal
solution cannot be obtained and its search performance will
be affected for basic chicken swarm algorithm.

In this paper, a chicken swarm optimization algorithm
on the basis of elite opposition-based learning (EOCSO)
is presented to solve global optimum problems. A random
search strategy based on dynamic adaptive 𝑡 distribution
is adopted in this algorithm for cock swarm to replace
the random search based on Gaussian distribution. The
local exploitation ability and global development ability are
balanced. In order to improve the optimization precision
and convergence rate of the algorithm, an opposition-based
learning method is used to improve population diversity for
hen swarm and a greedy dimension-by-dimension search
mode is applied to individual of optimal chicken swarm
for local search. Through experiments of 18 basic test func-
tions and 2 engineering structure optimization measurement
problems, the comparison among improved chicken swarm
algorithm, basic chicken swarm algorithm, and other typical
intelligent algorithms is conducted to show that improved
chicken swarm algorithm has more excellent optimization
precision, convergence rate, and robustness.

2. Chicken Swarm Algorithm

Chicken swarm optimization is a new intelligent bionic
algorithm proposed according to various behaviors of cocks,
hens, and chicks in the process of searching food. In this
algorithm, chicken swarm in searching space is mapped as
specific particle individual. Cock particle swarm, hen particle
swarm, and chicken particle swarm are sorted according to
fitness value of particle, and each subswarm uses different
searching mode [16, 17].

In this algorithm, several particles with best fitness are
selected as cock particle swarm, which is given by

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + randn (0, 𝜎2) ⋅ 𝑥𝑡𝑖,𝑗, (1)

where 𝑥𝑡+1𝑖,𝑗 and 𝑥𝑡𝑖,𝑗 are the position of 𝑗th dimension of
particle 𝑖 in 𝑡+1 and 𝑡 iterations, respectively, and randn(0, 𝜎2)
is a random number of Gaussian distribution whose variance
is 𝜎2. The parameter 𝜎2 can be calculated by

𝜎2 = {{{{{
1, fit𝑖 < fit𝑘

exp((fit𝑘 − fit𝑖)(fit𝑖 + 𝜉) ) , fit𝑖 ≥ fit𝑘, (2)

where 𝑖, 𝑘 ∈ [1, 𝑟size] and 𝑖 ̸= 𝑘. 𝑟size represents the number
of cock swarms. fit𝑖 and fit𝑘 are the fitness values of cock
particle 𝑖 and 𝑘, respectively; 𝜉 represents a number which is
small enough.

Moreover, most particles with good fitness are selected as
hen swarm. Its random search is done via cocks of population
of hen and that of others, which can be expressed as

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑆1 ⋅ rand ⋅ (𝑥𝑡𝑟1,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆2 ⋅ rand
⋅ (𝑥𝑡𝑟2,𝑗 − 𝑥𝑡𝑖,𝑗) , (3)

where 𝑥𝑡𝑟1,𝑗 and 𝑥𝑡𝑟2,𝑗 are the position of cock individual 𝑟1
in the population of hen 𝑥𝑖 and cock individual 𝑟2 in the
other population, respectively. rand is an uniform random
number over [0, 1]. 𝑆1 and 𝑆2 denote the weight calculated
by

𝑆1 = exp((fit𝑖 − fit𝑟1)(fit𝑖 + 𝜉) ) ,𝑆2 = exp (fit𝑟2 − fit𝑖) ,
(4)

where fit𝑟1 and fit𝑟2 are, respectively, the fitness value of cock
individual 𝑟1 in the population of hen 𝑥𝑖 and cock individual𝑟2 in the other population.

All individuals, except for cock swarm and hen swarm,
are defined as chick swarm. Its search mode follows that of
hen swarm, which is given by

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + FL ⋅ (𝑥𝑡𝑚,𝑗 − 𝑥𝑡𝑖,𝑗) , FL ∈ [0, 2] , (5)

where FL stands for a parameter, meaning that the chick
would follow its mother to forage for food. 𝑥𝑡𝑚,𝑗 represents
the position of the 𝑖th chick’s mother (𝑚 ∈ [1,𝑁]).
3. Chicken Swarm Optimization Based on Elite
Opposition-Based Learning

3.1. RandomSearch Strategy Based onDynamicAdaptive 𝑡Dis-
tribution. In chicken swarm optimization, a random search
mode on the basis of Gaussian distribution is adopted for
cock particle searching. This search mode has strong ability
in local development, but it is weak in global exploitation.
Therefore, enlargement of search space for cock particle will
effectively reduce the risk to fall into a local optimum. Thus,
the search mode with 𝑡 distribution is used for cock particle
in order to balance the global development ability and local
exploitation ability of the algorithm.

The 𝑡 distribution, also called student distribution [18],
owns degree of freedom parameter 𝑛; its probability density
function is as follows:

𝑝𝑡 (𝑥) = Γ ((𝑛 + 1) /2)√𝑛𝜋 ⋅ Γ (𝑛/2) ⋅ (1 + 𝑥2𝑛 )
−((𝑛+1)(𝑛+1)/2) ,

−∞ < 𝑥 < +∞,
(6)

where Γ is the Gamma function and Γ(𝑛 + 1/2) = (2𝑛)!√𝜋/(𝑛)!4𝑛.
Apparently, the 𝑡 distribution is defined as Cauchy dis-

tribution density function (𝑡(𝑛 = 1) = 𝐶(0, 1)) when
degree of freedom parameter 𝑛 = 1 and is defined as
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Gaussian distribution density function when 𝑛 = ∞ (𝑡(𝑛 →∞) → 𝑁(0, 1)). Thus, Cauchy distribution and Gaussian
distribution are two special boundary cases of 𝑡 distribution.
The characteristics of Cauchy distribution and Gaussian
distribution are integrated into 𝑡 distribution, and different
mutation range can be obtained via changing degree of
freedom parameter 𝑛.

In the algorithm, random search based on dynamic
adaptive 𝑡 distribution is selected for the position of cock
particles 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑑), which is expressed as

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜓𝑖,𝑗 ⋅ 𝑡 (𝑛) ⋅ 𝑥𝑖,𝑗, (7)

where 𝑥𝑖,𝑗 is the position after random search of dynamic
adaptive 𝑡 distribution used by 𝑗th dimension of cock particle𝑖, 𝑥𝑖,𝑗 is the position of 𝑗th dimension of 𝑖th cock particle,𝑡(𝑛) is random function of 𝑡 distribution with iteration 𝑛 as
its degree of freedom, and 𝜓 is mutation control factor. Each
dimension value performs differently in searching process
of multidimensional objective function. Thus, the mutation
control factor 𝜓 has the same control strategy to each
dimension, and it cannot meet the requirement of algorithm
obviously. In this paper, dynamic adaptive mutation control
factor is used to adjust mutation range, as given by

𝜓𝑖,𝑗 = 𝛽 ⋅ 
1𝑛 ⋅
𝑛∑
𝑘=1

𝑥𝑘,𝑗 − 𝑥best,𝑗 , (8)

where 𝛽 is proportionality coefficient, 𝑛 is the number of cock
members, (1/𝑛) ⋅ ∑𝑛𝑘=1 𝑥𝑘,𝑗 is mean value of 𝑗th dimension of
cock particle in the current iteration, and 𝑥best,𝑗 is a mutated
value of 𝑗th dimension of cock particle in optimal position of
the current iteration.

In random search of dynamic adaptive 𝑡 distribution,
iteration 𝑛 is taken as degree of freedom parameter, and
dynamic adaptive mutation control factor is used to adjust
searching range. In the early stage of evolution, the search
is conducted by 𝑡 distribution (which is similar to that
via Cauchy distribution) and maintains population diver-
sity due to small 𝑛. Thus, the algorithm has good ability
of global exploitation. With increase of 𝑛, random search
of 𝑡 distribution transits gradually from that of Cauchy
distribution to that of Gaussian distribution, and random
search of 𝑡 distribution is similar to that of Gaussian distri-
bution with good ability of local development in the later
stage.

3.2. Elite Opposition-Based Learning. Elite opposition-based
learning proposed by Tizhoosh [19] is a new technology
applied to intelligent computing area, and it has been suc-
cessfully applied in many intelligent algorithm optimizations
[20–22]. Theoretically verified by Zhong and others [23],
opposition-based learning can acquire a solution that closes
to global optimal solution with a higher probability. In the
paper, elite opposition-based learning is adopted to enlarge
search range for hen swarm and enhance population diversity
so as to improve searching performance of the algorithm.The
basic thoughts are as follows.

Set the optimal cock position and its opposite position in𝑡th iteration as 𝑥𝑡best = (𝑥𝑡best,1, 𝑥𝑡best,2, . . . , 𝑥𝑡best,𝑑) and op𝑡best =(op𝑡best,1, op𝑡best,2, . . . , op𝑡best,𝑑), respectively; then
op𝑡best,𝑗 = 𝑘 ⋅ (𝑙𝑎𝑗 + 𝑢𝑏𝑗) − 𝑥𝑡best,𝑗, (9)

where 𝑥𝑡best,𝑗 ∈ [𝑙𝑎𝑗, 𝑢𝑏𝑗], 𝑘 is a coefficient which denotes (0, 1)
uniformly distributed random variable, and [𝑙𝑎𝑗, 𝑢𝑏𝑗] is the
boundary of 𝑗th dimension of search space in the current
population. The result is obtained by

𝑙𝑎𝑗 = min (𝑥𝑖,𝑗) ,
𝑢𝑏𝑗 = max (𝑥𝑖,𝑗) , (10)

where 𝑖 ∈ (1, 2, . . . , size) and 𝑗 ∈ (1, 2, . . . , 𝑑). Equation
(10) is applied to replace fixed boundary, which ensures
that cocks generate opposite solution in decreased space
range. Besides, threshold value of the opposite solution may
go beyond the range of [𝑙𝑎𝑗, 𝑢𝑏𝑗] to form a nonfeasible
solution. Traditional handling is to set the searching particle
which goes beyond borders as boundary value. As a result,
numerous searchers gather on the border. To avoid above
problem, border buffering wall is used for handling, and its
basic thoughts are as follows.

Suppose that 𝑎𝑗 is upper bound of 𝑗th dimension of
search range in the population and 𝑏𝑗 is the lower bound. If
opposite solution of the optimal individual in the population
is opbest,𝑗, the value after border buffering wall handling will
be

op𝑡best,𝑗 =
{{{{{{{{{{{{{

𝑎𝑗 ⋅ ((1 − sgn (𝑎𝑗 ⋅ 𝐿)) + sgn(𝑎𝑗 ⋅ 𝐿 ⋅ (
𝛼𝑖,𝑗 ⋅ op𝑡best,𝑗𝑎𝑗 − 𝑏𝑗 )) ⋅ rand) , op𝑡best,𝑗 > 𝑎𝑗

𝑏𝑗 ⋅ ((1 + sgn (𝑏𝑗 ⋅ 𝐿)) − sgn(𝑏𝑗 ⋅ 𝐿 ⋅ (
𝛼𝑖,𝑗 ⋅ op𝑡best,𝑗𝑎𝑗 − 𝑏𝑗 )) ⋅ rand) , op𝑡best,𝑗 < 𝑏𝑗,

(11)

where sgn is sign function and 𝐿 ∈ [0, 1] is a proper constant,
which relates to the thickness of buffering wall.

With border buffering wall to process off normal indi-
vidual, search individuals are able to decide their values
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(1) Set the generation counter 𝑡, the maximum generation max_gen, dynamic adaptive
change step step, max step step_max, the chicken individual 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑑).

(2) step = (max_gen − 𝑡)
max_gen

⋅ step_max (*)

(3) for 𝑘 = 1 : 𝑑
(4) temp = 𝑥𝑖;
(5) temp(𝑘) = temp(𝑘) + (2 ∗ rand − 1) ∗ step;
(6) if 𝑓(temp) < 𝑓(𝑥𝑖)
(7) 𝑥𝑖(𝑘) = temp(𝑘);
(8) end
(9) end

Algorithm 1

(1) Set the initial parameters, including the total population size popsize, the roosters accounts𝑁𝑟,
the hens accounts𝑁ℎ, the mother hens accounts𝑁𝑚, updating frequency of the
chicken swarm 𝐺 and the maximum number of generations itermax et al.

(2) Generate a population 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥popsize) of popsize chickens with random solutions.
(3) Calculate the fitness fitness(𝑥𝑖) and find the best solution 𝑥best of the population.
(4) for iter = 1 : itermax
(5) if iter% 𝐺 == 1 or iter == 1
(6) Sort all population individuals according to their fitness.
(7) Divide total population individuals into three subpopulations (called rooster population, hen

population, and chickens population) according to their sort criteria, and establish
the relationship between the chickens and its mother (hens).

(8) end
(9) Update the rooster population individuals according to Eq. (7) and calculate their fitness.
(10) Update the hen population individuals according to Eq. (12) and calculate their fitness.
(11) Update the chicken population individuals according to Eq. (5) and calculate their fitness.
(12) Update the personal best position 𝑥∗𝑖 and the global optimal position 𝑥best.
(13) Perform local search for the global optimal individual according to Section 3.3.
(14) end
(15) Output the best solution 𝑥best

Algorithm 2

dynamically according to the practical searching conditions
and can better overcome deficiencies brought by tradi-
tional handling. The search mode of hen swarm using elite
opposition-based learning can be expressed as follows:

𝑥𝑡+1𝑖,𝑗 = 𝑥𝑡𝑖,𝑗 + 𝑆1 ⋅ rand ⋅ (𝑥𝑡𝑟1,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆2 ⋅ rand
⋅ (𝑥𝑡𝑟2,𝑗 − 𝑥𝑡𝑖,𝑗) + 𝑆3 ⋅ rand ⋅ (op𝑡best,𝑗 − 𝑥𝑡𝑖,𝑗) , (12)

where 𝑆1, 𝑆2, and 𝑆3 are weights, 𝑆3 and 𝑆2 have the same
value, rand is an uniform random number over [0, 1], and
op𝑡best,𝑗 is the opposite solution of the optimal particle of the
population of chick swarm particle 𝑖 in 𝑡th iteration.

3.3. Local Search via Greedy Dimension-by-Dimension Search.
In basic chicken swarm optimization algorithm, the cock
swarm, the hen swarm, and the chick swarm use different
random search modes to acquire comparatively high-quality
solution and convergence rate. But the three subswarms
are all assessed by overall upgrading assessment method.

For high-dimensional global optimization problem, overall
upgrading assessment method will affect the quality of
solution and convergence rate due to the interference among
each dimension [24]. Suppose that the objective global
optimization function is 𝑓(𝑥𝑖) = ∑3𝑗=1 𝑥2𝑖,𝑗 (sphere test
function) and independent variable equals 𝑥𝑖 = (0.2, 0.2, 0.2).
Then, 𝑓(𝑥𝑖) = 0.12. In iterations, the independent variable is
updated as 𝑥𝑖 = (0.1, 0.3, 0.4) after overall upgrading. Then,𝑓(𝑥𝑖 ) = 0.26, and 𝑥𝑖 = (0.1, 0.3, 0.4) will be abandoned in
chicken swarm optimization as 𝑓(𝑥𝑖 ) > 𝑓(𝑥𝑖). The overall
upgrading assessment method will cause a slow convergence
rate for the algorithm as the first-dimensional contribution
is ignored due to deterioration of the second- and third-
dimensional contributions.

The greedy dimension-by-dimension searchmode in this
paper makes full use of updated achievement of each dimen-
sion. The basic idea is as follows. (1) Suppose that 𝑥𝑖,𝑗 is the
value after updating of the value of 𝑗th dimension of chicken
swarm particle 𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑖,𝑑) (fitness value
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Table 1: The parameters set of all other algorithms.

Algorithms Parameters
BA 𝑄min = 0, 𝑄max = 2, 𝑅0 = 0.1, 𝐴 = 0.9, 𝛼 = 0.95, 𝛾 = 0.9
PSO 𝑐1 = 1.49445, 𝑐2 = 1.49445, 𝜛 = 0.729
DE pCR = 0.2, 𝛽min = 0.2, 𝛽max = 0.8
ACO The intensification factor 𝑞 = 0.5, the deviation-distance ratio zeta = 1
CS pa = 0.25, 𝛼 = 1
FPA 𝑝 = 0.8
CSO 𝑁𝑟 = 0.15popsize, 𝑁ℎ = 0.7popsize, 𝑁𝑚 = 0.15popsize, 𝐺 = 10

is fit(𝑥𝑖)). Then, 𝑥𝑖,𝑗 and the values of other dimensions of
chicken swarm particle 𝑥𝑖 before updating are integrated into
a new chicken swarm particle 𝑦 = (𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑖,𝑑).
(2) Calculate its fitness value fit(𝑦). If fit(𝑦) < fit(𝑥𝑖), then the
updated result will be saved. Otherwise, it will be abandoned
and the updating of (𝑗 + 1)th dimension will be conducted.
The procedures are shown in Algorithm 1.

To ensure that each dimension of chicken particles in
initial period of iteration updates in a relatively big step-
length and in a small step-length in later period of iteration,
dynamic adaptive step-length updating as (*) in Algorithm 1
is adopted to further improve the algorithm’s convergence
rate and quality of solution.

3.4. AlgorithmFlow. Based on Sections 3.1–3.3, the procedure
of the chicken swarm optimization algorithm is shown in
Algorithm 2.

4. Results and Discussions

4.1. Parameter Setting. To test the algorithm’s performance,
seven typical intelligent algorithms, bat algorithm (BA) [10,
11], particle swarm optimization (PSO) [1], differential evolu-
tion (DE) [25], ant colony optimization (ACO) [2], cuckoo
search (CS) algorithm [7], flower pollination algorithm (FPA)
[13], and chick swarmalgorithm (CSO) [14], are selected to do
contrast experiments with EOCSO algorithm. The parame-
ters of EOCSO algorithm are set as follows. Population size
is set as 100, and each of the scale of cock swarm and that of
chick swarmoccupies 15%, while the scale of hen swarm takes
up 70%. All of the common parameters of these algorithms
(including the population size, dimensions, and maximum
number of generations) are set to be the same for a fair
comparison.Other parameters are described in Section 3.The
parameters set of all other five algorithms is shown in Table 1.

4.2. Test Function. To verify the optimization precision and
convergence rate of the proposed algorithm, 18 standard test
functions in [26, 27] are chosen for contrast experiments.𝑓1 ∼ 𝑓7 are high-dimensional unimodal functions and
are extremely hard to converge to a global optimum, which
are used to inspect the searching precision. 𝑓8 ∼ 𝑓13 are
high-dimensional multimodal functions with several local
extreme points. So they are used to test the global searching

performance and avoid premature of the algorithms [28–30].𝑓14 ∼ 𝑓18 are low-dimensional multimodal functions. The
standard test functions are seen in Table 2.

4.3. Influence of Dynamic Adaptive 𝑡 Distribution Search
Strategy on Bird Swarm Algorithm. Influence of dynamic
adaptive 𝑡 distribution search strategy on bird swarm algo-
rithm contains two parts. The first part is the influence
of different parameter values of variable control factor 𝜓
on Gaussian distribution algorithm. The second part is the
empirical comparison and analysis of CSO under dynamic
adaptive 𝑡 distribution (ATD-CSO) and dynamic adaptive
Gaussian distribution (AGD-CSO) as well as the original
algorithm (O-CSO). High-dimensional unimodal functions(𝑓3, 𝑓5), high-dimensional multimodal functions (𝑓11, 𝑓13),
and low-dimensional multimodal functions (𝑓15, 𝑓17) are
selected as test functions.

4.3.1. Impact Analysis of Control Factor 𝜓. Other parameters
remain invariant, 0.2, 0.5, and 0.8, and dynamic adaptive
change is used as control factor 𝜓 for Gaussian distribution
algorithm. Test function parameters are set the same as
Section 4.1, and test result is assessed from optimal value,
mean value, worst value, and standard variance. Table 3 shows
the statistical result of different 𝜓 on the test functions.

As can be seen from Table 3, search effect is better when𝜓 is smaller. But it is not quite ideal for Gaussian distribution
with fixed 𝜓 to improve algorithm performance. Through
dynamic adaptive parameter setting, the algorithm can be
ensured to maintain a large search step size in initial search
stage. In later stage, dynamic adaptive step size of control
factor𝜓 is reduced, while the local search ability is enhanced.
The test result proved that dynamic adaptive control factor
has more advantages than single fixed control factor.

4.3.2. Comparison of ATD-CSO, AGD-CSO, and O-CSO.
Table 4 indicates the statistical result of dynamic adaptive𝑡 distribution, dynamic adaptive Gaussian distribution, and
original CSO algorithm on three different kinds of test
function. As the data shows, in terms of optimal values, 6 and
4 orders of magnitude are improved for 𝑓3 and 𝑓13 separately
by ATD-CSO compared with AGD-CSO. For function 𝑓5,
searching precision of ATD-CSO is higher than that of AGD-
CSO. For 𝑓11, 𝑓15, and 𝑓17, optimal solution is searched by



6 Mathematical Problems in Engineering

Table 2: Benchmark test functions.

Number Name Benchmark test functions Dimension Scope Optimum

𝑓1(𝑥) Sphere
model 𝑓 (𝑥) = 𝐷∑

𝑖=1

𝑥2𝑖 30 [−100, 100] 0

𝑓2(𝑥) Schwefel’s
problem
2.22

𝑓 (𝑥) = 𝐷∑
𝑖=1

|𝑥𝑖| + 𝐷∏
𝑖=1

|𝑥𝑖| 30 [−10, 10] 0

𝑓3(𝑥) Schwefel’s
problem 1.2 𝑓 (𝑥) = 𝐷∑

𝑖=1

( 𝑖∑
𝑗=1

𝑥𝑖)2 30 [−100, 100] 0

𝑓4(𝑥) Schwefel’s
problem
2.21

𝑓 (𝑥) = 𝐷max
𝑖=1

{𝑥𝑖} 30 [−100, 100] 0

𝑓5(𝑥)
Generalized
Rosen-
brock’s
function

𝑓 (𝑥) = 𝑛−1∑
𝑖=1

[100 (𝑥𝑖+1 − 𝑥2𝑖 )2 + (1 − 𝑥𝑖)2] 30 [−30, 30] 0

𝑓6(𝑥) Step
function 𝑓 (𝑥) = 𝐷∑

𝑖=1

⌊𝑥𝑖 + 0.5⌋ 30 [−100, 100] 0

𝑓7(𝑥)
Quartic
function,
that is,
noise

𝑓 (𝑥) = 𝐷∑
𝑖=1

𝑖 ⋅ 𝑥4𝑖 + random (0, 1) 30 [−1.28, 1.28] 0

𝑓8(𝑥)
Generalized
Schwefel’s
problem
2.26

𝑓 (𝑥) = 𝐷∑
𝑖=1

− 𝑥𝑖 ⋅ sin(√𝑥𝑖) 30 [−500, 500] −418.9829 ∗𝑛
𝑓9(𝑥) Generalized

Rastrigin’s
function

𝑓 (𝑥) = 𝑛∑
𝑖=1

(𝑥2𝑖 − 10 ⋅ cos (2 ⋅ 𝜋 ⋅ 𝑥𝑖) + 10) 30 [−5.12, 5.12] 0

𝑓10(𝑥) Ackley’s
function 𝑓(𝑥) = −20 exp(−0.2√ 1𝑑

𝑑∑
𝑖=1

𝑥2𝑖) − exp(1𝑑
𝑑∑
𝑖=1

cos (2𝜋𝑥𝑖)) + 20 + 𝑒 30 [−32, 32] 0

𝑓11(𝑥) Generalized
Griewank
function

𝑓(𝑥) = 14000 ⋅
𝑛∑
𝑖=1

𝑥2𝑖 − 𝑛∏
𝑖=1

cos
𝑥𝑖√𝑖 + 1 30 [−600, 600] 0

𝑓12(𝑥) Generalized
penalized
function

𝑓 (𝑥) =𝜋𝐷 {10 sin2 (𝜋 ⋅ 𝑦1) + 𝐷−1∑
𝑖=1

(𝑦𝑖 − 1)2 [1 + 10 sin2 (𝜋 ⋅ 𝑦𝑖+1) + (𝑦𝑛 − 1)2]} +
𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4)
𝑦𝑖 = 1 + 𝑥𝑖 + 14

𝑢 (𝑥𝑖, 𝛼, 𝑘, 𝑚) =
{{{{{{{{{

𝑘(𝑥𝑖 − 𝛼)𝑚, 𝑥𝑖 > 𝛼
0, −𝛼 ≤ 𝑥𝑖 ≤ 𝛼
𝑘(−𝑥𝑖 − 𝛼)𝑚, 𝑥𝑖 ≤ 𝛼

30 [−50, 50] 0

𝑓13(𝑥) Generalized
penalized
Function

𝑓(𝑥) =
0.1{10 sin2(3𝜋 ⋅ 𝑥1) + 𝐷−1∑

𝑖=1

(𝑥𝑖 − 1)2 [1 + 10 sin2 (3𝜋 ⋅ 𝑥𝑖+1)] + (𝑥𝑛 − 1)2}+
𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4)
30 [−50, 50] 0

𝑓14(𝑥) Shekel’s
foxholes
function

𝑓(𝑥) = [ 1500 +
25∑
𝑗=25

1𝑗 + ∑2𝑖=1(𝑥𝑖 − 𝑎𝑖𝑗)6 ]
−1

2 [−65.56, 65.56] 0.9980

𝑓15(𝑥) Kowalik’s
function 𝑓(𝑥) = 11∑

𝑖=1

[𝑎𝑖 − 𝑥1(𝑏2𝑖 + 𝑏𝑖𝑥2)𝑏2𝑖 + 𝑏𝑖𝑥3 + 𝑥4 ]
2

4 [−5, 5] 0.0003075

𝑓16(𝑥) Hartman’s
function 𝑓(𝑥) = − 4∑

𝑖=1

𝑐𝑖 ⋅ exp[− 3∑
𝑗=1

𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2] 3 [0, 1] −3.8628
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Table 2: Continued.

Number Name Benchmark test functions Dimension Scope Optimum

𝑓17(𝑥) Hartman’s
function

𝑓(𝑥) = − 4∑
𝑖=1

𝑐𝑖 ⋅ exp[− 6∑
𝑗=1

𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2] 6 [0, 1] −3.32
𝑓18(𝑥) Shekel’s

family 𝑓(𝑥) = − 10∑
𝑖=1

[(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)𝑇 + 𝐶𝑖]−1 10 [0, 10] −10.5364
Table 3: Influence of various 𝜓 on the test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
𝜓 = 0.2

Best 0.01631162 25.28779662 0 0.608008583 0.000307777 −3.321995171
Mean 5.826567112 26.47886719 0 2.347145417 0.000428489 −3.308813113
Worst 25.52896184 28.91557367 0 4.237078833 0.001223174 −3.202409203
Std. 7.284604701 0.4586344 0 0.92771315 0.000277897 0.036625398

𝜓 = 0.5
Best 0.530928436 25.99904272 0 0.69896625 0.00031048 −3.321877282
Mean 132.4241294 27.1885086 0 1.34834884 0.00044856 −3.315628525
Worst 729.2974459 28.55843288 0 1.96348532 0.001223763 −3.201008218
Std. 197.5724792 0.696629183 0 0.287524396 0.000224541 0.026987801

𝜓 = 0.8
Best 0.018825799 26.28800133 0 0.717391541 0.000315938 −3.321995171
Mean 500.9268589 27.17671059 0 1.083153802 0.000534308 −3.301356117
Worst 1228.354641 28.77558754 0 1.33573296 0.00071324 −3.199239821
Std. 400.9524735 0.60589184 0 0.219814939 0.000140829 0.044548317

Original strategy

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

Dynamic adaptive

Best 1.455387𝐸 − 22 0.09980032 0 1.90772𝐸 − 12 0.000307486 −3.321995172
Mean 2.932745𝐸 − 20 0.57800657 0 9.09553𝐸 − 12 0.000307486 −3.321995172
Worst 9.453261𝐸 − 20 1.08886543 0 6.57632𝐸 − 10 0.000307486 −3.321995172
Std. 5.187532𝐸 − 21 0.19345322 0 2.42964𝐸 − 12 0 5.264821𝐸 − 12

Table 4: Influence of different distributions on test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

AGD-CSO

Best 1.455387𝐸 − 22 0.09980032 0 1.90772𝐸 − 12 0.000307486 −3.321995172
Mean 2.932745𝐸 − 20 0.57800657 0 9.09553𝐸 − 12 0.000307486 −3.321995172
Worst 9.453261𝐸 − 20 1.08886543 0 6.57632𝐸 − 10 0.000307486 −3.321995172
Std. 5.187532𝐸 − 21 0.19345322 0 2.42964𝐸 − 12 0 5.264821𝐸 − 12

ATD-CSO

Best 3.81028𝐸 − 28 0.050669099 0 5.43358𝐸 − 16 0.000307486 −3.321995172
Mean 1.24542𝐸 − 27 0.18932938 0 5.16541𝐸 − 15 0.000307486 −3.321995172
Worst 1.06346𝐸 − 27 0.67578053 0 4.81746𝐸 − 13 0.000307486 −3.321995172
Std. 9.19088𝐸 − 28 0.037375926 0 4.52782𝐸 − 15 0 9.858438𝐸 − 14

both ATD-CSO and AGD-CSO. Also, for mean value, worst
value, and standard variance, 𝑓11 and 𝑓15 obtain the same
through these two algorithms. But, for the standard variance
for 𝑓17, ATD-CSO is better than AGD-CSO. Compared
with O-CSO, ATD-CSO produces optimal mean value, worst

value, and variance. It can be seen from Figures 1–6 that,
in early evolution period, convergence rate of ATD-CSO is
faster than that of AGD-CSO when calculating the above 6
functions. In later period, the convergence rate is similar, but
the overall convergence rate of ATD-CSO is more optimal.
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Table 5: Statistical results of the influence of dynamic adaptive 𝑡 distribution and opposition-based learning on CSO.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

ATD-EO-CSO

Best 7.108233𝐸 − 42 2.844564𝐸 − 6 0 2.095481𝐸 − 25 0.000307486 −3.321995172
Mean 1.039602𝐸 − 40 9.654632𝐸 − 6 0 2.006629𝐸 − 24 0.000307486 −3.321995172
Worst 4.540331𝐸 − 39 3.239232𝐸 − 5 0 9.910062𝐸 − 24 0.000307486 −3.321995172
Std. 3.919585𝐸 − 41 3.6784872𝐸 − 7 0 1.887675𝐸 − 25 0 6.455396𝐸 − 14
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Figure 1: Convergence rates for 𝑓3(𝑥).

However, the convergence rate of O-CSO is slower than that
of ATD-CSO and AGD-CSO.Therefore, ATD-CSO has some
advantages in terms of solution precision, robustness, and
convergence rate generally.

4.4. The Influence of Dynamic Adaptive 𝑡 Distribution
and Opposition-Based Learning on CSO (ATD-EO-CSO). As
demonstrated in Table 5, the best value, mean value, worst
value, and variance of 𝑓3, 𝑓5, 𝑓13, 𝑓15 obtained by dynamic
adaptive 𝑡 distribution and elite opposition-based learning
are apparently better than those obtained by original CSO.
Target value can be searched on function 𝑓11 by both ATD-
EO-CSO and O-CSO. Therefore, the O-CSO is suitable to
solve this function, and the improvement of the solution
after optimization is not obvious. For function 𝑓17, the best
value can be searched by both. However, in terms of mean
value, worst value, and variance, the results will be better
based on cowork of both 𝑡 distribution and elite opposition-
based learning. Since searching can be done more widely via
elite opposition-based learning, boundary buffering wall is
adopted to deal with individuals crossing the border, avoiding
the deficiency that individuals gather on boundary value to
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Figure 2: Convergence rates for 𝑓5(𝑥).
improve the diversity of population. As a result, ATD-EO-
CSO is superior in solution precision.

4.5. Influence of Local Search via Greedy Dimension-by-
Dimension Search on Bird Swarm Algorithm. Influence of
local search via greedy dimension-by-dimension search on
bird swarm algorithm contains two parts. The first part is
the influence of fixed step size step = 0.1, step = 0.3,
step = 0.6, and the adaptive step on algorithm. The second
part is the comparison between adaptive step strategy and
original CSO. Table 6 shows the statistical result by means
of various step values. According to Table 6, when step value
is small, higher search precision can be obtained, but it is
liable to get into premature convergence. In case of larger
step value, the range of search step size is larger, and it is
liable to skip optimal solution range, which causes lower
searching effect in later stage of evolution and reduced local
search ability. Through adaptive step, the algorithm’s global
research can be ensured to conduct in long step size at initial
stage and in short step size at later stage, which improves the
search efficiency of dimension-by-dimension search. Hence,
adaptive step dimension-by-dimension search is superior to
the fixed step size strategy in terms of search precision.
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Table 6: Influence of various step values on test functions.

Benchmark function 𝑓3(𝑥) 𝑓5(𝑥) 𝑓11(𝑥) 𝑓13(𝑥) 𝑓15(𝑥) 𝑓17(𝑥)
step = 0.1

Best 1.1009139𝐸 − 30 2.5022290𝐸 − 4 0 7.1919782𝐸 − 22 0.000307486 −3.321995172
Mean 2.5675751𝐸 − 26 7.1700102𝐸 − 4 0 2.0929358𝐸 − 20 0.000307486 −3.321995163
Worst 5.9338088𝐸 − 25 5.0003902𝐸 − 3 0 9.0510335𝐸 − 20 0.000307486 −3.321995061
Std. 5.4742928𝐸 − 26 4.8413835𝐸 − 5 0 6.9769787𝐸 − 22 7.537751𝐸 − 10 9.6237934𝐸 − 7

step = 0.3
Best 3.0856694𝐸 − 28 4.3623649𝐸 − 5 0 4.9527803𝐸 − 18 0.000307486 −3.321995172
Mean 6.4211983𝐸 − 25 3.3217367𝐸 − 4 0 5.8674385𝐸 − 15 0.000307486 −3.321995172
Worst 5.9480356𝐸 − 24 7.1641617𝐸 − 4 0 6.7902546𝐸 − 12 0.000307486 −3.321995163
Std. 1.2289958𝐸 − 26 8.0512434𝐸 − 5 0 2.6579955𝐸 − 16 7.967684𝐸 − 10 5.616744𝐸 − 8

step = 0.6
Best 4.0232351𝐸 − 26 9.7209661𝐸 − 4 0 5.2857901𝐸 − 25 0.000307486 −3.321995172
Mean 1.3561952𝐸 − 22 3.5667080𝐸 − 3 0 9.2285451𝐸 − 20 0.000307499 −3.321956549
Worst 7.4188975𝐸 − 21 8.5082852𝐸 − 3 0 2.1028715𝐸 − 18 0.000307495 −3.321906894
Std. 6.2712862𝐸 − 22 2.4668710𝐸 − 4 0 7.0434808𝐸 − 20 4.460765𝐸 − 8 8.512414𝐸 − 5

Original CSO

Best 7.00𝐸 + 01 26.50669099 0 0.809497151 0.000330135 −3.321995172
Mean 8.06𝐸 + 02 27.28932938 0 1.07318734 0.000615881 −3.291752652
Worst 1.67𝐸 + 03 28.77578053 0 1.574427431 0.001262543 −3.200111233
Std. 430.7691621 0.537375926 0 0.193250844 0.000208736 0.053478449

Adaptive step

Best 9.5838158𝐸 − 40 8.9257907𝐸 − 3 0 9.4224685𝐸 − 25 0.000307486 −3.321995172
Mean 1.8439439𝐸 − 36 3.7218918𝐸 − 2 0 5.3242987𝐸 − 23 0.000307486 −3.321995172
Worst 8.5706881𝐸 − 36 7.5851102𝐸 − 2 0 8.1986156𝐸 − 22 0.000307486 −3.321995172
Std. 1.0682863𝐸 − 37 2.3586933𝐸 − 2 0 2.1204222𝐸 − 23 9.124585𝐸 − 18 8.884563𝐸 − 15
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Figure 3: Convergence rates for 𝑓11(𝑥).

4.6. Analysis of Experimental Results. In order to avoid being
influenced by random factors, the experimental test for each
case is conducted by 20 trials independently. The algorithm’s
searching performance is assessed according to the best
value, mean value, standard deviation, and the worst value
produced by the test result. The number of iterations of 𝑓14 ∼𝑓18 and 𝑓1 ∼ 𝑓13 is 50 and 1000 in each trial, respectively.The
algorithm is examined by Matlab 2012a on the platform with
Win 8OS, Intel Core i5-4210U 2.4GHZCPU, and 4GBmem-
ory. The test statistical results are shown in Tables 7, 8, and 9.
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Figure 4: Convergence rates for 𝑓13(𝑥).

The test statistical results of functions 𝑓1 ∼ 𝑓7 are shown
in Table 7. As can be seen from Table 7, the best value, mean
value, standard variance, and the worst value of EOCSO are
all superior to those of other intelligent algorithms (including
BA, PSO, DE, ACO, CS, FPA, and CSO). Particularly, global
minimum of the test function 𝑓5(𝑥) lies in the bottom of
parabola, which is quite reliable to fall into a local optimum
in the searching process. The optimal result of EOCSO is9.53224𝐸 − 09, which is 8, 11, 10, 10, 7, 3, and 10 orders
of magnitude higher than that of BA, PSO, DE, ACO, CS,
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Table 7: Test statistical results of functions 𝑓1 ∼ 𝑓7.
Benchmark
function BA PSO DE ACO CS FPA CSO EOCSO

𝑓1(𝑥)
Best 9.41672𝐸 −06 6.774921774 3.036519𝐸 − 12 4.98686𝐸 −08 0.040549145 6.34628𝐸 − 06 1.1893𝐸−55 1.19𝐸 − 201
Mean 1.20474𝐸 −05 20.80098597 5.713553𝐸 − 12 1.8224𝐸−07 0.08183638 0.000732691 3.08046𝐸 −52 7.0639𝐸 −198
Worst 0.000014224 31.55593153 9.811158𝐸 − 12 3.76894𝐸 −07 0.120709249 0.009162134 3.16469𝐸 −51 7.2029𝐸 −197
Std. 1.40714𝐸 −06 9.102140636 2.040785𝐸 − 12 8.35921𝐸 −08 0.021679322 0.002091063 8.83269𝐸 −52 0

𝑓2(𝑥)
Best 0.012593909 6.594522786 3.042127𝐸 − 08 4.92993𝐸 −05 1.479134511 1.97228𝐸 − 07 1.91405𝐸 −43 6.5805𝐸 −116
Mean 31.7282206 15.68696047 4.943835𝐸 − 08 0.000507759 2.180229997 7.11331𝐸 − 06 6.5601𝐸−41 2.13𝐸 − 112
Worst 131.069574 35.29663724 7.117019𝐸 − 08 0.00191464 3.029290054 1.51764𝐸 − 05 8.03444𝐸 −40 9.5751𝐸 −112
Std. 48.01800899 11.87133052 1.339655𝐸 − 08 0.000549138 0.403631239 4.85023𝐸 − 06 1.78694𝐸 −40 2.8682𝐸 −112

𝑓3(𝑥)
Best 2.27𝐸 − 05 4.13𝐸 + 02 15255.144282 11951.29445 5.99𝐸 + 02 2.57𝐸 − 02 7.00𝐸 + 01 4.49𝐸 − 51
Mean 3.94𝐸 + 02 9.17𝐸 + 02 24696.821583 16566.43552 8.59𝐸 + 02 6.70𝐸 − 02 8.06𝐸 + 02 9.55𝐸 − 49
Worst 4.77𝐸 + 03 1.75𝐸 + 03 29125.784537 22644.44883 1.10𝐸 + 03 1.10𝐸 − 01 1.67𝐸 + 03 1.28𝐸 − 47
Std. 1081.678915 411.6200929 3515.8752513 3287.33213 122.9938329 0.023267666 430.7691621 2.85739𝐸 −48

𝑓4(𝑥)
Best 6.573087982 5.90965909 1.2612253015 3.058888831 5.273452649 12.24579118 0.000935694 1.41944𝐸 −17
Mean 12.41978556 9.027042499 2.0432637030 5.055981092 6.116103354 15.33881514 3.027225289 2.20256𝐸 −16
Worst 22.65352526 12.9169796 2.5042954408 7.296151756 7.215730774 19.26838273 10.74127991 7.30302𝐸 −16
Std. 3.804254343 2.121495266 0.3514754143 0.953357307 0.52178179 2.184822605 3.480451504 1.96521𝐸 −16

𝑓5(𝑥)
Best 0.196158304 343.6027646 25.837681251 17.1433613 0.013792405 2.12808𝐸 − 06 26.50669099 9.53224𝐸 −09
Mean 1.836717634 530.442542 39.933721918 17.86118196 0.59160704 0.398901513 27.28932938 0.000161047
Worst 20.41255589 1427.570578 70.708954223 19.24540999 1.749078665 3.986765311 28.77578053 0.001214443
Std. 4.605435894 299.0234027 13.215780402 0.617903448 0.57410589 1.227005992 0.537375926 0.000359017

𝑓6(𝑥)
Best 7.69118𝐸 −06 13.55667233 1.888545𝐸 − 12 5.85581𝐸 −08 0 5.47537𝐸 − 06 1.671870558 0
Mean 9.79475𝐸 −06 19.24687067 5.975184𝐸 − 12 1.68807𝐸 −07 3.77265𝐸 −10 0.000265874 2.125011694 0
Worst 1.13079𝐸 −05 25.44278333 1.122444𝐸 − 11 4.86966𝐸 −07 1.85832𝐸 −09 0.000603906 2.710216862 0
Std. 9.19879𝐸 −07 4.68251131 2.832052𝐸 − 12 9.4266𝐸−08 4.55015𝐸 −10 0.000212809 0.301038821 0

𝑓7(𝑥)
Best 0.021225243 0.198906064 0.0171466731 0.01217843 0.001333226 0.029750255 0.000690044 0.001333226
Mean 0.039176522 0.294912344 0.0240711071 0.024336378 0.003336074 0.108161359 0.002471843 0.003336074
Worst 0.0606201 0.372732671 0.0301412708 0.034138264 0.004764046 0.160329105 0.005679536 0.004764046
Std. 0.011065883 0.061817637 0.0041777349 0.007196828 0.000889975 0.044585434 0.001443844 0.000889975

FPA, and CSO, respectively. The mean value of EOCSO is1.61047𝐸 − 5, which is 5, 7, 4, 4, 4, 4, and 6 orders of
magnitude higher than that of the compared algorithms,
respectively. Besides, EOCSO algorithm is also superior to
seven other intelligent algorithms in terms of the worst
value and standard variance. It comes to a conclusion that
EOCSO algorithm has high precision and good robustness
in searching high-dimensional unimodal function.

The test statistical result of functions 𝑓8 ∼ 𝑓13 is
demonstrated inTable 8, fromwhichwe can find that EOSCO

algorithm can obtain global optimal extreme value for 𝑓8, 𝑓7,
and𝑓11, which is free from interference of local extreme value.
For other algorithms, onlyCSO can obtain global optimum in
searching of𝑓9 and𝑓11. For𝑓10, the result is almost equivalent
to that of EOCSO, CSO, and CS. Therefore, the original CSO
is suitable to solve this function; the improvement of the
solution after optimization is not obvious. With regard to𝑓12 ∼ 𝑓13, EOSCO does better than five other algorithms in
precision and standard variance of its solution, which reflects
the advantage of EOCSO.
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Figure 5: Convergence rates for 𝑓15(𝑥).
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Figure 6: Convergence rates for 𝑓17(𝑥).

In Table 9, the test statistical result of low-dimension
multimodal functions 𝑓14 ∼ 𝑓18 is described. EOCSO and
seven other algorithms can be seen to be able to get the global
optimum in searching process, but EOCSO has fixed advan-
tages in its mean value, worst value, and standard variance.
“Error” on𝑦-axis is the error between actual globalminimum
and converged minimum. The convergence graphs of the 6
algorithms are expressed in Figures 7–24. In EOCSO algo-
rithm, its convergence rate of all 18 functions ismore excellent
than that in the other five algorithms, especially for 𝑓1 ∼ 𝑓4,𝑓6, and 𝑓8 ∼ 𝑓13. The convergence curve is quite smooth and
drops rapidly, reflecting its good convergence rate.
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Figure 7: Convergence rates for 𝑓1(𝑥).
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Figure 8: Convergence rates for 𝑓2(𝑥).

4.7. Structural Design Examples. In order to validate the
performance of proposed method for constraint problems,
EOCSO is examined by solving constrained engineering
design problems, such as speed reducer design problem and
pressure vessel design problem.

4.7.1. Speed Reducer Design Problem. Speed reducer design
problem is proposed by the famous scholar Mezura-Montes,
which is a classic constrained optimization and is used
to verify the design engineering constrained optimization
algorithm performance, as shown in Figure 25. There are 7
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Table 10: Comparison of the best solutions obtained by different methods for speed reducer design problem.

EOCSO PSO-DE [31] MBA [32] HEAA [33] HGA [34]𝑥1 3.500000000000003 3.5000000 3.500000 3.5000228993 3.500000𝑥2 0.700000000000000 0.700000 0.700000 0.7000003924 0.700000𝑥3 17.00000000000000 17.000000 17.000000 17.0000128592 17𝑥4 7.300000000000000 7.300000 7.300033 7.3004277414 7.300000𝑥5 7.715319911478278 7.800000 7.715772 7.7153774494 7.71533234𝑥6 3.350214666096451 3.350214 3.350218 3.3502309666 3.35021511𝑥7 5.286654464980222 5.2866832 5.286654 5.2866636970 5.28666404𝑔1(𝑥) −0.073915280397874 −0.07391528 −0.07391528 −0.07392283 −0.07391528𝑔2(𝑥) −0.197998527141950 −0.19799853 −0.19799853 −0.19800568 −0.19799853𝑔3(𝑥) −0.499172248102422 −0.49917185 −0.49916745 −0.49909455 −0.49917251𝑔4(𝑥) −0.904643904556068 −0.90147170 −0.90462711 −0.90464255 −0.90464413𝑔5(𝑥) −3.33066907388𝑒 − 15 5.96466298𝑒 − 07 −2.93020139𝑒 − 06 −1.3895524𝑒 − 05 −3.97499993𝑒 − 07𝑔6(𝑥) 0 1.68865328𝑒 − 08 3.505341306𝑒 − 07 −5.2295669𝑒 − 06 −5.43110185𝑒 − 06𝑔7(𝑥) −0.702500000000000 −0.7025000 −0.70250000 −0.7024996 −0.70250000𝑔8(𝑥) −8.881784197001𝑒 − 16 0 0 −6.1140457𝑒 − 06 0𝑔9(𝑥) −0.583333333333333 −0.58333333 −0.58333333 −0.58333078 −0.58333333𝑔10(𝑥) −0.051325753541825 −0.05132589 −0.05132936 −0.05137799 −0.05132566𝑔11(𝑥) −4.21884749358𝑒 − 15 −0.01085237 −5.86590687𝑒 − 005 −6.14133272𝑒 − 06 −2.45744437𝑒 − 07𝑓(𝑥) 2994.341315684048 2996.348167 2994.482453 2994.499107 2994.47
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Figure 9: Convergence rates for 𝑓3(𝑥).
variables and 11 inequality constraints of the problem. The
mathematical model is represented as follows:

min 𝑓 (𝑥)= 0.7854𝑥1𝑥22 (3.3333𝑥23 + 14.9334𝑥3 − 43.0934)− 1.508𝑥1 (𝑥26 + 𝑥27) + 7.477 (𝑥36 + 𝑥37)+ 0.7854 (𝑥4𝑥26 + 𝑥5𝑥27)
s.t. 𝑔1 (𝑥) = 27𝑥1𝑥22𝑥3 − 1 ≤ 0,𝑔2 (𝑥) = 397.5𝑥1𝑥22𝑥23 − 1 ≤ 0,

𝑔3 (𝑥) = 1.93𝑥34𝑥2𝑥3𝑥46 − 1 ≤ 0,
𝑔4 (𝑥) = 1.93𝑥35𝑥2𝑥3𝑥47 − 1 ≤ 0,
𝑔5 (𝑥) = [(745𝑥4/𝑥2𝑥3)2 + 16.9 × 106]1/2110𝑥36 − 1 ≤ 0,
𝑔6 (𝑥) = [(745𝑥5/𝑥2𝑥3)2 + 157.5 × 106]1/285𝑥37 − 1
≤ 0,
𝑔7 (𝑥) = 𝑥2𝑥340 − 1 ≤ 0,
𝑔8 (𝑥) = 5𝑥2𝑥1 − 1 ≤ 0,𝑔9 (𝑥) = 𝑥112𝑥2 − 1 ≤ 0,
𝑔10 (𝑥) = 1.5𝑥6 + 1.9𝑥4 − 1 ≤ 0,
𝑔11 (𝑥) = 1.5𝑥6 + 1.7𝑥5 − 1 ≤ 0,

(13)

where 2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 7.3 ≤𝑥4, 𝑥 5 ≤ 8.3, 2.9 ≤ 𝑥6 ≤ 3.9, and 5.0 ≤ 𝑥7 ≤ 5.5. This
case study has been previously solved using other methods
such as PSO-DE [31], MBA [32], HEAA [33], and HGA [34].
The best results of the various methods for solving the speed
reducer design problem are shown in Table 7. Table 8 shows
the statistical results of the different methods.

It can be seen from Table 10 that the optimal solution
of the EOCSO algorithm is better than the other 4 kinds
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Table 11: Comparison of statistical results for speed reducer design problem by the various algorithms.

Algorithm Best Mean Worst Std.
EOCSO 2994.3413156840 2994.3413169852 2994.3413180138 1.2012791𝐸 − 06
PSO-DE [29] 2996.348167 2996.348174 2996.348204 6.4𝐸 − 06
MBA [34] 2994.482453 2996.769019 2999.652444 1.56
HEAA [30] 2994.499107 2994.613368 2994.752311 7.0𝐸 − 02
HGA [25] 2994.47 NA NA NA
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Figure 10: Convergence rates for 𝑓4(𝑥).
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Figure 11: Convergence rates for 𝑓5(𝑥).
of algorithms. From Table 11, the optimal value, the average
value, and the worst value of EOCSO are better than those
of the other 4 algorithms. In terms of stability, the standard
deviation of EOCSO is smaller than those ofMBA andHEAA
algorithms by 6 and 4 orders of magnitude, respectively.
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Figure 12: Convergence rates for 𝑓6(𝑥).

Number of iterations

BA PSO
DE ACO

FPA
CSO EOCSO
CS

Be
st 

va
lu

e o
f f

un
ct

io
n

f
7
(e

rr
or

=
1.
3
3
e
−
3
)

102

101

100

10−1

10−2

10−3

10−4

200 400 600 800 1000

Figure 13: Convergence rates for 𝑓7(𝑥).
4.7.2. Pressure Vessel Design Problem. Another benchmark
structural optimization problem is the pressure vessel design
problem proposed by Kannan and Kramer. Figure 26 shows
a pressure vessel design problem which has four variables
(𝑥1, 𝑥2, 𝑥3, 𝑥4) and four nonlinear inequality constraints
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Table 12: Comparison of the best solutions for pressure vessel design problem by different algorithms.

Algorithm 𝑥1 𝑥2 𝑥3 𝑥4 𝑔1 (𝑥) 𝑔2 (𝑥) 𝑔3 (𝑥) 𝑔4 (𝑥) 𝑓 (𝑥)
EOCSO 0.778169 0.384649 40.31962 200 −7.20𝐸 − 11 −1.12𝐸 − 09 −4.29𝐸 − 04 −40 5885.3328
CS [7] 0.8125 0.4375 42.098446 176.636596 — — — — 6059.714
MBA [32] 0.7802 0.3856 40.4292 198.4964 0 0 −86.3645 −41.5035 5889.3216
HCS-LSAL [38] 0.8125 0.4375 42.09844 176.6366 −2.01𝐸 − 09 −0.0331588 −0.002495 −63.3634 6059.7143
NM-PSO [39] 0.8036 0.3972 41.6392 182.412 3.65𝐸 − 05 3.79𝐸 − 05 −1.5914 −57.5879 5930.3137
CSA [41] 0.8125 0.4375 42.098445 176.636598 −4.02𝐸 + 09 −0.0358808 −7.12𝐸 + 04 −63.3634 6059.7144
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Figure 14: Convergence rates for 𝑓8(𝑥).
(𝑔1, 𝑔2, 𝑔3, 𝑔4). The objective function of the problem can be
expressed as follows:

min 𝑓 (𝑥)
= 0.6224𝑥1𝑥3𝑥4 + 1.7881𝑥2𝑥23 + 3.1661𝑥21𝑥4
+ 19.84𝑥21𝑥3

s.t. 𝑔1 (𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0𝑔2 (𝑥) = −𝑥2 + 0.0095𝑥3 ≤ 0
𝑔3 (𝑥) = −𝜋𝑥23𝑥4 − 43𝜋𝑥33 + 129000 ≤ 0𝑔4 (𝑥) = 𝑥4 − 240 ≤ 0,

(14)

where 0 ≤ 𝑥1, 𝑥2 ≤ 100 and 10 ≤ 𝑥3, 𝑥4 ≤ 200.
The approaches have previously been applied to solve this
problem including many different numerical optimization
techniques, such as the new modification approach on bat
algorithm (EBA) [35], the cuckoo search (CS) algorithm
[7], interior search algorithm (ISA) [36], the mine blast
algorithm (MBA) [32], the improved ant colony optimization
(IACO) [37], an effective hybrid cuckoo search algorithm
for constrained global optimization (HCS-LSAL) [38], the
hybrid Nelder-Mead simplex search and particle swarm
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Figure 15: Convergence rates for 𝑓9(𝑥).
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Figure 16: Convergence rates for 𝑓10(𝑥).
optimization (NM-PSO) [39], an improved accelerated PSO
algorithm [40], and crow search algorithm (CSA) [41].

The best solutions obtained by the various methods are
reported in Table 12. Table 13 shows the statistical results. It
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Table 13: Statistical results of different approaches for pressure vessel design problem.

Algorithm Best Mean Worst Std.
EOCSO 5885.3328 5885.3328 5885.33279 5.14𝐸 − 06
EBA [35] 6059.71 6173.67 6370.77 142.33
CS [7] 6059.714 6447.736 6495.347 502.693
ISA [36] 6059.71 6410.08 7332.84 384.6
MBA [32] 5889.32 6200.64 6392.5 160.34
IACO [37] 6059.73 6081.78 6150.13 67.2418
HCS-LSAL [38] 5930.3137 5946.7901 5960.0557 9.1614
NM-PSO [39] 6059.7143 6087.3225 6137.4069 2.21𝐸 − 02
IAPSO [40] 6059.7143 6068.7539 6090.5314 14.0057
CSA [41] 6059.714363 6342.499106 7332.841621 384.9454163
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Figure 17: Convergence rates for 𝑓11(𝑥).
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Figure 18: Convergence rates for 𝑓12(𝑥).
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Figure 19: Convergence rates for 𝑓13(𝑥).
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Figure 20: Convergence rates for 𝑓14(𝑥).
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Figure 21: Convergence rates for 𝑓15(𝑥).
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Figure 22: Convergence rates for 𝑓16(𝑥).
is shown in Tables 12 and 13 that EOCSO performance for
the pressure vessel design problem surpassed the other 10
methods in terms of the minimum obtained value, solution
average, and the standard deviation.

5. Conclusion

In this paper, an improved chicken swarm algorithm based
on elite opposition-based learning is proposed to overcome
the disadvantages of the deficiencies of lack of population
diversity, being easy to stick to “premature,” and low search-
ing precision in later stage of evolution in chicken swarm
algorithm. Search mode of dynamic adaptive 𝑡 distribution
is applied for cock swarm to balance the global development
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Figure 23: Convergence rates for 𝑓17(𝑥).
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Figure 26: The pressure vessel design problem.

ability and local exploitation ability of the algorithm. Search
mode of elite opposition-based learning is used to enrich
population diversity for hen swarm. Greedy dimension-
by-dimension searching is used for individual of optimal
chicken swarm to do local search, which improves the search
precision and convergence rate of the algorithm. Numerical
experiments of 18 standard test functions and 2 engineering
structure optimization problems are conducted to verify
the availability and feasibility of the algorithm. The search
precision, convergence rate, and robustness are all better than
those in other typical intelligent algorithms.
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