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Injectionmolding process parameters (IMPP) have a significant effect on the optical performance and surface waviness of precision
plastic optical lens.This paper presents a set of procedures for the optimization of IMPP, with haze ratio (HR) reflecting the optical
performance and peak-to-valley 20 (PV20) reflecting the surface waviness as the optimization objectives. First, the orthogonal
experiment was carried out with the Taguchi method, and the results were analyzed by ANOVA to screen out the IMPP having
a significant effect on the objectives. Then, the 34 full-factor experiment was conducted on the key IMPP, and the experimental
results were used as the training and testing samples. The BPNN algorithm and the M-SVR algorithm were applied to establish the
mapping relationships between the IMPP andobjectives. Finally, themultiple-objective optimizationwas performedby applying the
nondominated sorting genetic algorithm (NSGA-II), with the builtM-SVRmodels as the fitness function of the objectives, to obtain
a Pareto-optimal set, which improved the quality of plastic optical lens comprehensively. Through the experimental verification on
the optimization results, the mean prediction error (MPE) of HR and PV20 is 7.16% and 9.78%, respectively, indicating that the
optimization method has high accuracy.

1. Introduction

In recent years, with the rapid development of the photo-
voltaic industry and information technology, the demand for
high-quality optical components has shown a sharp upward
trend. Optical lens is an indispensable component of these
systems, so it is particularly important to carry out an in-
depth study on this aspect. The conventional optical lens
processing materials are generally made of glass. However,
with the development of new polymermaterials with features
such as low density, impact resistance, and low cost, as
well as the production technology, more and more optical
lenses are being made of special resins. The manufacturing
technology of plastic optical lens generally involves injection
molding process and compression methods. The injection
molding process can produce complex products, with the
advantages of high efficiency, low cost, and automation,
so it is mainly used for producing plastic optical lens.
Although the production of plastic optical lens has these
advantages, compared with the glass optical lens, it also

has some shortcomings due to constraints from material
characteristics and the injectionmolding process, such as low
light transmittance, birefringence, moisture absorption, poor
heat resistance, and low geometry dimensional accuracy. In
order to further enhance the quality of plastic optical lenses,
more suitable new materials need to be developed and a new
injection molding process needs to be studied. For a specific
type of plastic, the quality of its injection molding products
is affected by the injection machine, mold, and IMPP; the
IMPPmay be adjusted easily and therefore it has been widely
investigated by researchers.

In the field of plastic optical lens processing, many
researchers mainly adopt the geometric accuracy and defects
of the optical lens as the research objectives, putting forward
the corresponding optimization method and successfully
improving the size, shape, and surface accuracy of the optical
lens. Pazos et al. [1] estimated the ultimate thickness of
PC biconcave and biconvex lenses using the CAE tool and
evaluated the quality of the optical lens based on the number
and location of weld lines and air-traps. J. Wen and P. Wen
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[2], Bensingh et al. [3], and Shieh et al. [4] optimized PMMA
aspheric lens, bi-aspheric lens, and large diameter aspheric
plastic lens, respectively, through design of experiments
(DOE) and numerical simulation, reducing the volumetric
shrinkage of the lens effectively.With the linear shrinkage of a
specific point of the optical lens as an optimization objective,
Hu and Cui [5] studied the effect of holding pressure and
gate size on the objective. Lu and Khim [6] and Spina et al.
[7] investigated some effects of the molding conditions on
the surface contours and birefringence patterns of the lens,
using a statistical experimental analysis method and grey
relational component analysis coupled to the Taguchi design.
Taking light transmission, surface waviness, and surface
finish as the optimization objectives, Tsai et al. [8] established
linear, exponential, and nonlinear regression models for the
objectives and predicted the optimal IMPP; they concluded
that the nonlinear regression model had higher prediction
accuracy. They established an inverse model of injection
molding for form accuracy of optical lens by combining the
artificial neural network (ANN) with a genetic algorithm
(GA) [9].They also investigated the correlation betweenmelt
pressure and cavity pressure in different runner positions
[10]. Other researchers, taking the optical and mechanical
performance of the optical lens as the optimization objectives,
proposed different methods to adjust the IMPP, reducing the
birefringence and stress of the optical lens effectively. They
mainly focused on the optimization of birefringence, used the
numerical simulation method to study a PMMA CD-ROM
lens [11], and verified the simulation results of a cyclic-olefin-
copolymers aspheric lens by combining with the Taguchi
method [12]. Through the adjustment of IMPP, the bire-
fringence of the optical lens was effectively reduced. Using
the shortening of the processing cycle time and reduction
of optical retardation as the optimization objectives, Turng
et al. [13] achieved the high-quality PMMA lens via CAE
simulation and experimental verification and evaluated the
generated stresses and birefringence.

As mentioned above, although some researchers studied
multiple quality objectives in the existing optimization of
the plastic optical lens processing, they separately studied
each individual objectivewhile determining the optical IMPP,
without considering the mutual effect of multiple objectives.
However, the overall quality of the optical lens is obviously
determined by its geometric accuracy, optical performance,
and mechanical performance. Only optimizing the IMPP of
an individual objective may lead to large defects in other
optical quality objectives. From the practical point of view,
therefore, it is necessary to optimize multiple quality objec-
tives of the optical lens at the same time. The multiobjective
optimization problem (MOP) has been widely used in the
optimization of injection molding process and machine. For
injection molding machine, Kuo and Chang [14] proposed
a turbo injection mode (TIM) for an axial flux motor, and
the particle swarm optimization (PSO) was used to find
out the multiobjective optimal design solution. The prod-
uct quality, energy-saving efficiency, and molding efficiency
were optimized, and the corresponding multiple-objective
Pareto-optimal set was obtained. Zhao et al. [15] took warp,
volumetric shrinkage, and sink marks as the optimization

objectives and achieved the multiobjective optimization by
establishing the Kriging surrogate model and mapping the
nonlinear relationships between the IMPP and objectives,
using the NSGA-II algorithm. Yin et al. [16] presented an
investigation on birefringence and warpage of thermoplastic
lenses using microinjection molding, and the simultane-
ous control of both properties was accomplished through
multiobjective optimization using the desirability function
approach.Wang et al. [17] proposed a two-stage optimization
approach to improve heating efficiency and temperature
distribution uniformity for a new water-assisted rapid heat
cycle molding, using RSM and the NSGA-II algorithm. The
multiobjective optimizationmethodmentioned above can be
called model-based optimization (MBO) methods, and the
quality of models plays an important role in the optimization
results. In addition, there is another importantmultiobjective
optimizationmethod calledmodel-free optimization (MFO),
which integrates the simplex method. The MFO has been
successfully applied to control and optimize part weight,
part dimensions, and the focal length of molded products.
Kong et al. [18] and Zhu et al. [19] proposed a novel
MFO method for batch processes with short cycle times
and low operational costs. In order to eliminate defects
such as shrinkage and flash, Yang et al. [20] proposed a
systematic method that combined digital image processing
and MFO to solve such problems, and the MFO used
online measurement as feedback to determine the optimal
settings.

In order to obtain high-quality plastic optical lens, this
paper takes the surface waviness and optical performance
into account and presents a set of technical procedures for
optimization of IMPP, providing reference formanufacturing
high-quality optical lens.The existing literature contained the
studies on the optimization of IMPP in terms of birefringence
and light transmittance of plastic optical lens. In this paper,
another important optical quality indicator, haze ratio (HR),
which has not been studied, is one of the optimization
objectives. It refers to the percentage of the intensity of
transmitted light deviating from the incident light by 2.5∘
in the overall transmitted light intensity. The greater the
HR is, the more significantly lens’ gloss and transparency
will decrease. Meanwhile, another indicator reflecting the
surface waviness, namely, peak-to-valley 20 (PV20), was also
taken as the optimization objective.The technical procedures
adopted in this study are shown in Figure 1. First, the DOE
was conducted, and then the key IMPP having significant
effect on the two quality objectives were screened out via the
Taguchi method combined with ANOVA, and the optimal
combination of IMPP was initially determined. After that, a
full factorial experiment was performed by the key IMPP. In
order to obtain the nonlinear mapping relationships between
the key IMPP and objectives, this paper used the data of the
full factorial experiment as the sample, adopted multioutput
support vector machine for regression (M-SVR) algorithm
and the back-propagation neural network (BPNN) algo-
rithm, and compared their prediction accuracies. Finally, the
NSGA-II algorithm was used to optimize the two objectives,
and a Pareto-optimal set was obtained and verified through
experiment.
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Figure 1: Flowchart of multiobjective optimization.

2. Optical Lens and Experimental Setup

Plastic optical lens needs to meet higher manufacturing
requirements compared to that of common injectionmolding
products, especially the surface waviness, and it must reach
certain optical performance. Therefore, the equipment and
process used for the manufacture of optical lens shall also
meet more stringent requirements. Any large deviation in
the product will seriously affect the quality of the lens. The
lens studied in this paper, as shown in Figure 2, has a
diameter of 20mm, and its material is PMMA-HT50Y made
by SUMITOMO.

The precise injection machine adopts ARBURG ALL-
ROUNDER 307 S 600-100. Its maximum injection weight is
230 grams, and the maximum injection pressure is 230MPa.
In this paper, the experiment on the lens involves HR and
PV20, in which the haze ratio measurement device is the
WGT-S transparent/haze tester, with the measurement accu-
racy of up to 0.01%; and the PV20 measurement device is the
Bruker-Contour GT-X3 three-dimensional surface profiler,
which has the measurement accuracy of up to 0.1 nm and can
accurately measure PV20, which is the average of the ten top
points minus the ten lowest points on the wave surface in the
measurement area. Evaluating the surfacewavinesswith PV20
can eliminate the errors caused by some anomalous points or
defects in the test data to a certain extent.

3. Optimization Methodologies

The optimization of precision injection molding process
needs to be carried out generally by DOE. Due to the
high-standard requirement of product quality, it is difficult
to meet the requirement through only conducting trial-
and-error experiment by experienced technicians for long
time. This has the characteristics of lack of planning and
time consuming. The optimization of optical lens mainly
relies on DOE, which has overcome the shortcomings of
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Figure 2: Dimensions of optical lens.

the trial-and-error method. If there are multiobjective opti-
mization requirements to the product, especially when the
IMPP are conflicting with each other, it is hard to obtain
the global optimal solution only by DOE. Therefore, the
intelligent algorithm was introduced on the basis of DOE.
A set of optimization procedures for manufacturing plastic
optical lens has been presented, as shown in Figure 1. The
study conducted the double-objective optimization on the
HR and PV20 to obtain the optimum IMPP for precise
injectionmolding.The optimization process was divided into
four stages. In the first stage, the ANOVA was carried out by
using the statistical tool Minitab 15 with the Taguchi method
as the DOE, in order to screen out the IMPP having a great
influence on the two objectives, and then significant IMPP
were obtained for full factorial experiments. In the second
stage, the M-SVR and BPNN models were built and then
trained and tested according to the data from full factorial
experiments, to obtain the mapping relationships between
key IMPP and objectives. In the third stage, a Pareto-optimal
set was obtained through selection, crossover, and mutation,
with the mapping relationships constructed by M-SVR as
the fitness function of the NSGA-II algorithm. In the last
stage, the obtained optimum IMPP were tested and verified
to determine the effectiveness of the optimization method.

3.1. Taguchi Method. TheHR and PV20 of plastic optical lens
are affected by many IMPP. In order to study these indicators
effectively and easily, the IMPP having little influence on
the objectives need to be excluded using DOE. Taguchi
method is an excellent DOE method. By arranging fewer
experiments, we can obtain the influence degrees of all IMPP
on the optimization objective, with combination of ANOVA.
Taguchi method also introduces the concept of Signal to
Noise ratio (S/N ratio), depending on which, we can ensure
the product has stable quality and small fluctuation and is
not sensitive to noise during production.The smaller the two
optimization objectives are, the higher the quality of the lens
will be, showing a smaller-the-better (STB) characteristic.
The S/N ratio of the STB is defined as [21]

𝜂STB = −10 × lg(1𝑛
𝑛∑
𝑖=1

𝑦2𝑖 ) (dB) , (1)

where 𝑦𝑖 is the response and 𝑛 is the number of replications.
According to the calculated average value of the S/N ratio
for IMPP at each level, we can determine their optimum
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Figure 3: Architecture of the ANN.

level and finally obtain the optimum level combination.
It should be noted that only a few discrete levels were
selected for the experiment, so the optimization scheme
obtained by the Taguchi method is not necessarily the global
optimum. However, the initial optimized results can be used
to adjust the range of process parameters, which can provide
reference for further intelligent algorithm optimization. In
order to verify the validity of the Taguchimethod, the optimal
combination was obtained according to S/N ratio and then
used to conduct the experiment. Compare the results after
optimization with the previous ones. If the two objectives
are smaller, it indicates that the Taguchi method is effective.
Otherwise, it is necessary to reselect the IMPP to repeat the
experiment.

3.2. BPNN Algorithm and M-SVR Algorithm. The ANN is an
information processing method developed from inspiration
of the biological nervous system. The network model built
through the study of samples and analysis of the data relations
has the prediction ability.The BPNN algorithm was first pro-
posed byRumelhart et al. [22], and it is a representative neural
network, involving back propagation of errors and forward
propagation of information. With the BPNN algorithm, the
nonlinear relationships between the objectives and IMPP can
be established. In this paper, a three-layer network structure
was built, as shown in Figure 3; the output of each neuron
is equal to the sum of the weights of all neurons from the
previous layer plus a bias, and then the activation function
generated the output

𝑂𝑗 = 𝑓( 𝑛∑
𝑖=1

(𝑤𝑖𝑗 ⋅ 𝑥𝑖) + 𝜃𝑗) , (2)

where𝑂𝑗 is the output of the 𝑗th neuron of the hidden layer or
the output layer,𝑤𝑖𝑗 is the networkweight from the 𝑖th neuron
to the 𝑗th neuron, 𝑥𝑖 is the output of the 𝑖th neuron, and 𝜃𝑗
is the bias of the 𝑗th neuron. 𝑓(⋅) is an activation function of
the hidden layer and the output layer, and a sigmoid function
is selected as follows:

𝑓 (𝑂𝑗) = 1 − 𝑒−(𝜆𝑂𝑗)
1 + 𝑒−(𝜆𝑂𝑗) , (3)

where 𝜆 is the gain factor of neurons and𝑓(⋅) is within the
range of (−1, 1). The model gradually adjusts the network
weight by minimizing the actual output and network output

Δ𝑤𝑖𝑗 (𝑛) = 𝜂𝑒 (𝑛) 𝑥𝑗 (𝑛) ,
𝑤𝑖𝑗 (𝑛 + 1) = 𝑤𝑖𝑗 (𝑛) + Δ𝑤𝑖𝑗 (𝑛) , (4)

where 𝑒(𝑛) is the difference between the actual output and
the network output and 𝜂 is the learning rate. As the BPNN
algorithm is based on the gradient descent method, there
are some shortcomings such as large computation burden,
long training time, demand for a large number of samples,
and slow convergence. In this paper, the small number of
experiments and training samples may result in that the
prediction ability of BPNN is not so strong. Therefore, the
M-SVR algorithm was also adopted to establish a nonlinear
model in terms of objectives and IMPP, so that we could
compare the prediction ability of the two algorithms.

Pérez-Cruz et al. [23] improved the SVR algorithm for
single objective and obtained the M-SVR algorithm which
can handle multiple output objectives.They used the iterative
reweight least square (IRWLS) method to solve the dual
problem by redefining the 𝜀-insensitive loss function in the
hyperspherical space and finally obtained the prediction
model of each output terminal. It is a type of effectivemethod
for Multi-Input Multi-Output (MIMO) modelling of small
samples.

Suppose that the given sample data is 𝐷𝑥,𝑦 = {(𝑥𝑖, 𝑦𝑖) |𝑖 = 1, 2, . . . , 𝐿}, 𝑥𝑖 ∈ R𝑁, map the input data 𝑥𝑖 into the high-
dimensional Hilbert space, and the mapped data 𝜑(𝑥𝑖) ∈ R𝑓
may be obtained. The problem to be solved by SVR is how to
select vectorsW and b, so that the regression results obtained
from 𝑦𝑖 = 0(𝑥𝑖)W + b have the minimum error, where W =[w1w2 ⋅ ⋅ ⋅w𝑁] is a 𝑓 ×𝑁 dimensional matrix, w𝑗 is a column
vector, b = [b1b2 ⋅ ⋅ ⋅ b𝑁] is a row vector, b𝑗 (𝑗 = 1, . . . , 𝑁) is
a constant, and 0(𝑥𝑖) is a nonlinear mapping function. Thus,
theminimized objective function𝐿𝑝 is established to solveW
and b:

min
W,b

𝐿𝑝 = 12
𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩w𝑗󵄩󵄩󵄩󵄩󵄩2 + 𝐶 𝐿∑
𝑖=1

𝐿 (𝑢𝑖) . (5)

The 𝜀-insensitive loss function can be extended into
a multidimensional form. Supersede the original single-
dimensional error with 𝐿2 norm of the output variable error,
and 𝐿(𝑢𝑖) was defined as

𝐿 (𝑢𝑖) = {{{
0, 𝑢 < 𝜀,
𝑢2 − 2𝑢𝜀 + 𝜀2, 𝑢 ≥ 𝜀, (6)

where 𝑢𝑖 = ‖𝑒𝑖‖ = √𝑒𝑇𝑖 𝑒𝑖, 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖, 𝜀 is the allowable
deviation, and𝐶 is the penalty factor.Through the first-order
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Table 1: The IMPP and their levels for the Taguchi experiment.

IMPP Level 1 Level 2 Level 3
𝐴: melt temperature (∘C) 220 230𝐵: injection velocity (mm/s) 60 70 80𝐶: injection pressure (MPa) 80 90 100𝐷: VP switchover (mm) 5.2 5.4 5.6𝐸: packing time (s) 4 6 8𝐹: packing pressure (MPa) 90 100 110𝐺: mold temperature (∘C) 60 75 90𝐻: cooling time (s) 15 25 35

Taylor expansion, the approximate quadratic programming
form of Formula (5) is obtained:

𝐿󸀠𝑝 (W, b)=12
𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩w𝑗󵄩󵄩󵄩󵄩󵄩2 + 12
𝐿∑
𝑖=1

𝑎𝑖𝑢𝑖2 + 𝐶𝑇,

𝑎𝑖 =
{{{{{{{

0, 𝑢𝑘𝑖 < 𝜀,
2𝐶 (𝑢𝑘𝑖 − 𝜀)

𝑢𝑘𝑖 , 𝑢𝑘𝑖 ≥ 𝜀,

𝑇 = 𝐿∑
𝑖=1

𝐿 (𝑢𝑘𝑖 ) − 𝑑𝐿 (𝑢)𝑑𝑢
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑢𝑘𝑖

(𝑢𝑘𝑖 )22𝑢𝑘𝑖 ,

(7)

where 𝑎𝑖 and 𝑇 are the constants independent of W, b, and
then, we can minimize 𝐿󸀠𝑝(W, b) with the IRWLS method
to calculate the optimal solution Ws, bs. Finally, the relation
between input and output is obtained:

𝑦𝑖 = 0 (𝑥𝑖)Ws + bs. (8)

In order to evaluate the ability of BPNNandM-SVRmod-
els of fitting and predicting, the coefficient of determination
(𝑅2) was used for analysis in this paper. The closer 𝑅2 is to
1, the more data the model can interpret, and the better the
model performance will be. 𝑅2 is defined as follows:

𝑅2 = ESS
TSS

= 1 − RSS
TSS

, (9)

where ESS is the error sum of squares, TSS is the total sum of
squares, and RSS is the regression sum of squares, and they
satisfy the relation TSS = ESS + RSS.

3.3. NSGA-II Algorithm. Since MOP often involves optimiz-
ing several objectives with trade-off relationships, it has no
solution that can achieve the optimization of all objectives at
the same time. The purpose of the multiobjective optimiza-
tion algorithm is to obtain a representative Pareto-optimal
set in the decision space, so that their distribution in the
objective space Pareto front is broad and uniform as much
as possible. There are different algorithms to solve MOP; the
most widely used one is the NSGA-II algorithm developed by
Deb et al. [24].The algorithm enables individuals in a Pareto-
optimal set to extend into the entire objective space uniformly
through the introduction of the fast nondominated sorting

algorithm and the elite retention strategy, which ensures the
diversity of the population. The basic steps of the NSGA-II
algorithm are as follows.

Step 1. Initialize parameters, such as population size, control
variable limits, crossover and mutation probability, and ter-
mination criteria.

Step 2. Nondominated sorting: sort the population according
to nondomination criteria.

Step 3. Calculate the crowding distance for each individual.

Step 4. Execute the genetic operator. Generate the inter-
mediate population by selection, crossover, and mutation
operators.

Step 5. Selection and combination: consolidate descendant
and the contemporary populations; the descendant individ-
uals are reset through rank and crowding distance.

Step 6. Return to Step 2 and repeat until termination criteria
are reached.

4. Result and Discussion

4.1. Screening Significant IMPP. There may be a number of
IMPP that can affect the quality of the injection products.
Taking all of them into consideration to carry out experi-
ments means a very large workload, and it is not necessary.
We can conduct the screening experiment on some IMPP that
may have significant effect on the product quality, according
to our production practice experience. In this paper, a total
of eight IMPP were selected for experiments, including
melt temperature, injection velocity, injection pressure, VP
switchover, packing time, packing pressure, molding temper-
ature, and cooling time.TheTaguchimethodwas taken as the
DOE method for the 𝐿18 (21 × 37) orthogonal experiment.
The diameter of the optical lens is 20mm, which belongs to a
small size product. In order to improve production efficiency,
six cavities of the same size have been designed. According
to the suggestion of PMMA-HT50Y supplier, the number of
cavities, and the size of the product, the levels of IMPP should
be initially set out as shown in Table 1.

In order to reduce the experimental and measurement
errors, each experimental treatment was carried out twice,
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Table 2: Experimental results and S/N ratio of HR and PV20.

Number IMPP HR (%) PV20 (𝜇m) S/N ratio (dB)𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 HR PV20(1) 230 60 90 5.2 4 110 90 25 8.23 1.102 −18.3080 −0.8436(2) 220 70 90 5.4 8 110 60 15 5.31 1.721 −14.5019 −4.7156(3) 220 80 100 5.2 8 100 60 25 6.06 0.813 −15.6495 1.7982(4) 220 60 100 5.6 8 110 90 35 8.85 0.871 −18.9389 1.1996(5) 230 80 100 5.4 4 100 90 15 12.22 1.41 −21.7414 −2.9844(6) 220 80 90 5.6 6 90 90 15 11.87 1.523 −21.4890 −3.6540(7) 220 60 90 5.4 6 100 75 25 6.05 0.321 −15.6351 9.8699(8) 220 70 100 5.6 4 90 75 25 8.67 0.512 −18.7604 5.8146(9) 220 60 80 5.2 4 90 60 15 4.85 1.825 −13.7148 −5.2253(10) 230 80 80 5.6 6 110 60 25 4.65 0.995 −13.3491 0.0435(11) 230 60 80 5.6 8 100 75 15 6.32 0.804 −16.0143 1.8949(12) 230 60 100 5.4 6 90 60 35 7.89 1.381 −17.9415 −2.8039(13) 220 70 80 5.2 6 100 90 35 8.31 0.482 −18.3920 6.3391(14) 220 80 80 5.4 4 110 75 35 4.01 0.782 −12.0629 2.1359(15) 230 70 90 5.6 4 100 60 35 6.11 0.873 −15.7208 1.1797(16) 230 80 90 5.2 8 90 75 35 8.34 0.672 −18.4233 3.4526(17) 230 70 80 5.4 8 90 90 25 9.68 1.363 −19.7175 −2.6899(18) 230 70 100 5.2 6 110 75 15 7.02 0.945 −16.9267 0.4914

Table 3: ANOVA for HR.

Source DF Seq SS Adj MS 𝐹 𝑃
𝐴 1 2.3328 2.3328 6.66 0.123𝐵 2 2.0707 1.0353 2.96 0.253𝐶 2 14.1467 7.0733 20.20 0.047𝐷 2 1.1463 0.5732 1.64 0.379𝐸 2 0.2569 0.1284 0.37 0.732𝐹 2 14.6025 7.3013 20.85 0.046𝐺 2 54.0143 27.0072 77.12 0.013𝐻 2 1.9299 0.9649 2.76 0.266
Error 2 0.7004 0.3502
Total 17 91.2006

totaling 36 experiments. At the same time, the experiments
were arranged in random order to eliminate the interference
of some hidden factors.Themold has six identical cavities. To
ensure the tested data can reflect the whole batch of optical
lens, this paper adopted a sequential sampling method. After
each injection, one of optical lenses was selected to a box
marked with serial numbers. Then, the next optical lens was
taken in clockwise direction. The mean of the experimental
results and the S/N ratio of the two objectives, HR and
PV20, are shown in Table 2. ANOVA of HR and PV20 is
shown in Tables 3 and 4, respectively. The results show that
the corresponding 𝑃 value of some IMPP is not more than
0.05, indicating it has a significant effect on the objectives,
which must be considered during the optimization. The
IMPP which have a significant effect on HR include injection
pressure, packing pressure, and molding temperature. The
IMPPwhich have a significant effect on PV20 include packing
pressure, molding temperature, and cooling time.

HR and PV20 have the smaller-the-better characteristic;
the main effects plots for S/N ratios are shown in Figures 4
and 5, respectively, which further show the degrees effect of
each process parameter on the objectives. At the same time,
the initial optimization results of the Taguchi method were
obtained, and theminimumprocess parameter combinations
of HR and PV20 are 𝐴 = 220, 𝐵 = 60, 𝐶 = 80,𝐷 = 5.2, 𝐸 = 4,𝐹 = 110, 𝐺 = 60,𝐻 = 35 and 𝐴 = 220, 𝐵 = 70, 𝐶 = 90, 𝐷 =5.6, 𝐸 = 6, 𝐹 = 100, 𝐺 = 75,𝐻 = 25, respectively. In order to
verify the initial optimization effect of the Taguchimethod on
the objectives, the experiments were conducted based on the
initial optimization results, and the mean values of HR and
PV20 were 4.36% and 0.303 𝜇m, respectively. In comparison
with the results in Table 2, the optimized objective isminimal,
indicating that the Taguchi method has played a role in the
initial optimization.

4.2. Building BPNN and M-SVR Model. The optimization
on objectives using the Taguchi method cannot guarantee
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Table 4: ANOVA for PV20.

Source DF Seq SS Adj MS 𝐹 𝑃
𝐴 1 0.02683 0.02683 2.46 0.257𝐵 2 0.01487 0.00744 0.68 0.594𝐶 2 0.01009 0.00505 0.46 0.683𝐷 2 0.18475 0.09237 8.48 0.105𝐸 2 0.06436 0.03218 2.95 0.253𝐹 2 0.57191 0.28595 26.25 0.037𝐺 2 1.15916 0.57958 53.20 0.018𝐻 2 1.09882 0.54941 50.43 0.019
Error 2 0.02179 0.01089
Total 17 3.15258
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Figure 4: Main effects plot (HR) for S/N ratios.

the global optimal value. In order to further improve the
quality of optical lens, this paper established the mapping
relationships between the key IMPP and objectives and
conducted a global optimization using the multiobjective
intelligent optimization algorithm, NSGA-II. The methods
used for establishing the mapping relationships were M-SVR
and BPNN algorithms, and their prediction abilities were
compared. In this paper, the 34 full factors experiment was
conductedwith injection pressure, packing pressure,molding
temperature, and cooling time as key IMPP.The experimental
results were used as training and test samples for M-SVR
and BPNN. The IMPP that have no significant effect on the
quality objectives were initialized to the mean value of best
levels according to their S/N ratios. For example, the best
values of injection velocity for HR and PV20 were 60 and
70, respectively, so its value was set to the 65. In addition,
it was necessary to adjust the level value for one of the key
IMPP. FromFigure 4, it can be seen that the injection pressure

only has a great effect on the HR and that the S/N ratios
have a negative correlation; namely, the quality of optical lens
decreases more quickly as a result of the increase in HR, with
the increase in the injection pressure. Therefore, the level of
injection pressure should be adjusted to smaller values. The
IMPP and levels for 34 full factorial experiments are shown in
Table 5. Similarly, the experiments were arranged in random
order, and the experimental results are shown in Table 6.

TheM-SVR and BPNNmodels were built with the data of
81 samples as in Table 6, of which 60 samples were randomly
selected as training data, and those of the remaining 21
samples were used as test data. This paper used MATLAB
R2014b as amodelling tool, theM-SVRalgorithmwas Libsvm
toolbox developed byChang and Lin [25], the kernel function
was the radial basis function (RBF), and the performance goal
was 1𝐸−4.The Levenberg-Marquardt algorithm [26, 27] with
a higher network convergence rate was selected in the BPNN
algorithm, and the training variables were set as epochs 1000,
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Table 5: The IMPP and their levels for 34 full factors experiment.

IMPP Level 1 Level 2 Level 3
𝐴: melt temperature (∘C) 220 — —𝐵: injection velocity (mm/s) 65 — —𝐶: injection pressure (MPa) 60 70 80𝐷: VP switch over (mm) 5.5 — —𝐸: packing time (s) 5 — —𝐹: packing pressure (MPa) 90 100 110𝐺: mold temperature (∘C) 60 75 90𝐻: cooling time (s) 15 25 35

performance goal 1𝐸 − 3, learning rate 0.01, and gradient1𝐸−10.The input variables of the BPNNandM-SVRwere the
significant IMPP discussed earlier, and the output variables
were HR and PV20 of optical lens, where the BPNN model
adopted a three-layer structure, and the number of neurons
in the hidden layer was determined by experience or trial-
and-error method. Through experiments, when the number
of neurons in the hidden layer was 7, the obtained BPNN
model had the best prediction ability. In the training and
testing stages of HR and PV20, the comparisons between the
predicted values and actual values of BPNN algorithms and
M-SVR algorithms were as shown in Figures 6, 7, 8, and 9.
The determinant coefficients 𝑅2 in the training and testing
stages were as shown in Table 7. 𝑅2 of the M-SVR model
for HR and PV20 were 0.9841 and 0.9642, respectively, in
the training stages, and 0.9706 and 0.9591, respectively, in
the testing stage; these values were very close to 1, indicating
that the training data had good representation, and the
training model accuracy was high. 𝑅2 of the BPNN model

were obviously smaller than those of the M-SVR model,
indicating that the effect was not stable in the training of small
samples. Especially in the testing stage, the prediction effort at
some points was very large, completely unsuitable for precise
prediction. Therefore, the M-SVR algorithm was selected to
establish the relationships between the key IMPP and the two
objectives.

4.3. Multiobjective Optimization. In this paper, the optical
performance and surface waviness of the optical lens needed
to be optimized at the same time; this belongs to the
typical multiobjective optimization. The two objectives have
the smaller-the-better characteristic. Therefore, the issue of
multiobjective optimization is defined as follows:

Find: x

Minimize: 𝐹 (x) = (𝑓1 (x) , 𝑓2 (x))
Subject to: blower ≤ x ≤ bupper,

(10)
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Table 6: 34 full factorial experimental results.

Number Key IPMM HR (%) PV20 (𝜇m)𝐶 𝐹 𝐺 𝐻
(1) 60 110 75 15 6.81 0.923
(2) 60 100 60 35 5.92 0.871
(3) 80 110 75 25 5.11 0.721
(4) 70 90 90 15 11.42 1.525
(5) 70 90 60 25 7.91 1.279
(6) 60 110 90 35 8.41 0.853
(7) 80 110 90 15 8.35 1.674
(8) 70 110 60 15 5.13 1.715
(9) 70 90 75 35 8.21 0.651
(10) 80 90 60 35 7.56 1.347
(11) 80 90 60 25 5.93 1.217
(12) 80 110 60 25 4.71 0.973
(13) 80 100 75 15 6.32 0.818
(14) 80 90 90 25 9.51 1.301
(15) 60 110 75 25 4.91 0.723
(16) 70 100 75 25 5.83 0.337
(17) 70 100 60 25 5.83 0.826
(18) 70 110 90 35 8.55 0.832
(19) 80 110 75 15 7.05 0.921
(20) 70 100 90 25 9.42 0.401
(21) 70 110 75 25 4.45 0.721
(22) 60 110 90 25 7.92 1.131
(23) 70 100 60 15 5.98 1.273
(24) 80 90 75 35 8.33 0.643
(25) 70 110 90 25 8.05 1.142
(26) 70 100 60 35 6.11 0.852
(27) 80 100 60 25 5.92 0.833
(28) 80 110 60 15 5.22 1.723
(29) 60 90 60 15 7.47 1.472
(30) 70 110 75 15 6.93 0.935
(31) 70 90 60 15 7.83 1.521
(32) 70 100 75 15 6.2 0.802
(33) 80 100 60 15 6.01 1.593
(34) 60 110 60 15 5.02 1.732
(35) 70 110 75 35 3.94 0.791
(36) 70 110 60 35 4.92 1.213
(37) 80 100 75 35 6.12 0.378
(38) 70 90 75 25 8.25 0.507
(39) 70 100 75 35 5.97 0.421
(40) 80 90 90 15 11.5 1.516
(41) 80 110 60 35 5.1 1.123
(42) 80 90 60 15 4.83 1.824
(43) 70 90 75 15 8.33 1.031
(44) 70 90 60 35 7.45 1.34
(45) 60 110 75 35 3.82 0.795
(46) 80 90 90 35 10.21 1.358
(47) 60 90 75 15 8.15 0.771
(48) 70 110 60 25 4.59 0.978

Table 6: Continued.

Number Key IPMM HR (%) PV20 (𝜇m)𝐶 𝐹 𝐺 𝐻
(49) 60 100 75 15 6.08 0.821(50) 70 90 90 25 9.43 1.316(51) 60 90 60 35 7.32 1.343(52) 60 110 60 25 4.48 0.982(53) 60 110 90 15 8.21 1.379(54) 80 100 90 15 12.48 1.432(55) 60 90 90 25 9.32 1.325(56) 80 90 75 15 8.41 0.478(57) 80 100 60 35 6.23 0.842(58) 80 100 75 25 5.92 0.346(59) 60 100 90 15 11.89 1.431(60) 60 90 75 35 8.1 0.655(61) 60 100 90 35 8.2 0.479(62) 70 100 90 15 11.97 1.415(63) 60 110 60 35 4.93 1.231(64) 60 90 75 25 8.13 0.501(65) 80 100 90 35 8.44 0.451(66) 60 100 90 25 9.92 0.581(67) 80 110 75 35 4.45 0.787(68) 60 90 90 15 11.35 1.502(69) 80 110 90 25 8.17 1.14(70) 70 110 90 15 8.31 1.739(71) 60 100 60 25 5.72 0.852(72) 60 90 60 25 7.35 1.339(73) 80 110 90 35 8.64 0.836(74) 60 100 60 15 5.83 0.923(75) 70 100 90 35 8.33 0.462(76) 70 90 90 35 9.87 1.327(77) 80 90 75 25 8.36 0.503(78) 60 100 75 35 5.92 0.495(79) 60 100 75 25 5.71 0.334(80) 60 90 90 35 10.46 1.337(81) 80 100 90 25 9.62 0.467
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Figure 6: Comparison of HR prediction results in training set.
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Table 7: The 𝑅2 of BPNNmodel and M-SVRmodel at training and
testing stage.

Objective Training Testing
BPNN M-SVR BPNN M-SVR

HR 0.8984 0.9841 0.7824 0.9706
PTV 0.8822 0.9642 0.8255 0.9591
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Figure 7: Comparison of PV20 prediction results in training set.

where 𝑓1(x) and 𝑓2(x) denote HR and PV20, respectively. x
is the key IMPP vector (𝐶 𝐹 𝐺 𝐻)𝑇. According to Table 5,
it is known that blower = (60 90 60 15)𝑇 and bupper =
(80 110 90 35)𝑇. There are many effective methods to solve
multiobjective optimization problems, in which the tradi-
tional linear weighted method (LWM) and the popular
NSGA-II algorithms are representative. In order to compare
the optimization effects of these twomethods, they have been
tested separately in MATLAB R2014b. LWM is the method
that can transform multiobjective optimization into single
objective optimization. Each objective function was weighted
and then summed up. Since the two objective functions have
different units, they need to be dimensionless. The value
of weights can reflect the importance of 𝑓(x), and each set
of weights, 𝜔1 and 𝜔2, can obtain an optimized key IMPP
by minimizing 𝐹(x). In this paper, one objective reflects
the optical performance, while the other reflects the surface
waviness. Theoretically speaking, if the two objectives are
equally important, the weights should be set as𝜔1 = 𝜔2 = 0.5.
In order to explore the overall optimization effect of LWM, 9
sets of weights have been set for testing. Using constrained
nonlinear minimization Solver as the optimization tool, the
operating parameters were set as follows: max iterations =
1500, function tolerance = 1𝐸 − 5, and the other stopping
criteria were set as default value. The optimal key IMPP
and two objectives have been achieved, as shown in Table 8.
Figure 10 clearly shows that there is a dominating relationship
between some optimization points. For example, under the
condition of 𝜔 = (𝜔1 𝜔2) = (0.9 0.1), the optimal solution
is inferior to the optimal solution under the conditions of
𝜔 = (0.7 0.3), (0.6 0.4). Therefore, if the weight of HR is
greater, the optimization result can be unreliable. This is
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Figure 9: Comparison of PV20 prediction results in testing set.

mainly because the key IMPP and the two objectives have
strong nonlinear relations, and 𝐹(x) is a nonconvex function.
In fact, the optimal solution is highly likely to be the local
optimum.

TheNSGA-II algorithmhas excellentmultiobjective opti-
mization ability. The functions 𝑓1(x), 𝑓2(x) established using
the M-SVR algorithm were taken as the two fitness functions
of the NSGA-II algorithm. The running parameters were
set as follows: population size 100, maximum number of
generations 200, stall generation limits 200, tolerance of
fitness function 1𝐸−100, mutation probability 0.25, crossover
probability 0.8, and Pareto fraction 0.1. The running results
of the NSGA-II algorithm are shown in Figure 10. The
Pareto-optimal set has 100 × 0.1 = 10 individuals. After
the approximate treatment was performed on the optimized
IMPP and the corresponding objectives, the results are as
shown in Table 9. The range of HR is 3.826 to 5.766 and
that of PV20 is 0.347 to 0.791. As can be seen from Table 6,
the known minimum values of HR and PV20 are 3.82 and
0.334, respectively. The Pareto-optimal set does not contain
the case in which the two objectives are minimum, indicating
there is a conflict between the two objectives and the optimal
status cannot be achieved at the same time. Figure 10 further
shows that PV20 gradually increases with the decrease of HR.
In contrast to LWM and NSGA-II, all the Pareto-optimal
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Table 8: The Pareto-optimal set for HR and PV20 using LWM.

Weight Key IMPP HR (%) PV20 (𝜇m)𝜔1 𝜔2 𝐶 𝐹 𝐺 𝐻
0.9 0.1 61.3 108.8 75.6 36.6 4.226 0.852
0.8 0.2 63.6 108.5 74.8 33.5 4.552 0.661
0.7 0.3 60.2 109.1 76.1 26.4 4.221 0.602
0.6 0.4 66.4 91.3 73.4 28.4 4.425 0.512
0.5 0.5 63.1 107.5 77.9 27.8 4.612 0.491
0.4 0.6 64.5 106.6 72.5 28.3 4.774 0.488
0.3 0.7 65.3 99.7 72.4 26.1 5.312 0.456
0.2 0.8 66.6 101.2 76.0 25.6 5.133 0.421
0.1 0.9 66.2 105.8 78.3 25.4 5.559 0.404

Table 9: The Pareto-optimal set for HR and PV20 using NSGA-II.

Number Key IMPP HR (%) PV20 (𝜇m)𝐶 𝐹 𝐺 𝐻
(1) 60.6 109.6 73.8 34.6 3.826 0.791(2) 61.3 109.1 74.6 32.6 4.135 0.601(3) 61.6 107.9 75.5 28.6 4.216 0.553(4) 62.3 95.7 75.8 27.7 4.385 0.502(5) 62.9 105.3 75.9 26.8 4.451 0.486(6) 63.5 104.6 76.6 26.1 4.512 0.473(7) 64.1 98.6 76.4 25.8 4.762 0.432(8) 64.6 102.3 76.8 24.4 4.944 0.406(9) 65.2 101.4 76.7 25.4 5.267 0.384(10) 65.7 100.3 76.8 25.2 5.766 0.347

NSGA-II
LWM

4 4.5 5 5.5 63.5
HR (%)

0.4

0.5

0.6

0.7

0.8

0.9

1

PV
2
0

(
m

)

Figure 10: Pareto-optimal set for HR and PV20.

set of the key IMPP obtained by NSGA-II can dominate
the one obtained by LWM. Therefore, NSGA-II algorithm
has apparent advantages in dealing with conflicting and
nonconvex multiobjective optimization problems.

4.4. Confirm Experiment. In order to verify the validity of
the optimization results obtained by NSGA-II, the odd-
number optimization results in Table 9 were selected for the

experiment. The objective values predicted by the NSGA-II
algorithm and the experimental results were compared to
quantitatively determine the reliability of optimization. This
paper took the mean prediction error (MPE) as an evaluating
indicator, and the formula used is as follows:

MPE = 1𝑛
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦𝑖󵄨󵄨󵄨󵄨𝑦𝑖 × 100%, (11)

where 𝑦𝑖 is the result of the 𝑖th experiment on the objectives,𝑦𝑖 is the result of the 𝑖th prediction of the objectives, and𝑛 is the total number of experiments. The results of the
verification are shown in Table 10. The MPE of HR and PV20
are 7.16% and 9.78%, respectively, and the average error is less
than 10%, which indicates that the optimization procedures
presented by this paper have good prediction accuracy. In this
paper, the material of optical lens is PMMA-HT50Y, and the
tolerance of products for HR and PV20 is 0.5% and 0.05 𝜇m,
respectively. According to Tables 9 and 10, the average value
of HR and PV20 is 4.626% and 0.498𝜇m, respectively. The
fluctuation of error is 0.0716 × 4.626% = 0.331% for HR,
and 0.0978 × 0.498 𝜇m = 0.049 𝜇m for PV20. Therefore,
the fluctuation of error is within the tolerance range of the
products, and the NSGA-II algorithm can provide guidance
for actual production. Finally, the optimization results can be
selected from a Pareto-optimal set according to the bias of the
two quality objectives. For example, the process parameters



12 Mathematical Problems in Engineering

Table 10: Confirmation experimental results for Pareto-optimal set of HR and PV20.

Number Key IMPP Experimental results Prediction error𝐶 𝐹 𝐺 𝐻 HR (%) PV20 (𝜇m) HR (%) PV20 (%)
(1) 60.6 109.6 73.8 34.6 3.531 0.712 8.35 11.10(3) 61.6 107.9 75.5 28.6 3.912 0.506 7.77 9.29(5) 62.9 105.3 75.9 26.8 4.226 0.532 5.32 8.65(7) 64.1 98.6 76.4 25.8 5.141 0.479 7.37 9.81(9) 65.2 101.4 76.7 25.4 4.924 0.349 6.97 10.03
MPE 7.16 9.78

Figure 11: The injection plastic optical lens.

combination of Experiment number 5 was selected, and the
injection plastic optical lens is shown in Figure 11.

5. Conclusion

In order to consider the optical performance and surface
waviness of the plastic optical lens at the same time, this paper
presents a set of optimization procedures with four stages,
taking HR and PV20 as the quality objectives. The NSGA-II
algorithm was applied to solve this multioptimization prob-
lem. In particular, the introduction of the M-SVR algorithm
as the fitness function played an important role, through
which we improved the prediction accuracy of the quality
objectives. The Pareto-optimal set obtained in this study
improved the quality of plastic optical lens comprehensively.
The conclusions are as follows:

(1) The IMPP having a significant effect on both objec-
tives, HR and PV20, include packing pressure and
molding temperature. The IMPP only having a sig-
nificant effect on HR is injection pressure. With the
increase in injection pressure, the optical perfor-
mance of the lens decreases continuously. The IMPP
only having a significant effect on PV20 is cooling
time. With the increase in cooling time, the lens
surface waviness was increased substantially at the
beginning and decreased slightly subsequently.

(2) When establishing the relationships between the
objectives and the key IMPP, the 34 full factorial
experimental results of the IMPP were used as sam-
ples. At the same time, the BPNN algorithm and

the M-SVR algorithm were used to establish the
relationships. The results show that the determinant
coefficients 𝑅2 of the M-SVR model, which are close
to 1, are bigger than that of the BPNN model in the
training and testing stages, indicating that theM-SVR
algorithm has high prediction accuracy when dealing
with low-dimensional small samples.

(3) Using the NSGA-II algorithm can effectively find
the Pareto-optimal set of IMPP, so that the two
objectives HR and PV20 are as small as possible, to
achieve the optimal balance.Through the verification
on the optimization results, the MPE of HR and
PV20 reached a high accuracy of 7.16% and 9.78%,
respectively. Finally, the optimization results may be
selected from the Pareto-optimal set according to the
bias of the two quality objectives.
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