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The 3 + 1-dimensional Jimbo-Miwa equation can be written into a Hirota bilinear form by the dependent variable transformation.
We give its one-periodic wave solution and two-periodic wave solution by utilizing multidimensional ellipticΘ-function. With the
help of the solution curves, the asymptotic properties of the periodic waves are analyzed in detail.

1. Introduction

Nonlinear phenomena arise in many physical problems in
a variety of fields. Solutions of the governing nonlinear
equations can shed light on these phenomena. There are
various systematical methods for constructing solutions,
for example, nonlinearization method of Lax pairs [1–3],
extended 𝐹-expansion method [4–6] and homogeneous bal-
ance method [7–10], and dressing method and generalized
dressing method [11–16]. It is well known that the Hirota
method with the aid of Riemann-theta function is a good
method to obtain periodic and quasiperiodic solutions.
Nakamura [17, 18] used this method to study some famous
equations such as KdV, KP, Boussinesq, and Toda. By extend-
ing the approach adopted by Nakamura, Dai et al. obtained
the graphic quasiperiodic solutions for the KP equation for
the first time [19] and later they also gave the quasiperiodic
solutions for Toda lattice [20]. Recently, a lot of researchers
have used this method to study various soliton equations [21–
24].

In the present paper, we consider the 3 + 1-dimensional
Jimbo-Miwa equation𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑥𝑦𝑢𝑥 + 3𝑢𝑦𝑢𝑥𝑥 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧 = 0, (1)

which is the second member of a KP hierarchy [25]. It has
important physics to describe 3 + 1-dimensional waves. In

the last decade or so, many researchers have studied this
equation. Multiple-soliton solutions of (1) and its extended
version were given in Wazwaz [26]. Tang in [27] obtained
its Pfaffian solution and extended Pfaffian solutions with
the aid of the Hirota bilinear form. Su et al. [28] con-
structed its Wronskian and Grammian solutions. Multiple-
front solutions for (1) were obtained by employing the Hirota
bilinearmethod in [29]. Ozixs andAslan in [30] derived exact
solutions of (1) via Exp-function method. In [31], Ma and Lee
have obtained rational solutions of (1) including travelling
wave solutions, variable separated solutions, and polynomial
solutions by using rational function transformation and
Bäcklund transformation. Li et al. have utilized generalized
three-wave method to derive explicit three-wave solutions,
such as doubly periodic solitary wave solutions and breather
type of two-solitary wave solutions for (1) in [32]. Zhang et al.
have obtained generalized Wronskian solution in [33]. Dai et
al. obtained new periodic kink-wave and kinky periodic wave
solutions for (1) in [34].Ma in [35] has derived exact solutions
by using Lie point symmetry groups of (1). Tang and Liang in
[36] have obtained two types of variable separation solutions
and abundant nonlinear coherent structure by usingmultilin-
ear variable separation approach.Ma et al. obtained new exact
solutions for (1) by utilizing improved mapping approach
[37]. Liu and Jiang by applying the extended homogeneous
balance method have obtained new solutions of (1) in [38].
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Authors in [39] obtained special solutions by using extended
homogeneous balance method. Hu et al. [40] discussed 3-
soliton and 4-soliton solutions with the aid of bilinear form
of (1). In [41], some complexion type solutions of (1) are
presented by using two kinds of transcendental functions.
Authors presented rational solutions of (1) with the aid
of the generalized Riccati equation mapping method [42].
By utilizing two-soliton method and bilinear method, cross
kink-wave and periodic solitary solutions of (1) are given in
[43]. With the help of the bilinear form, here we construct
one-periodic and two-periodic solutions of this equation (1)
by utilizing the method of Dai et al. [19].

The paper is organized as follows. In Section 2, we obtain
the formula of one-periodic wave solutions and discuss its
asymptotic behavior. Further, in order to analyze the solution,
some solution curves are plotted. In the third section, two-
periodic wave solutions, their asymptotic behaviors and the
solution curves are given.

2. One-Periodic Wave Solution of the 3 + 1-
Dimensional Jimbo-Miwa Equation and Its
Asymptotic Form

We consider the 3 + 1-dimensional Jimbo-Miwa equation𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑥𝑦𝑢𝑥 + 3𝑢𝑦𝑢𝑥𝑥 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧 = 0. (2)

Substituting the transformation𝑢 = 𝑢0 + 2 (ln𝑓)𝑥 (3)

into (2) and integrating once again, we derive the following
bilinear form:𝐷3𝑥𝐷𝑦𝑓 ⋅ 𝑓𝑓2 + 2𝐷𝑡𝐷𝑦𝑓 ⋅ 𝑓𝑓2 − 3𝐷𝑥𝐷𝑧𝑓 ⋅ 𝑓𝑓2 + 𝑐 = 0; (4)

namely,𝐺(𝐷𝑥, 𝐷𝑡, 𝐷𝑦, 𝐷𝑧) 𝑓 ⋅ 𝑓= (𝐷3𝑥𝐷𝑦 + 2𝐷𝑡𝐷𝑦 − 3𝐷𝑥𝐷𝑧 + 𝑐) 𝑓 ⋅ 𝑓 = 0, (5)

where 𝑐 is an integration constant.
TheHirota bilinear differential operator is defined by [44]𝐷𝑚𝑥𝐷𝑛𝑡𝐷𝑚1𝑦 𝐷𝑛1𝑧 𝑓 ⋅ 𝑔= (𝜕𝑥 − 𝜕𝑥󸀠)𝑚 (𝜕𝑡 − 𝜕𝑡󸀠)𝑛 (𝜕𝑦 − 𝜕𝑦󸀠)𝑚1 (𝜕𝑧 − 𝜕𝑧󸀠)𝑛1 𝑓⋅ 𝑔󵄨󵄨󵄨󵄨𝑥=𝑥󸀠 ,𝑡=𝑡󸀠 ,𝑦=𝑦󸀠 ,𝑧=𝑧󸀠 . (6)

The 𝐷-operator possesses the good property when acting on
exponential functions:𝐷𝑚𝑥𝐷𝑛𝑡𝐷𝑚1𝑦 𝐷𝑛1𝑧 𝑒𝜉1 ⋅ 𝑒𝜉2= (𝑝1 − 𝑝2)𝑚 (𝜌1 − 𝜌2)𝑛 (𝑙1 − 𝑙2)𝑚1 (𝜇1 − 𝜇2)𝑛1 𝑒𝜉1+𝜉2 , (7)

where 𝜉𝑗 = 𝑝𝑗𝑥+𝑙𝑗𝑦+𝜇𝑗𝑧+𝜌𝑗𝑡+𝜉0𝑗 , 𝑗 = 1, 2. More generally,
we have𝐺(𝐷𝑥, 𝐷𝑡, 𝐷𝑦, 𝐷𝑧) 𝑒𝜉1 ⋅ 𝑒𝜉2= 𝐺 (𝑝1 − 𝑝2, 𝑙1 − 𝑙2, 𝜌1 − 𝜌2, 𝜇1 − 𝜇2) 𝑒𝜉1+𝜉2 . (8)

2.1. One-PeriodicWave Solution. Inwhat follows, we consider
Riemann-theta function solution of (5):𝑓 = ∑

𝑛∈𝑍𝑁

𝑒𝜋𝑖⟨𝜏𝑛,𝑛⟩+2𝜋𝑖⟨𝜉,𝑛⟩, (9)

where 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝑁)𝑇, 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑁)𝑇, 𝜏 is a
symmetricmatrix, and Im 𝜏 > 0, 𝜉𝑗 = 𝑝𝑗𝑥+𝑙𝑗𝑦+𝜇𝑗𝑧+𝜌𝑗𝑡+𝜉𝑜𝑗,𝑗 = 1, 2, . . . , 𝑁.

First, we consider one-periodic solution of (5) when𝑁 =1; then (9) is 𝑓 = ∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏. (10)

Substituting (10) into (5) yields that𝐺(𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡) 𝑓 ⋅ 𝑓 = 𝐺 (𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡)⋅ ∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏 ⋅ ∞∑
𝑚=−∞

𝑒2𝜋𝑖𝑚𝜉+𝜋𝑖𝑚2𝜏
= ∞∑
𝑛=−∞

∞∑
𝑚=−∞

𝐺(𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡) 𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏
⋅ 𝑒2𝜋𝑖𝑚𝜉+𝜋𝑖𝑚2𝜏 = ∞∑

𝑛=−∞

∞∑
𝑚=−∞

𝐺 (2𝜋𝑖 (𝑛 − 𝑚) 𝑝,2𝜋𝑖 (𝑛 − 𝑚) 𝑙, 2𝜋𝑖 (𝑛 − 𝑚) 𝜇, 2𝜋𝑖 (𝑛 − 𝑚) 𝜌)⋅ 𝑒2𝜋𝑖(𝑛+𝑚)𝜉+𝜋𝑖(𝑛2+𝑚2)𝜏 = ∞∑
𝑚󸀠=−∞

{ ∞∑
𝑛=−∞

𝐺
⋅ (2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝑝, 2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝑙, 2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝜇,
2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝜌) 𝑒𝜋𝑖[𝑛2+(𝑛−𝑚󸀠)2𝜏]} 𝑒2𝜋𝑖𝑚󸀠𝜉
= ∞∑
𝑚󸀠=−∞

𝐺(𝑚󸀠) 𝑒2𝜋𝑖𝑚󸀠𝜉 = 0,

(11)

where𝑚󸀠 = 𝑛 + 𝑚.𝐺(𝑚󸀠) = ∞∑
𝑛=−∞

𝐺(2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝑝, 2𝜋𝑖 (2𝑛 − 𝑚󸀠)
⋅ 𝑙, 2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝜇, 2𝜋𝑖 (2𝑛 − 𝑚󸀠) 𝜌) 𝑒𝜋𝑖[𝑛2+(𝑛−𝑚󸀠)2𝜏]
= ∞∑
𝑛󸀠=−∞

𝐺(2𝜋𝑖 [2𝑛󸀠 − (𝑚󸀠 − 2)]
⋅ 𝑝, 2𝜋𝑖 [2𝑛󸀠 − (𝑚󸀠 − 2)] 𝑙, 2𝜋𝑖 [2𝑛󸀠 − (𝑚󸀠 − 2)]
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⋅ 𝜇, 2𝜋𝑖 [2𝑛󸀠 − (𝑚󸀠 − 2)] 𝜌) 𝑒𝜋𝑖[𝑛󸀠2+(𝑛󸀠−(𝑚󸀠−2))2]𝜏⋅ 𝑒2𝜋𝑖(𝑚󸀠−1)𝜏 = 𝐺 (𝑚󸀠 − 2) 𝑒2𝜋𝑖(𝑚󸀠−1)𝜏 = ⋅ ⋅ ⋅
= {{{𝐺 (0) 𝑒𝜋𝑖𝑚

󸀠(𝑚󸀠−1)𝜏, 𝑚󸀠 is even,𝐺 (1) 𝑒𝜋𝑖(𝑚󸀠+1)(𝑚󸀠−2)𝜏, 𝑚󸀠 is odd,
(12)

where 𝑛󸀠 = 𝑛 − 1, which implies that if 𝐺(0) = 𝐺(1) = 0, then𝐺(𝑚󸀠) = 0,𝑚󸀠 ∈ 𝑁.
First, we consider𝐺 (0) = ∞∑

𝑛=−∞

[256𝜋4𝑛4𝑝3𝑙 − 32𝜋2𝑛2𝜌𝑙 + 48𝜋2𝑛2𝑝𝜇
+ 𝑐] 𝑒2𝜋𝑖𝑛2𝜏 = 0,

𝐺 (1) = ∞∑
𝑛=−∞

[16𝜋4 (2𝑛 − 1)4 𝑝3𝑙 − 8𝜋2 (2𝑛 − 1)2 𝜌𝑙
+ 12𝜋2 (2𝑛 − 1)2 𝑝𝜇 + 𝑐] 𝑒𝜋𝑖[𝑛2+(𝑛−1)2]𝜏 = 0;

(13)

let𝛿1 (𝑛) = 𝑒2𝜋𝑖𝑛2𝜏,𝛿2 (𝑛) = 𝑒𝜋𝑖[𝑛2+(𝑛−1)2]𝜏,
𝑏11 = ∞∑

𝑛=−∞

[256𝜋4𝑛3𝑝3 − 32𝜋2𝑛2𝜌] 𝛿1 (𝑛) ,
𝑏12 = ∞∑

𝑛=−∞

48𝜋2𝑛2𝑝𝛿1 (𝑛) ,
Δ 1 = ∞∑

𝑛=−∞

𝛿1 (𝑛) ,
𝑏22 = ∞∑

𝑛=−∞

12𝜋2 (2𝑛 − 1)2 𝑝𝛿2 (𝑛) ,
Δ 2 = ∞∑

𝑛=−∞

𝛿2 (𝑛) ,𝑏21
= ∞∑
𝑛=−∞

[16𝜋4 (2𝑛 − 1)4 𝑝3 − 8𝜋2 (2𝑛 − 1)2 𝜌] 𝛿2 (𝑛) ;

(14)

then (13) can be written as𝑙𝑏11 + 𝑏12𝜇 + 𝑐Δ 1 = 0,𝑙𝑏21 + 𝑏22𝜇 + 𝑐Δ 2 = 0. (15)

Solving this system, we get

𝑙 = 𝜇 (𝑏22Δ 1 − 𝑏12Δ 2)𝑏11Δ 2 − 𝑏21Δ 1 ,
𝑐 = 𝜇 (𝑏12𝑏21 − 𝑏22𝑏11)𝑏11Δ 2 − 𝑏21Δ 1 . (16)

Then we get one-periodic wave solution

𝑢 = 𝑢0 + 2 (ln𝑓)𝑥 = 𝑢0 + 2𝑓𝑥𝑓 , (17)

where 𝑓 and 𝑙, 𝑝, 𝜇, and 𝜌 are given by (10) and (16).
We see that the well known soliton solution of the 3 + 1-

dimensional Jimbo-Miwa equation can be obtained as limit
of the periodic solution (17).

Theorem 1. Under the condition (Im 𝜏 → ∞), the solution
(10) of (5) tends to the following exact solution of (2) via (3):

𝑢 = 𝑢0 + 4𝜋𝑖𝑝 𝑒2𝜋𝑖(𝑝𝑥+𝑙𝑦+𝜇𝑧+𝜌𝑡+𝜉0)1 + 𝑒2𝜋𝑖(𝑝𝑥+𝑙𝑦+𝜇𝑧+𝜌𝑡+𝜉0) , (18)

with 𝑙 → −3𝑝𝜇/(4𝜋2𝑝3 − 2𝜌), as 𝛼 = 𝑒𝜋𝑖𝜏 → 0, where 𝜉0 is an
arbitrary constant.

Proof. We write 𝑓 as

𝑓 = 1 + 𝛼 (𝑒2𝜋𝑖𝜉 + 𝑒−2𝜋𝑖𝜉) + 𝛼4 (𝑒4𝜋𝑖𝜉 + 𝑒−4𝜋𝑖𝜉) + ⋅ ⋅ ⋅ , (19)

with 𝜉 = 𝑝𝑥 + 𝑙𝑦 + 𝜇𝑧 + 𝜌𝑡 + 𝜉0.
If we make an arbitrary phase constant slightly as 𝜉0 =𝜉0 − (1/2)𝜏 and have small amplitude limit of 𝛼 = 𝑒𝜋𝑖𝜏 → 0,

then we derive proper limit

𝑓 󳨀→ 1 + 𝑒2𝜋𝑖(𝑝𝑥+𝑙𝑦+𝜇𝑧+𝜌𝑡+𝜉0). (20)

It is easy to obtain the (18). In fact, we have

𝑏11 = ∞∑
𝑛=−∞

(256𝜋4𝑛4𝑝3 − 32𝜋2𝑛2𝜌) 𝑒2𝜋𝑖𝑛2𝜏
= (512𝜋4𝑝3 − 64𝜋2𝜌) 𝛼2 + 𝑜 (𝛼2) ,

Δ 1 = ∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛2𝜏 = 1 + 2𝛼2 + 𝑜 (𝛼2) ,
𝑏12 = ∞∑

𝑛=−∞

48𝜋2𝑛2𝑝𝑒2𝜋𝑖𝑛2𝜏 = 96𝜋2𝑝𝛼2 + 𝑜 (𝛼2) ,
Δ 2 = ∞∑

𝑛=−∞

𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏 = 2𝛼 + 2𝛼5 + 𝑜 (𝛼5) ,
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𝑏22 = ∞∑
𝑛=−∞

12𝜋2 (2𝑛 − 1)2 𝑝𝑒𝜋𝑖(𝑛2+(𝑛−1)2)𝜏 = 24𝜋2𝑝𝛼+ 𝑜 (𝛼) ,𝑏21 = ∞∑
𝑛=−∞

[16𝜋4 (2𝑛 − 1)4 𝑝3 − 8𝜋2 (2𝑛 − 1)2 𝜌]
⋅ 𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏 = (32𝜋4𝑝3 − 16𝜋2𝜌) 𝛼 + 𝑜 (𝛼5) .

(21)

By utilizing (16), it is easy to deduce that𝑙 󳨀→ −3𝑝𝜇4𝜋2𝑝3 − 2𝜌 ,𝑐 󳨀→ 0. (22)

The one-periodic solution curves are presented in Figures
1 and 2 for 𝑢0 = 0, respectively, in two-dimensional and
three-dimensional space. It is obvious that the solution is
periodic and cuspon from the above solution graphs. It
is different to the Pfaffian solutions and extended Pfaffian
solutions derived by Tang in [27]. The results are different to
one-soliton solution and two-soliton solutions represented by
researchers in [28, 30–33].There are some difference between
new types of exact periodic solitary wave and kinky periodic
wave solutions in [34] by Dai et al. and the solutions in the
paper.

3. Two-Periodic Wave Solution of the 3 + 1-
Dimensional Jimbo-Miwa Equation and Its
Asymptotic Behavior

We consider the two-periodic wave solution of the 3 + 1-
dimensional Jimbo-Miwa equation (2). Substituting (9) (𝑁 =2) into (5), we obtain𝐺𝑓 ⋅ 𝑓 = ∑

𝑚,𝑛∈𝑍2

𝐺(𝐷𝑥, 𝐷𝑡, 𝐷𝑦, 𝐷𝑧) 𝑒2𝜋𝑖⟨𝜁,𝑛⟩+𝜋𝑖⟨𝜏𝑛,𝑛⟩
⋅ 𝑒2𝜋𝑖⟨𝜁,𝑚⟩+𝜋𝑖⟨𝜏𝑚,𝑚⟩ = ∑

𝑚,𝑛∈𝑍2

𝐺 (2𝜋𝑖 ⟨𝑛 − 𝑚, 𝑝⟩ ,
2𝜋𝑖 ⟨𝑛 − 𝑚, 𝑙⟩ , 2𝜋𝑖 ⟨𝑛 − 𝑚, 𝜇⟩ , 2𝜋𝑖 ⟨𝑛 − 𝑚, 𝜌⟩)⋅ 𝑒2𝜋𝑖⟨𝜁,𝑛+𝑚⟩+𝜋𝑖(⟨𝜏𝑚,𝑚⟩+⟨𝜏𝑛,𝑛⟩) = ∑

𝑚󸀠∈𝑍2

∞∑
𝑛1,𝑛2=−∞

𝐺
⋅ (2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝑝⟩ , 2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝑙⟩ ,2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝜇⟩ , 2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝜌⟩)⋅ exp (𝜋𝑖 (⟨𝜏 (𝑛 − 𝑚󸀠) , 𝑛 − 𝑚󸀠⟩ + ⟨𝜏𝑛, 𝑛⟩))⋅ exp (2𝜋𝑖 ⟨𝜉,𝑚󸀠⟩) ≡ ∑

𝑚󸀠∈𝑍2

𝐺(𝑚󸀠1, 𝑚󸀠2)⋅ exp (2𝜋𝑖 ⟨𝜉,𝑚󸀠⟩) = 0,

(23)
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Figure 1: 𝑧 = 0.6, 𝑡 = 2, 𝑦 = 2, 𝑝 = 0.1, 𝜇 = 2, 𝜌 = 4, 𝜁 = 0.8, and𝑥 ∈ [−3, 3].
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Figure 2: 𝑧 = 0.6, 𝑡 = 2, 𝑝 = 0.1, 𝜇 = 2, 𝜌 = 4, 𝜁 = 0.8, 𝑥 ∈ [−6, 6],
and 𝑦 ∈ [5, 20].
where𝑚󸀠 = 𝑛 + 𝑚. It is easy to calculate that

𝐺(𝑚󸀠1, 𝑚󸀠2) = ∞∑
𝑛1,𝑛2=−∞

𝐺(2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝑝⟩ ,2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝑙⟩ , 2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝜇⟩ ,2𝜋𝑖 ⟨2𝑛 − 𝑚󸀠, 𝜌⟩) 𝑒𝜋𝑖(⟨𝜏(𝑛−𝑚󸀠),𝑛−𝑚󸀠⟩+⟨𝜏𝑛,𝑛⟩)
= ∞∑
𝑛1 ,𝑛2=−∞

𝐺(2𝜋𝑖 2∑
𝑗=1

[2𝑛󸀠𝑗 − (𝑚󸀠𝑗 − 2𝛿𝑗𝑙)] 𝑝𝑗,
2𝜋𝑖 2∑
𝑗=1

[2𝑛󸀠𝑗 − (𝑚󸀠𝑗 − 2𝛿𝑗𝑙)] 𝑙𝑗,
2𝜋𝑖 2∑
𝑗=1

[2𝑛󸀠𝑗 − (𝑚󸀠𝑗 − 2𝛿𝑗𝑙)] 𝜇𝑗,
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2𝜋𝑖 2∑
𝑗=1

[2𝑛󸀠𝑗 − (𝑚󸀠𝑗 − 2𝛿𝑗𝑙)] 𝜌𝑗)
⋅ exp{{{𝜋𝑖 2∑𝑗,𝑘=1 [(𝑛󸀠𝑗 + 𝛿𝑗𝑙) 𝜏𝑗𝑘 (𝑛󸀠𝑘 + 𝛿𝑘𝑙)]+ [(𝑚󸀠𝑗 − 2𝛿𝑗𝑙 − 𝑛󸀠𝑗) + 𝛿𝑗𝑙]
⋅ 𝜏𝑗𝑘 [(𝑚󸀠𝑘 − 2𝛿𝑘𝑙 − 𝑛󸀠𝑘) + 𝛿𝑘𝑙]}}}
= {{{𝐺(𝑚

󸀠
1 − 2,𝑚󸀠2) 𝑒2𝜋𝑖(𝑚󸀠1−1)𝜏11+2𝜋𝑖𝑚󸀠2𝜏12 , 𝑙 = 1,𝐺 (𝑚󸀠1, 𝑚󸀠2 − 2) 𝑒2𝜋𝑖(𝑚󸀠2−1)𝜏22+2𝜋𝑖𝑚󸀠1𝜏21 , 𝑙 = 2,

(24)

which implies that if 𝐺(0, 0) = 𝐺(0, 1) = 𝐺(1, 0) = 𝐺(1, 1) =0, then 𝐺(𝑚󸀠1, 𝑚󸀠2) = 0 and 𝑓 is an exact solution of (5).

𝐺 (0, 0) = ∞∑
𝑛1 ,𝑛2=−∞

[(2𝑛1𝑙1 + 2𝑛2𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚0, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚0, 𝜌⟩)
+ 12𝜋2 (2𝑛1𝜇1 + 2𝑛2𝜇2) ⟨2𝑛 − 𝑚0, 𝑝⟩ + 𝑐] 𝛿0 (𝑛) ,

𝐺 (0, 1) = ∞∑
𝑛1 ,𝑛2=−∞

[(2𝑛1𝑙1 + (2𝑛2 − 1) 𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚1, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚1, 𝜌⟩)
+ 12𝜋2 (2𝑛1𝜇1 + (2𝑛2 − 1) 𝜇2) ⟨2𝑛 − 𝑚1, 𝑝⟩ + 𝑐]⋅ 𝛿1 (𝑛) ,

𝐺 (1, 0) = ∞∑
𝑛1 ,𝑛2=−∞

[((2𝑛1 − 1) 𝑙1 + 2𝑛2𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚2, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚2, 𝜌⟩)
+ 12𝜋2 ((2𝑛1 − 1) 𝜇1 + 2𝑛2𝜇2) ⟨2𝑛 − 𝑚2, 𝑝⟩ + 𝑐]⋅ 𝛿2 (𝑛) ,

𝐺 (1, 1) = ∞∑
𝑛1 ,𝑛2=−∞

[((2𝑛1 − 1) 𝑙1 + (2𝑛2 − 1) 𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚3, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚3, 𝜌⟩)

+ 12𝜋2 ((2𝑛1 − 1) 𝜇1 + (2𝑛2 − 1) 𝜇2) ⟨2𝑛 − 𝑚3, 𝑝⟩+ 𝑐] 𝛿3 (𝑛) .
(25)

Letting 𝛿𝑗 (𝑛) = 𝑒𝜋𝑖⟨𝜏𝑛−𝑚𝑗,𝑛−𝑚𝑗⟩+𝜋𝑖⟨𝜏𝑛,𝑛⟩,𝑚0 = (0, 0)𝑇 ,𝑚1 = (0, 1)𝑇 ,𝑚2 = (1, 0)𝑇 ,𝑚3 = (1, 1)𝑇 ,
(26)

we have

𝐴(𝑙1𝑙2𝜇1𝜇2)= 𝑏⃗, (27)

where𝑎𝑗1 = ∞∑
𝑛1,𝑛2=−∞

[(2𝑛1 − 𝑚𝑗1)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚𝑗, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚𝑗, 𝑝⟩)]⋅ 𝛿𝑗 (𝑛) ,

𝑎𝑗2 = ∞∑
𝑛1,𝑛2=−∞

[(2𝑛2 − 𝑚𝑗2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚𝑗, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚𝑗, 𝑝⟩)]⋅ 𝛿𝑗 (𝑛) ,

𝑎𝑗3 = ∞∑
𝑛1,𝑛2=−∞

[(2𝑛1 − 𝑚𝑗1) (12𝜋2) ⟨2𝑛 − 𝑚𝑗, 𝑝⟩]
⋅ 𝛿𝑗 (𝑛) ,𝑎𝑗4 = ∞∑
𝑛1,𝑛2=−∞

[(2𝑛2 − 𝑚𝑗2) (12𝜋2) ⟨2𝑛 − 𝑚𝑗, 𝑝⟩]⋅ 𝛿𝑗 (𝑛) ,
𝑏𝑗 = −𝑐 ∞∑

𝑛1 ,𝑛2=−∞

𝛿𝑗 (𝑛) , 𝑗 = 0, 1, 2, 3.

(28)



6 Mathematical Problems in Engineering

From this, we have 𝑙1 = Δ 1Δ ,
𝑙2 = Δ 2Δ ,
𝜇1 = Δ 3Δ ,
𝜇2 = Δ 4Δ ,

(29)

where Δ = 𝐴 and Δ 1, Δ 2, Δ 3, and Δ 4 are from Δ by replacing
1st, 2nd, 3rd, and 4th column with 𝑏⃗, respectively.
Theorem2. Under the condition𝛼1 → 0, 𝛼2 → 0, the solution
(9) (𝑁 = 2) of (5) tends to the two-periodic solution of (2) via
(3).

𝑢 = 𝑢0 + 4𝜋𝑖𝑝1𝑒𝜉1 + 𝑝2𝑒𝜉2 + (𝑝1 + 𝑝2) 𝑒𝜉1+𝜉2+𝐴1 + 𝑒𝜉1 + 𝑒𝜉2 + 𝑒𝜉1+𝜉2+𝐴 , (30)

where

𝑒2𝜋𝑖𝜏12 = 𝑒𝐴 = −(𝑙1 − 𝑙2) [4𝜋4 (𝑝1 − 𝑝2)3 − 2𝜋2 (𝜌1 − 𝜌2)] + 3𝜋2 (𝜇1 − 𝜇2) (𝑝1 − 𝑝2)(𝑙1 + 𝑙2) [4𝜋4 (𝑝1 + 𝑝2)3 − 2𝜋2 (𝜌1 + 𝜌2)] + 3𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) ,𝑙2 (4𝜋2𝑝32 − 2𝜌2) + 3𝜇2𝑝2 = 0,𝑙1 (4𝜋2𝑝31 − 2𝜌1) + 3𝜇1𝑝1 = 0,𝜉1 = 2𝜋𝑖 (𝑝1𝑥 + 𝑙1𝑦 + 𝜇1𝑧 + 𝜌1𝑡 + 𝜉01) ,𝜉2 = 2𝜋𝑖 (𝑝2𝑥 + 𝑙2𝑦 + 𝜇2𝑧 + 𝜌2𝑡 + 𝜉02) ,
(31)

and 𝜉01 and 𝜉02 are arbitrary constants.
Proof. We write 𝑓 as𝑓 = 1 + (𝑒2𝜋𝑖𝜉1 + 𝑒−2𝜋𝑖𝜉1) 𝑒𝜋𝑖𝜏11+ (𝑒2𝜋𝑖𝜉2 + 𝑒−2𝜋𝑖𝜉2) 𝑒𝜋𝑖𝜏22+ (𝑒2𝜋𝑖(𝜉1+𝜉2) + 𝑒−2𝜋𝑖(𝜉1+𝜉2)) 𝑒𝜋𝑖(𝜏11+2𝜏12+𝜏22) + ⋅ ⋅ ⋅ . (32)

Set 𝜉1 = 𝑝1𝑥 + 𝑙1𝑦 + 𝜇1𝑧 + 𝜌1𝑡 + 𝜉01,𝜉2 = 𝑝2𝑥 + 𝑙2𝑦 + 𝜇2𝑧 + 𝜌2𝑡 + 𝜉02,𝜉01 = 𝜉01 − 𝜏112 ,
𝜉02 = 𝜉02 − 𝜏222 ,𝛼1 = 𝑒𝜋𝑖𝜏11 ,𝛼2 = 𝑒𝜋𝑖𝜏22 .

(33)

Thus 𝑓 = 1 + 𝑒𝜉1 + 𝑒𝜉2 + 𝑒𝜉1+𝜉2+2𝜋𝑖𝜏12 + 𝑜 (𝛼𝑠11 𝛼𝑠22 ) . (34)

As 𝛼1 → 0, 𝛼2 → 0, and 𝑠1 + 𝑠2 ≥ 3, then 𝑓 → 1 + 𝑒𝜉1 + 𝑒𝜉2 +𝑒𝜉1+𝜉2+2𝜋𝑖𝜏12 .
In view of transformation (3), we have derived the

solution (30) of (2). In what follows, we will certify (31).𝐺 (0, 0) = ∞∑
𝑛1 ,𝑛2=−∞

[(2𝑛1𝑙1 + 2𝑛2𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚0, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚0, 𝜌⟩)
+ 12𝜋2 (2𝑛1𝜇1 + 2𝑛2𝜇2) ⟨2𝑛 − 𝑚0, 𝑝⟩ + 𝑐] 𝛿0 (𝑛)= 𝑐 + [2 (𝑙1 + 𝑙2) (128𝜋4 (𝑝1 + 𝑝2)3− 16𝜋2 (𝜌1 + 𝜌2)) + 𝑐] 𝑒2𝜋𝑖(𝜏11+2𝜏12+𝜏22) + [2 (𝑙1 + 𝑙2)⋅ (128𝜋4 (𝑝1 + 𝑝2)3 − 16𝜋2 (𝜌1 + 𝜌2)) + 𝑐]⋅ 𝑒2𝜋𝑖(𝜏11+2𝜏12+𝜏22) + [32𝑙2𝜋2 (8𝜋2𝑝32 − 𝜌2)+ 48𝜋2𝜇2𝑝2 + 𝑐] 𝑒2𝜋i𝜏22 + [32𝑙1𝜋2 (8𝜋2𝑝31 − 𝜌1)+ 48𝜋2𝜇1𝑝1 + 𝑐] 𝑒2𝜋𝑖𝜏11 + 𝑜 (𝛼𝑠11 𝛼𝑠21 ) = 𝑐 + 2 [2 (𝑙1+ 𝑙2) (128𝜋4 (𝑝1 + 𝑝2)3 − 16𝜋2 (𝜌1 + 𝜌2)) + 𝑐]⋅ 𝛼21𝛼22𝑒4𝜋𝑖𝜏12 + [32𝑙2𝜋2 (8𝜋2𝑝32 − 𝜌2) + 48𝜋2𝜇2𝑝2
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+ 𝑐] 𝛼22 + [32𝑙1𝜋2 (8𝜋2𝑝31 − 𝜌1) + 48𝜋2𝜇1𝑝1 + 𝑐] 𝛼21+ 𝑜 (𝛼𝑠11 𝛼𝑠21 ) .
(35)

As 𝛼1 → 0 and 𝛼2 → 0, then 𝐺(0, 0) → 0, with 𝑠1 + 𝑠2 > 3.
Thus, we derive 𝑐 → 0.𝐺 (0, 1) = ∞∑

𝑛1,𝑛2=−∞

[(2𝑛1𝑙1 + (2𝑛2 − 1) 𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚1, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚1, 𝜌⟩)
+ 12𝜋2 (2𝑛1𝜇1 + (2𝑛2 − 1) 𝜇2) ⟨2𝑛 − 𝑚1, 𝑝⟩ + 𝑐]⋅ 𝛿1 (𝑛) = 2 [𝑙2 (16𝜋4𝑝32 − 8𝜋2𝜌2) + 12𝜋2𝜇2𝑝2 + 𝑐]⋅ 𝑒𝜋𝑖𝜏22 + [(2𝑙1 − 𝑙2) [16𝜋4 (2𝑝1 − 𝑝2)3− 8𝜋2 (2𝜌1 − 𝜌2)] + 12𝜋2 (2𝜇1 − 𝜇2) (2𝑝1 − 𝑝2)]⋅ 𝑒𝜋𝑖(2𝜏11+𝜏22−2𝜏12) + 𝑜 (𝛼𝑠11 𝛼𝑠22 ) (𝑠1 + 𝑠2 ≥ 3) .

(36)

From 𝐺(0, 1) → 0, we have𝑙2 (4𝜋2𝑝32 − 2𝜌2) + 3𝜇2𝑝2 = 0. (37)

Similarly,

𝐺 (1, 0) = ∞∑
𝑛1 ,𝑛2=−∞

[(2𝑛2𝑙2 + (2𝑛1 − 1) 𝑙1)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚2, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚2, 𝜌⟩)+ 12𝜋2 (2𝑛2𝜇2 + (2𝑛1 − 1) 𝜇1) ⟨2𝑛 − 𝑚2, 𝑝⟩ + 𝑐]⋅ 𝛿2 (𝑛) = 2 [𝑙1 (16𝜋4𝑝31 − 8𝜋2𝜌1) + 12𝜋2𝜇1𝑝1 + 𝑐]⋅ 𝑒𝜋𝑖𝜏11 + [(2𝑙2 − 𝑙1) [16𝜋4 (2𝑝2 − 𝑝1)3− 8𝜋2 (2𝜌2 − 𝜌1)] + 12𝜋2 (2𝜇2 − 𝜇1) (2𝑝2 − 𝑝1)]⋅ 𝑒𝜋𝑖(2𝜏22+𝜏11−2𝜏12) + 𝑜 (𝛼𝑠11 𝛼𝑠22 ) (𝑠1 + 𝑠2 ≥ 3) .

(38)

From 𝐺(1, 0) → 0, we have
𝑙1 (4𝜋2𝑝31 − 2𝜌1) + 3𝜇1𝑝1 = 0. (39)

Then

𝐺 (1, 1) = ∞∑
𝑛1 ,𝑛2=−∞

[((2𝑛1 − 1) 𝑙1 + (2𝑛2 − 1) 𝑙2)
⋅ (16𝜋4 ⟨2𝑛 − 𝑚3, 𝑝⟩3 − 8𝜋2 ⟨2𝑛 − 𝑚3, 𝜌⟩)+ 12𝜋2 ((2𝑛1 − 1) 𝜇1 + (2𝑛2 − 1) 𝜇2) ⟨2𝑛 − 𝑚3, 𝑝⟩+ 𝑐] 𝛿3 (𝑛) = 2 [(𝑙1 + 𝑙2) (16𝜋4 (𝑝1 + 𝑝2)3− 8𝜋2 (𝜌1 + 𝜌2)) + 12𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) + 𝑐]⋅ 𝑒𝜋𝑖(𝜏11+𝜏22+2𝜏12) + 2 [(𝑙1 − 𝑙2) (16𝜋4 (𝑝1 − 𝑝2)3− 8𝜋2 (𝜌1 − 𝜌2)) + 12𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) + 𝑐]⋅ 𝑒𝜋𝑖(𝜏11+𝜏22) + [(3𝑙2 − 𝑙1) (16𝜋4 (3𝑝2 − 𝑝1)3− 8𝜋2 (3𝜌2 − 𝜌1)) + 12𝜋2 (3𝜇2 − 𝜇1) (3𝑝2 − 𝑝1)+ 𝑐] 𝑒𝜋𝑖(𝜏11−𝜏12+3𝜏22) + 𝑜 (𝛼𝑠11 𝛼𝑠22 ) = [2 [(𝑙1 + 𝑙2)⋅ (16𝜋4 (𝑝1 + 𝑝2)3 − 8𝜋2 (𝜌1 + 𝜌2))+ 12𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) + 𝑐] 𝑒𝜋𝑖2𝜏12+ 2 [(𝑙1 − 𝑙2) (16𝜋4 (𝑝1 − 𝑝2)3 − 8𝜋2 (𝜌1 − 𝜌2))+ 12𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) + 𝑐]] 𝑒𝜋𝑖(𝜏11+𝜏22) + [(3𝑙2− 𝑙1) (16𝜋4 (3𝑝2 − 𝑝1)3 − 8𝜋2 (3𝜌2 − 𝜌1))+ 12𝜋2 (3𝜇2 − 𝜇1) (3𝑝2 − 𝑝1) + 𝑐] 𝑒𝜋𝑖(𝜏11−𝜏12+3𝜏22)+ 𝑜 (𝛼𝑠11 𝛼𝑠22 ) , (𝑠1 + 𝑠2 ≥ 3) .

(40)

Using 𝐺(1, 1) → 0, we obtain
𝑒2𝜋𝑖𝜏12 = 𝑒𝐴 = −(𝑙1 − 𝑙2) [4𝜋4 (𝑝1 − 𝑝2)3 − 2𝜋2 (𝜌1 − 𝜌2)] + 3𝜋2 (𝜇1 − 𝜇2) (𝑝1 − 𝑝2)(𝑙1 + 𝑙2) [4𝜋4 (𝑝1 + 𝑝2)3 − 2𝜋2 (𝜌1 + 𝜌2)] + 3𝜋2 (𝜇1 + 𝜇2) (𝑝1 + 𝑝2) . (41)

In order to show the solution character, we drop the
solution curves of real 𝑢 and imaginary 𝑢. Figures 3 and

4 plot the real and imaginary of 𝑢, respectively, in three-
dimensional space. From the solution graphs, we can see
that the solutions are periodic and cuspon. The derived
two-periodic solutions in the paper are different to the
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two-solitary solutions in [32] and rational solutions presented
by Ma and Lee in [31].
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