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Estimation of spatially varying permeability within the two-phase porous media flow plays an important role in reservoir
simulation. Usually, one needs to estimate a large number of permeability values from a limited number of observations, so
the computational cost is very high even for a single field-model. This paper applies a nonlinear multigrid method to estimate
the permeability field within the two-phase porous media flow. Numerical examples are provided to illustrate the feasibility and
effectiveness of the proposed estimation method. In comparison with other existing methods, the most outstanding advantage of
this method is the computational efficiency, computational accuracy, and antinoise ability. The proposed method has a potential
applicability to a variety of parameter estimation problems.

1. Introduction

This paper investigates the estimation of a permeability field
q for the following diffusion equation within the two-phase
porous media flow:

u, — V- (q(x)N(u,Vu) Vu) = f (x,t),
(x,t) € QA% (0,T),
with the initial-boundary condition

u(x,0)=i(x), xe€Q,
(2)

u(x,t) =b(x,t), (x,t)eoQx(0,T),

Equation (1) originates from the partial differential equa-
tion system, which can model two-phase immiscible flow of
incompressible fluids in a porous medium with zero gravity
effects

908~V (Q)7, (P) 4w (S)Vp) = f, (x.1),
—p()S, -V (Q) 7, (p)q,(S) (Vp+P (9VS)) )
= fu(x1),

where ¢ is the porosity, S is the wetting-phase fluid saturation,
v is the fluid viscosity, f is the fluid source term, P is the
capillary pressure, p is the wetting-phase fluid pressure, Q and
q are the absolute and relative permeabilities, and subscripts
mean w—wetting fluid phase and n—nonwetting fluid phase.

N(u, Vu) in (1) is a nonlinear function, which can model
the main characteristics of the nonlinearity connected with
some of the coefficient functions in (3). The nonlinearities
in these two coupled nonlinear equations for S and p are
related to both of the dependent variables. The influence of
S is through S, and the influence of p is through Vp, so both
u and Vu are considered as the independent variables in N.

Determination of the permeability coefficient g of the
diffusion term has shown significant potential in reservoir
simulation. It can help make important decisions about the
management of petroleum reservoirs, for example, recov-
ery method, well location, fluid production, and injection
rates. However, the permeability is generally modelled as a
piecewise constant function; namely, it is defined by a single
value within each reservoir simulator grid cell. Thus one
is interested in inferring as many parameters as there are
grid cells in the simulator. This number is frequently more
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than 10° for a single field-model. There are principally two
difficulties about this.

Firstly, there is no enough sufficient information in mea-
surable reservoir quantities (well pressures and flow rates) to
estimate the permeability field with such a high resolution.
The usual solutions are (1) to reduce the degrees of freedom
in parameter space, or (2) to use prior knowledge about the
permeability to aid in the estimation, or both. Such issues are
not the theme of this paper; the interested reader is directed
to referenced texts [1-4] for solution.

Secondly, the computational complexity of this problem
is very large, even though the number of parameters is
modest corresponding to the attainable resolution implicitly
given by the measurements. It may take several hours to
complete reservoir simulation for a single field-model, and
it needs many such simulator runs for the estimation of a
permeability field. In addition, the attainable permeability
resolution is expected to increase in the near future, because
of the appearance of the novel data acquisition techniques,
such as time-lapse 3D seismic surveys. Therefore, there will be
an urgent need for parameter estimation methodology able
to handle a larger number of parameters within a reasonable
time span. The aim of this paper is to develop a parameter
identification method to overcome this difficulty.

There are many articles [5-10] focusing on the effective
methods for the estimation of coefficient g within the linear
elliptic equation, which can describe single-phase porous
media flow with constant fluid density and viscosity

-V (q(x)Vu) = f (x). (4)

Less work [11-14] has been done on the estimation of
coefficient g within the linear parabolic equation, which
can describe slightly compressible single-phase flow with
constant compressibility, viscosity, and porosity

u, —V-(q(x)Vu) = f (x,1). (5)

It is worth noting that the coefficient ¢ is just the permeability
when (4) and (5) are used to describe one-phase flow pro-
cesses in porous media. For the estimation of a permeability
field in the practical application, the interested readers are
invited to refer to the bibliography [15-20].

Multiscale techniques have been widely investigated to
reduce computation for the forward problems, such as the
elliptic problems [21], the parabolic homogenization prob-
lems [22], and the Navier-Stokes equations [23], and then
were extended to solve the inverse problems [24]. Wavelet
multiscale method is a specific form of multiscale techniques,
which has recently been used to solve various parameter
estimation problems. Successful applications of this method
include the Bayesian tomography [25, 26], the Bayesian
formulations of emission tomography [27], the thermal wave
tomography [28], the diffuse optical tomography [29], the
velocity estimation problems of a two-dimensional wave
equation [30], the permeability estimation problems of a non-
linear convection-diffusion equation [31], and the parameter
estimation problems of partial differential equations [32, 33].
It is shown in these papers that the performance of iterative
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parameter identification methods is much better with the
help of the multiscale techniques.

Multigrid method, as another specific form of multiscale
techniques, originally attracted interest because of its abil-
ities to remove smooth error components and reduce the
computational requirements of large numerical problems.
This method works by recursively operating on the data
at different grids, using the ideas of nested iterations and
coarse grid correction. Multigrid method has been mainly
used to solve partial differential equations, such as elliptic
equation [34], modified phase field crystal equation [35],
fractional diffusion equation [36], and Helmholtz equation
[37]. Subsequently, researchers also applied it to a variety
of imaging processing problems, for example, optical flow
estimation [38], shape-from-X [39], and image matching
[40].

More recently, multigrid method has been widely studied
to solve parameter estimation problems [41]. In earlier work,
Ranganath et al. [42] showed that the multigrid method could
be applied to positron emission tomography. McCormick
and Wade [43] applied a multigrid method to linearized
electrical impedance tomography, and Spiliopoulos et al. [44]
used a multigrid approach to estimate geometric anisotropy
parameters from scattered spatial data that are obtained from
environmental surveillance networks. Borcea [45] proposed
a nonlinear multigrid approach for imaging the electrical
conductivity and permittivity of a body, given partial, usually
noisy knowledge of the Neumann-to-Dirichlet map at the
boundary. Ye et al. [46] formulated the multigrid method
directly in an optimization framework and used the method
to solve Bayesian optical diffusion tomography. Nash [47]
gave a multigrid method, which can solve a broad class
of discretized optimization problems. Importantly, both the
methods of Ye and Nash are based on the matching of cost
functional derivatives at different grids.

In this paper, we propose a nonlinear multigrid method to
estimate the permeability field within the two-phase porous
media flow. This method is well suited to this permeability
estimation problem for three reasons. First, the numerical
examples indicate that the nonlinear multigrid method con-
verges much faster than fixed grid methods. This is very
important for the permeability estimation problem within the
two-phase porous media flow because it is inherently three-
dimensional. Second, the optimization at each grid is done
in the space-domain where positivity constraints are easily
enforced, so the positivity constraints can be implemented
well by multigrid method. Generally, it is important that
positivity can improve estimation quality when the problem
is ill-posed. In our problem, the permeability parameters
to be estimated have only positive values. Finally, multigrid
method can effectively overcome disturbance of local min-
ima, and permeability estimation problem within the two-
phase porous media flow results in a nonconvex optimization
problem; therefore, this robustness about local minima helps
insure that a good solution can be reached.

A key innovation of our work is that the nonlinear multi-
grid method is directly formulated in an optimization frame-
work by defining a sequence of optimization functionals
at decreasing grids. In order to ensure the good convergence
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of the method, it is essential that the cost functionals at
different grids be consistent. To achieve this, the coarse
grid functionals are adapted by a recursive method, which
guarantees that the exact fine grid solution is always a fixed
point of the nonlinear multigrid method. This method greatly
simplifies the application of multigrid to this permeability
estimation problem and can be generalized to the other
parameter estimation problems.

2. Nonlinear Multigrid Method

The forward problem is defined as g — u(x,t;q); that
is, a density field u(x,t;q) is derived from solving (1). We
take some density values {ﬁ(xz,t)}zzzl, where {xz}f:1 are
some fixed points in the spatial domain, as the observation
data. The permeability estimation problem is formulated as
{ﬁ(xz,t)}f=1 — g; that is, a permeability field is estimated
from the limited number of observations. The parameter
estimation problem is typically ill-posed, so we estimate a
permeability field by minimizing the following cost func-
tional:

Aq) = u(xatig) —a () +cfal,  ©

where « is the regularization parameter. Then, we derive a
specific expression of the nonlinear multigrid method for
optimization of the cost functional in (6), by starting with
the two-grid case and generalizing it for the V-cycle and full
multigrid cases.

2.1. Two-Grid Method. Let ¢© = g denote the permeability
field at the finest grid, and let g be a coarser grid represen-
tation of g with a grid sampling period of 2* times the finest

(k+1

grid sampling period. Generally, g**") can be computed from

g™ by the formula

q(k+1) — H]Ierlq(k)’ (7)

where I£*! is the restriction operator.

We make the hypothesis that a cost functional A% (g™®)
at grid k is needed to be minimized, and there is an initial
permeability field Zl(k), which approximately minimizes this
cost functional; namely,

—(k . k k

qu:argmé)n{A()(q( M} ®)
q

We aim at computing the permeability field %™ at the next

coarser grid and using it to improve or correct the fine grid
permeability field by the following formula:

~(k) —(k) k ~(k+1) k+1—=(k)
g — g+, @ -5Y), 9)

where I]I; .1 is the prolongation operator. To compute the
coarse grid permeability field g**", a corresponding opti-
mization problem at the coarse grid must be formulated.
To achieve it, we first choose a coarse grid cost functional

Al (q(k“)), which approximates well to A% (q(k) ). Without

doubt, it is very important to choose this functional, which
depends on the details of the considered problem. But for
the moment only assume that A%V (g%} is a reasonable
approximation to the finer grid cost functional. Due to the
possible discretization errors, we then solve an adjusted
coarse gird optimization problem

q(k+1) = arg min {A(k+1) (q(k+1)) _ V(k+1)q(k+1)} , (10)

q(k+1)

1) . . ..
,+1) is a row vector, which is introduced to correct

where v
the errors in the cost functional. In fact, the term v(k+1)q(k+1)
is similar to the so-called residual term in the traditional
multigrid, whose function is to adjust the errors between
coarse and fine grids.

The question now is how v

ideal that the following equality holds for all values of g

*+1) should be chosen. It is

(k+1),

A(k+1) (q(k+1)) _ V(k+1)q(k+l) + constant

D
= A® (G0 4 1E, (% - 1513®)),

where the left side is the adjusted coarse grid cost functional,
and the right side is the fine grid cost functional evaluated
using the corrected result of (9). If (11) holds true, these two
C(()kstlfunctionals will reach their minima at the same value of
q .

Generally speaking, there does not exist any row vector
5D that makes (11) true, because the difference between the
left and right sides of (11) is nonlinear. But a suitable choice of
**1) can match the derivatives of the two sides when g**!) =
g™ . This condition yields the key expression for v'
follows:

N

k+1 k+1)
I as

JEED g g KD (ﬂllzﬂq(k)) _ya® (q(lo) ”iw (12)

where VAR (g*)), vA®D (4% are, respectively, the gra-
dient vectors of A®(g®), A®D G+ This condition is
essential to assure that the optimum solution of (10) is a fixed
point of this two-grid method and is illustrated graphically in
Figure 1. It is worth noting that in (12) the restriction operator
I]I,z“, which comes from the chain rule of differentiation,
actually plays the role of a prolongation operator because it
multiplies the gradient vector on the right. Most importantly,
(12) holds for any choice of restriction and prolongation
operators.

2.2. Multigrid Method. Multigrid method can be imple-
mented by recursively applying the two-grid method, and
two recursions known as V-cycle and full multigrids are
used in this section. Both these two multigrid methods move
back and forth through coarse and fine grid in characteristic
patterns as shown in Figure 2.

The V-cycle multigrid method is a straightforward gen-
eralization of the two-grid method. In fact, the coarse gird
optimization problem in the two-grid method is recursively
solved by another two-grid method; then the V-cycle multi-
grid method can be got, as shown in Figure 2(a).
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FIGURE 2: The description of the multigrid methods.

The full multigrid method, as shown in Figure 2(b), is on
the basis of recursive calls of both the V-cycle and full multi-
grids. This structure causes this method to initially move
to the coarsest grid. We prolongate the obtained coarsest
grid permeability field to the second coarsest grid and use
it as the initial permeability field for the second coarsest
grid optimization problem, which is then solved by a V-cycle
multigrid. Repeat this process until the final permeability
field is got at the finest grid.

3. Simulation Results

In this section, we report simulation results on four numerical
examples in two dimensions. We perform the simulations on
a 2.6 GHz PC with 4 GB RAM in MATLAB 2012b environ-
ment under Windows 7. In our simulations, the permeability
field g is estimated both with the nonlinear multigrid method
(NMGM) and with the fixed grid method (FGM, i.e., the
Levenberg-Marquardt method [31]). For the estimation, we
use the parameters as follows:

i (x) = sin (7x, ) sin (1x,) ,
b(x,t) =0,
f(x,1t)=0,
Q=10,1]x[0,1].

(13)

In the first two examples, the spatial and temporal step
sizes Ax,, Ax,, and At are, respectively, chosen to be 1/8,1/8,
and 0.0025s, and the initial permeability field ¢° is chosen
to be constant 2. The artificial Gaussian noise with level 1%
is added to the measurement data. In the last two examples.
The spatial and temporal step sizes Ax;, Ax,, and At are,
respectively, chosen to be 1/24, 1/24, and 0.005s, and the
initial permeability field q° is chosen to be constant 5. The
level of Gaussian noise added to the measurement data is
chosen to be 2%. For the nonlinear multigrid method, the
regularization parameters in the coarsest and finest grids are,
respectively, chosen as & = 10* and « = 107%. For the
fixed grid method, the regularization parameter is chosen as
« = 107, This is because the initial permeability field is not
very good; a regularization parameter value smaller than 10~*
will lead to the divergence of the fixed grid method.

Example 1. In the first example, the nonlinear function
N(u) = u* + u + 1, and the exact permeability field to be
estimated, q(x), is piecewise constant

1, x€[0,0.5]%[0,0.5],
2, x€[0,0.5]x[0.5,1],

q(x) = (14)
3, x¢€[0.5,1] x[0,0.5],

4, x€[0.5,1]x[0.5,1].
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FIGURE 3: The exact permeability field and estimated permeability fields in Example 1.

TaBLE 1: Comparison of NMGM and FGM in the small-scale
models.

Example Estimation . ]
number method Relative error ~ CPU time (s)
NMGM 0.0421 4.975
Example 1
FGM 0.1253 13.079
NMGM 0.0634 4.815
Example 2
FGM 0.2725 9.199

Figure 3 displays the exact permeability field, the estimated
permeability field using the nonlinear multigrid method, and
the estimated permeability field using the fixed grid method.
To validate the merits of the nonlinear multigrid method, the
relative errors and CPU times in this example are listed in
Table 1.

By observing Table 1, it is clear that the nonlinear
multigrid method is much faster than the fixed grid method.
Furthermore, by comparing Figures 3(b) and 3(c), it appears
that the estimated permeability field using the nonlinear
multigrid method is much better than the one using the fixed

grid method. Thus, we conclude that the nonlinear multigrid
method is efficient, accurate, and stable.

Example 2. In this example, the nonlinear function N(Vu) =
1 + 0.1|Vu|*. In oil reservoirs the permeability field usually
has greatly large jumps, so the exact permeability field g(x) is
piecewise constant

—

, x€][0,0.5] x[0,0.5],

2, x¢€[0,0.5] x[0.5,1],
q(x) =
5, x€[0.51]x[0,0.5],

(15)

10, x €[0.5,1] x [0.5,1].

Figure 4 shows the exact permeability field, the estimated
permeability field using the nonlinear multigrid method, and
the estimated permeability field using the fixed grid method,
and Table 1 also lists the relative errors and CPU times in this
example.

It should be clear from this example that even if N is
highly nonlinear, the nonlinear multigrid method remains
efficient, accurate, and stable. In fact, when the permeability



0 o0
(a) Exact permeability field

0 0
(c) Estimated permeability field using FGM

Mathematical Problems in Engineering

2
0 0
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FIGURE 4: The exact permeability field and estimated permeability fields in Example 2.

field has greatly large jumps, the permeability field estimated
with the fixed grid method is not satisfactory. This may
be seen by comparing Figure 4(c), which presents an over-
smooth permeability field, with Figure 4(b), which presents
an acceptable permeability field. Therefore, we conclude that
the multigrid procedure is effective and even necessary in oil
reservoir simulation.

Example 3. In this example, the nonlinear function N(u) =
u* = u® + u* — u + 1. The exact permeability field to be
estimated, as shown in Figure 5(a), is a vertical stratified
medium containing two interfaces, where the permeabilities
from left to right are, respectively, 3.91, 5.03, and 6.18. The
estimated permeability field using the nonlinear multigrid
method is shown in Figure 5(b), and the relative errors and
CPU times in this example are listed in Table 2.

Example 4. In this example, the nonlinear function N(Vu) =
1/(1-0.1|Vul?). The exact permeability field to be estimated,
as shown in Figure 6(a), is the model of two anomalous bodies
in a homogeneous medium with a permeability of 6.27. The
anomalous bodies have the permeabilities of 3.56 and 4.79,
respectively. Figure 6(b) shows the estimated permeability

TABLE 2: Comparison of NMGM and FGM in the large-scale
models.

Example Estimation

number method Relative error  CPU time (s)
NMGM 0.0316 367.354
Example 3
FGM 0.1183 571.284
NMGM 0.0285 291.901
Example 4
FGM 0.1077 503.251

field using the nonlinear multigrid method, and Table 2 also
lists the relative errors and CPU times in this example.

It is evident from these two examples and the ones
previously discussed that the merits of the nonlinear multi-
grid method, such as the computational efficiency, computa-
tional accuracy, and antinoise ability, still exist for the high-
resolution and complicated permeability fields.

4. Discussion

Estimation of the permeability field within the porous media
flow is not only a very important research topic itself but also
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FIGURE 5: The exact permeability field and estimated permeability field in Example 3.
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FIGURE 6: The exact permeability field and estimated permeability field in Example 4.

has applications in a variety of domains, such as reservoir
simulation and oil and gas exploration. Various methods
had been presented to solve the problem of estimating the
permeability field within the one-phase porous media flow.
Within the growing body of work concerning multiphase
porous media flow, few studies have focused on the issue of
estimating the permeability field within the two-phase porous
media flow. This paper has proposed a new method based on
multigrid to estimate the permeability field for the nonlinear
diffusion equation within the two-phase porous media flow.
In this nonlinear multigrid method, the cost functionals at
different grids are dynamically adjusted to be compatible, so
that the exact fine grid solution can be always a fixed point
of the nonlinear multigrid method. In comparison with the
fixed grid method, the main advantages of this approach
are that it can dramatically reduce the computational com-
plexity and improve the estimation quality. Moreover, by

taking into consideration observation noise, the robustness
of the method has been demonstrated. This approach works
entirely in an optimization framework; therefore, it provides a
sensible way to estimate the permeability field within the two-
phase porous media flow, which has a clear potential applica-
bility to a wide variety of parameter estimation problems.
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