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A minimum weight design is developed for a composite laminated tube considering the number of plies as one of the design
variables.The objective function is found to be complex, and more than one optimal design point may exist with different numbers
of plies. Existing methods based on evolutionary algorithms tend to become trapped around a local optimum and can find nomore
than one optimal result per calculation. Aiming at the characteristics of the objective function, an improved evolutionary algorithm
(INDE for short) is established based on niching technology. The formula for calculating the distance between individuals in the
niching technology is improved to satisfy the minimum weight design for the composite laminated tube. As a result, the improved
niching evolutionary algorithm offers better global search ability and can find more than one optimal result per calculation for
different numbers of plies.

1. Introduction

Compared with traditional metallic materials, composite
materials are anisotropic and designable. These characteris-
tics offer the possibility of obtaining the optimal properties
of a composite structure for a specific application, such as
the maximum strength, stiffness, or minimum weight [1].
These characteristics alsomean that the design of a composite
structure involves more design variables and constraints [2],
making it more difficult to design a structure with composite
materials than with traditional metallic materials.

A common form of composite structures is the composite
laminated tube, which is widely used in fields such as oil
drilling [3, 4], automobile [5–8], aerospace [9, 10], and
civil engineering [11–13]. Rangaswamy et al. [7] designed
automotive drive shafts using E-glass/epoxy laminates and
carbon/epoxy laminates. The weights of these drive shafts
were 42% and 87% lower, respectively, than comparable
steel shafts. Zhang et al. [12] explored a novel hybrid FRP-
aluminum truss system with composite tubes acting as truss
bars. The truss system was applied in a bridge, and the
transportation performance and assembly performance were

improved significantly compared to a steel bridge with the
same load capacity.

When laminated composites are used in place of tra-
ditional metallic materials for the design of a tube, it is
possible to take full advantage of the laminated composites
and obtain a tube with better performance and lower weight.
However, the type and number of design variables increase
significantly.Not onlymustwe determine the design variables
that influence the properties of a metallic tube (such as the
inner diameter and wall thickness), but we must also deter-
mine some typical design variables for laminated composites,
such as the ply orientations and number of plies. Intelligent
optimization algorithms, especially evolutionary algorithms,
are widely used for the optimization of composite laminated
tube designs.

Evolutionary algorithms are commonly used for the
optimization of composite laminated tubes because they have
simple principles and strong applicability. Most applications
do not consider the number of plies as a design variable [14–
18]. Azarafza et al. [18] set the fiber volume ratio, ply orien-
tations, and ply thickness as design variables and performed
a multiobjective optimization of the weight and transient
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dynamic response of a composite laminated tube using a basic
genetic algorithm (GA). Da Silva et al. [15] optimized the ply
orientations and ply thicknesses of composite catenary risers
under multiple load cases based on a GA. Previous studies
have indicated that evolutionary algorithms are suitable
for composite laminated tube optimization with multiple
objectives, multiple load cases, or complex constraints under
a fixed number of plies. However, the wall thickness of a
tube is always controlled by the number of plies because the
ply thickness is typically constant for a particular fabrication
technology. Some studies considered the number of plies
as a design variable when designing composite laminated
tubes. An early study by Harrison and Haftka [19] involved
optimizing stacking sequences and the number of plies for
laminated composite structures based on a GA. “Intron”
codes were introduced into the code string to control the
number of plies (referred to as the intron method). Todoroki
and Sasai [20] used a similar approach. Malott et al. [21] and
Rangaswamy and Vijayrangan [22] considered a GA model
in which the code string was divided into different parts
based on the type of design variable.The number of plies was
controlled by a piece of code in the code string (referred to as
the segmented coding method).

Previous studies have seldom analyzed the influence of
the number of plies on the optimization problem of com-
posite laminated tubes and rarely examine whether existing
methods are still applicable. Furthermore, the basic evolu-
tionary algorithm can obtain only one optimal result after
a single operation [23], whereas multiple optimal designs
may exist in practice. It is extremely important to find all
optimal designs because their performance will vary in terms
of manufacturing, installation, and maintenance.

In this paper, the number of plies, ply orientations, and
inner diameter of a composite laminated tube are considered
as the design variables, and the weight is the objective
function. First, the influence of the number of plies on the
objective function is investigated for a composite laminated
tube, and the applicability of existing optimization methods
is analyzed. In view of the characteristics of a composite lam-
inated tube considering the number of plies, a niching evolu-
tionary algorithm is proposed for the optimization problem.
Finally, test examples are given to verify the accuracy of the
analysis and the advantages of the proposed method.

2. Problem Description

2.1. Structural Optimization Model. The model described in
this paper is a composite laminated tube with height 𝐻 and
inner diameter 𝑑. The tube is fabricated from 𝑛 plies, each of
thickness 𝑡. The tube is subjected to load 𝑃 (Figure 1).

The ply orientation 𝜃𝑖 (𝑖 = 1, 2, . . . , 𝑛) is defined as the
angle between the direction of the fiber and the axial direction
of the tube.

The optimization problem for minimum weight of a
composite laminated tube can be described as follows:

find (𝑛, 𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑑)
min 𝑚 = 𝜌𝑉 = 𝜌𝐻𝜋[(𝑑2 + 𝑛𝑡)

2 − (𝑑2)
2]

d

1 z z(1) z 1P

t t t

z

r

n

H

1 k
n

· · ·· · ·

Figure 1: Model of the composite laminated tube.

s.t. 𝑔1 (𝑛, 𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑑) ≥ 𝐺1
...

𝑔nc (𝑛, 𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑑) ≥ 𝐺nc.
(1)

In optimization problem (1), design variable 𝑛 is discrete,𝑛 ∈ 𝑛𝑠, and 𝑛𝑠 = {1, 2, . . . , 𝑁}. 𝑁 is a fixed upper limit of 𝑛.𝜃𝑖 (𝑖 = 1, 2, . . . , 𝑛) is continuous and is typically 𝜃𝑖 ∈ 𝜃𝑠, 𝜃𝑠 =[−90, 90]. 𝑑 is continuous, and 𝑑 ∈ 𝑑𝑠, 𝑑𝑠 = [𝑑𝑙, 𝑑𝑢], and 𝑑𝑙
and𝑑𝑢 represent the lower andupper limits of𝑑𝑠, respectively.𝑔𝑗 (𝑗 = 1, 2, . . . , nc) represents a constraint function such as
load capacity, stiffness, or the critical buckling load. 𝐺𝑗 (𝑗 =1, 2, . . . , nc) is the boundary of constraint function 𝑔𝑗.
2.2. Characteristic Analyses of Optimization Problem. For
optimization problem (1), we now analyze the influence of
the design variables on the objective function and constraint
functions.

As can be seen from formula (1), 𝑚 is a function related
to 𝑛 and 𝑑. When 𝑛 is fixed at 𝑛 = 𝑘, the relationship
between 𝑚 and 𝑑 defines a surface 𝑆𝑘, which is enclosed
by a dashed line in Figure 2. The value of 𝑛 determines the
number of variables 𝜃𝑖 (𝑖 = 1, 2, . . . , 𝑛). Different values of𝑛 correspond to surfaces with different actual dimensions.
Normally, constraint function 𝑔𝑗 is simultaneously related to𝑛, 𝑑, and (𝜃1, 𝜃2, . . . , 𝜃𝑛), whereas 𝑔𝑗 is a function of 𝑑 and(𝜃1, 𝜃2, . . . , 𝜃𝑛)when 𝑛 is fixed. An individual 𝐼𝑖 is feasible only
when 𝐼𝑖 satisfies the following conditions:

𝑔1 (𝐼𝑖) ≥ 𝐺1
...

𝑔nc (𝐼𝑖) ≥ 𝐺nc.
(2)

Therefore, when 𝑛 = 𝑘, the local feasible region 𝐹𝑘 is a
collection that belongs to 𝑆𝑘 (Figure 2). The feasible region𝐹 is the union of these incompatible local feasible regions for
different numbers of plies:

𝐹 = 𝑁⋃
𝑛=1

𝐹𝑛. (3)
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Figure 2: Distribution of the objective function.

In local feasible region 𝐹𝑘,𝑚 and 𝑑 have a linear relationship,
and there is a unique minimum inner diameter 𝑑𝑘,min that
minimizes the weight. The design point 𝑂𝑘 corresponding to𝑑𝑘,min in 𝐹𝑘 is a local extreme point of optimization problem
(1). Thus, different numbers of plies correspond to different
local feasible regions and different local extreme points. The
objective function of optimization problem (1) is obviously
multimodal in the direction of the number of plies. This
phenomenon does not exist if we do not take the number of
plies as a variable.

In addition, more than one optimum solution may exist
in the set of local extreme points {𝑂𝑘 | 𝑘 = 1, 2, . . . , 𝑁}.
Taking a case that only considers the axial compression
stiffness constraint 𝑔𝑠 ≥ 𝐺𝑠, for example, the stiffness analysis
of the tube is based on the classic lamination theory [24]
as a simple approximation method. The axial compression
stiffness of the laminated tube can be obtained by adding the
axial compression stiffness of each ply together, as

𝑔𝑠 = 𝑛∑
𝑖=1

𝐴 𝑖𝐸𝑖, (4)

where 𝐴 𝑖 is the cross-sectional area of the 𝑖th ply and 𝐸𝑖 is
the effective engineering modulus of the 𝑖th ply in the axial
direction. The tube has the greatest axial compression stiff-
ness when all plies are axially arranged under this condition
[25]; that is, 𝜃𝑖 = 0 (𝑖 = 1, 2, . . . , 𝑛); the axial compression
stiffness can be written as

𝑔𝑠 = 𝐸11 𝑛∑
𝑖=1

𝐴 𝑖. (5)

𝐸11 is the elastic modulus along the fiber orientation. Then,
the axial compressive stiffness is proportional to the cross-
sectional area and there exists a minimum cross-sectional
area 𝐴min (or weight) that makes the axial compression
stiffness just meet the constraint. The cross-sectional area is
a function of number of plies and inner diameter. It can be
seen from formula (6) that there exists a unique value of 𝑑
corresponding to each 𝑛, solutions for 𝑛 and 𝑑 are not unique,
any design points 𝐼(𝑛, 𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝑑) that satisfy
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Figure 3: Correspondences of codes to actual ply orientations in the
intron method.

𝐴min = 𝜋 ∗ [(𝑑2 + 𝑛𝑡)
2 − (𝑑2)

2] ,
𝜃𝑖 = 0 (𝑖 = 1, 2, . . . , 𝑛)

(6)

are globally optimal solutions, and the optimal solution is not
unique.

2.3. Analysis of the Shortcomings of Existing Method Based
on the Evolutionary Algorithm. Evolutionary algorithms are
commonly used to solve optimization problems in com-
posite laminated tubes. The basic evolutionary algorithm
is disadvantageous because the process can easily become
trapped around a local optimum solution, and the algorithm
can only find one extreme point during a single operation.
An optimization problem for a composite laminated tube
is multimodal, and multiple optimal solutions may exist.
This section analyzes whether optimal solutions can be
found when basic evolutionary algorithms are used to solve
optimization problem (1).

In a basic evolutionary algorithm, the length of the code
string depends on the number of design variables and is
always fixed during the evolution process. The number of
design variables for optimization problem (1) changes with
the number of plies. Thus, the length of the code string
must be variable, which is impossible in basic evolutionary
algorithms. Two optimization methods based on the basic
evolutionary algorithm have been proposed to solve this
problem.The first is the intronmethod proposed byHarrison
and Haftka [19]. In the intron method, the number of plies is
changed by inserting “Intron” codes into the code string. If
the length of the code string that represents the ply orienta-
tions is 𝐿, every code in the code string represents one ply
with a particular ply orientation or “Intron” (“Intron” means
no ply). For example, the search interval for the ply orienta-
tion in an optimization problem is 𝜃𝑠 = {0, ±45, 90}. Integer
codes 0, 1, 2, 3, and 4 represent ply orientations of 0, 45, −45,
90, and “Intron,” respectively. If the length of the code string
is 𝐿 = 8, the genotype and phenotype of an individual 𝐼𝑖 are
shown in Figure 3. Codes in the 3rd and 7th bits have values
of 4, indicating no ply, so the number of plies for individual 𝐼𝑖
is 6.The intron method can obtain a variable number of plies
on the basis that the length of the code string is constant.

The global search ability of the intron method can be
analyzed as follows. 𝐿 is equal to the upper limit of number
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of plies; 𝑁 = 𝐿 in other words. At the start of the evolution
process, the probability of each code appearing in each bit of
the code string is the same, so the probability that “Intron”
code 4 appears in any one bit is 0.2 for the example above.
Thus, the probability that a code in any bit represents no ply
is 𝑝𝑠 = 0.2, whereas the probability that a code in any bit
represents a physical ply is 𝑝𝑏 = 1−𝑝𝑠 = 0.8. Each code in the
code string is random and independent of the other codes in
the initial stages of evolution. Therefore, the number of plies
for an individual in the population is random and obeys the
following binomial distribution:

𝑛 ∼ 𝑏 (𝐿, 𝑝𝑏) . (7)

The expected value of 𝑛 is
𝐸 (𝑛) = 𝐿 ∗ 𝑝𝑏. (8)

That is, the number of plies for a random individual falls near𝐸(𝑛)with a relatively larger probability.When𝑝𝑏 = 0.8,𝐿 = 8,𝑛 ∼ 𝑏(8, 0.8), and 𝐸(𝑛) = 6.4, as in the example above, the
probability that 𝑛 = 𝑘 (𝑘 = 1, . . . , 𝑁) is

𝑝 {𝑛 = 𝑘} = (𝑛𝑘)𝑝𝑏𝑘 (1 − 𝑝𝑏)(𝑛−𝑘) . (9)

The probability distribution of 𝑏(8, 0.8) is shown in Figure 4.
The number of plies for individuals is not uniformly

distributed over the entire search interval, particularly for𝑛𝑠 = {1, 2, . . . , 8}, 𝑝{𝑛 = 1} ≈ 0.0001. This means that
it is difficult to generate an individual with exactly 1 ply in
the evolutionary process, and the optimization is unlikely to
converge to point 𝑂1 even if this is a global extreme point.

When the search interval for the ply orientation is
continuous, the analysis is similar to the above case in which
the search interval is discrete. The continuous search interval
for ply orientation can be set as 𝜃𝑠 = [−90, 𝜑] (𝜑 > 90). When
the real code 𝑒𝑖 (𝑖 = 1, 2, . . . , 𝐿) satisfies the condition that−90 ≤ 𝑒𝑖 ≤ 90, the code corresponds to a physical ply with a
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Figure 5: Structure of the code string in the segmented coding
method.

ply orientation of 𝜃 = 𝑒𝑖. Otherwise, the code corresponds to
no ply, and

𝑝𝑏 = 90 − (−90)𝜑 − (−90) = 180𝜑 + 90 . (10)

𝜑 has an impact on 𝑝𝑏 and affects the distribution of
individuals. The uneven distribution of the number of plies
negatively affects the convergence of individuals to the global
optimal solution.

Anothermethod (based on the basic evolution algorithm)
that is frequently used in the optimization of composite
laminated structures was proposed by Malott et al. [21] and
Rangaswamy and Vijayrangan [22]. Their approach divides
the code string into different segments according to the
types of design variables, with each segment representing a
different type of design variable. This is referred to as the
segmented codingmethod. For optimization problem (1), the
code string can be divided into three segments, as shown in
Figure 5: Segment A represents the 𝑁 ply orientations; the
top 𝑛 ply orientations are considered to participate in the
functions.The value of 𝑛 is determined by segmentB, and the
remaining 𝑛 + 1 ∼ 𝑁 codes are used to keep the length of the
code string unchanged. SegmentB represents the number of
plies 𝑛, and segmentC represents the inner diameter 𝑑.

The disadvantages of the segmented coding method for
dealing with optimization problem (1) are analyzed below.
Also, the case that only the axial compression stiffness
constraint 𝑔𝑠 ≥ 𝐺𝑠 is considered is taken here to illustrate
and stiffness analysis of the composite laminated tube is based
on the classic lamination theory [24]. A sketch map of the
feasible regions of inner diameter𝑑when the numbers of plies
are 𝑘 and 𝑘 + 1 is shown in Figure 6. The larger the number
of plies (e.g., 𝑛 = 𝑘 + 1), the thicker the wall of the tube, and
a smaller inner diameter can satisfy the constraint condition.
At this point, the minimum inner diameter corresponding to
different numbers of plies satisfies

𝑑min,𝑘+1 < 𝑑min,𝑘. (11)

When the ply orientations are all the same, individuals with a
larger number of plies are more likely to satisfy the constraint
conditions and survive from one generation to the next.
Even if the local extreme point 𝑂𝑘 is the optimum result,
individuals can hardly converge to point𝑂𝑘 if the value of 𝑑𝑢
is not appropriate (such as 𝑑𝑢 = 𝑑𝑢 1 in Figure 6(a)), because
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the corresponding local feasible domain 𝐹𝑘 is relatively small,
and it is difficult to generate individuals within 𝐹𝑘.

However, when the upper limit of the search interval for
inner diameter 𝑑𝑢 increases, both 𝐹𝑘 and 𝐹𝑘+1 increase, 𝑑𝑢 =+∞ in the extreme case (Figure 6(b)), and the probability of
an individual 𝐼𝑘,𝑖 satisfying the constraint condition is

lim
𝑑𝑢→+∞

𝑝 (𝑔𝑠 (𝐼𝑘,𝑖) > 𝐺𝑠) = 1 (𝑘 = 1, 2, . . . , 𝑁) . (12)

For any feasible individual 𝐼𝑘,𝑓(𝑘, 𝜃1,𝑠, 𝜃2,𝑠, . . . , 𝜃𝑘,𝑠, 𝑑) with𝑘 plies, according to formula (4), when a ply of arbitrary
orientation is added to the outer side of tube 𝐼𝑘,𝑓, the
resulting tube 𝐼𝑘+1,𝑓(𝑘+1, 𝜃1,𝑠, 𝜃2,𝑠, . . . , 𝜃𝑘,𝑠, 𝜃𝑘+1,𝑠, 𝑑) is certain
to satisfy constraint condition 𝑔𝑠(𝐼𝑘+1,𝑓) > 𝐺𝑠. However, the
relationship between their objective function values is

𝑚(𝐼𝑘,𝑓) < 𝑚 (𝐼𝑘+1,𝑓) . (13)

When 𝑑𝑢 → +∞,

lim
𝑑𝑢→+∞

𝐹𝑘 = 𝑆𝑘,
lim
𝑑𝑢→+∞

𝑝 (𝑚 (𝐼𝑘,𝑓) < 𝑚 (𝐼𝑘+1,𝑓)) = 1
(𝑘 = 1, 2, . . . , 𝑁 − 1) .

(14)

Individuals will converge to the local extreme point 𝑂𝑘 with
high probability, even if 𝑂𝑘+1 is the optimum result. In this
case, individuals easily converge to a local extreme point with
a smaller number of plies.

The segmented coding method uses a piece of code
string to represent the search interval of inner diameter 𝑑𝑠.
The boundary of 𝑑𝑠 has an important impact on whether
individuals with a particular number of plies meet the
constraints, and thereby affects the convergence trend. Some-
times, individuals cannot converge to a global extreme point.

Previous analysis indicates that the optimization problem
for a composite laminated tube is typically multimodal in

the direction of the number of plies. Existing optimization
methods based on the evolution algorithm have shortcom-
ings when solving such problems. It is necessary to find a
better optimization method.

3. Optimization Method

The probability of an individual evolving to the next gen-
eration in a basic evolutionary algorithm is determined
merely by its fitness. Individuals easily gather around a local
extreme point when the objective function is multimodal,
and, typically, only one extreme point can be found. Niching
technology is proposed under such a background.

Niching technology divides the individuals in each gen-
eration into several categories according to the distances
between them.We refer to each category as a niche. Individu-
als with better fitness are selected from each niche, and these
outstanding individuals compose a new group. Crossover and
mutation are performed in the new group, and preselection
[26], crowding [27], or fitness sharing [28] schemes are used
to complete the selection. Take the crowding scheme as
an example, the distance (usually the Hamming distance)
between every two individuals is calculated before deter-
mining which individuals will evolve to the next generation.
If the distance is less than the predefined niche radius 𝑅,
the individuals with lower fitness are assigned a fitness near
0. Individuals that will evolve to the next generation are
selected using the adjusted fitness values. From one aspect,
the fitness values of worse individuals within a niche are
further reduced, and only the optimal individuals within
a niche are retained (and will typically evolve to the next
generation). Such operations avoid concentrating a large
number of individuals. In other respects, if the distances
between a special individual and any other individuals are
greater than 𝑅, the special individual will survive. Therefore,
individuals in the population will spread throughout the
search interval after the adjustment. The two properties
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above have the effect of maintaining individual differences.
In theory, the niching evolutionary algorithm has stronger
global search ability than the basic evolutionary algorithm.
In particular, when the objective function is multimodal,
by setting suitable population numbers and niche radii,
individuals in the population evolve near all extreme points
and eventually converge to these extrema. Thus, all optimal
solutions can be found.

3.1. Improved Niching Evolutionary Algorithm. The imple-
mentation of niching technology is now described. Before the
evolution of current individuals to the next generation, the
distance between any two individuals 𝐼𝑖(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,V) and𝐼𝑗(𝑥𝑗,1, 𝑥𝑗,2, . . . , 𝑥𝑗,V) is calculated as

𝐷𝑖𝑗 = 󵄩󵄩󵄩󵄩󵄩𝐼𝑖 − 𝐼𝑗󵄩󵄩󵄩󵄩󵄩 = (
V∑
𝑘=1

(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘))
1/2

, (15)

where V is the number of design variables. We deem individ-
uals 𝐼𝑖 and 𝐼𝑗 to be in the same niche when 𝐷𝑖𝑗 ≤ 𝑅 (𝑅 is the
predefined niche radius). The fitness values of 𝐼𝑖 and 𝐼𝑗 are
then compared, and a penalty is imposed on the individual
with the smaller fitness:

𝑓min(𝐼𝑖 ,𝐼𝑗) = Penalty, (16)

where the value of “Penalty” is typically close to zero.
From previous analyses of optimization problem (1),

we know that the number of design variables varies with
the number of plies and that it is difficult to calculate the
distances between individuals using formula (15). In view of
the characteristics of the objective function in terms of the
number of plies, there are local extreme points corresponding
to each ply number. If each number of plies is seen as a
niche, evolution will occur among individuals of all numbers
of plies, and the phenomenon in which individuals converge
to the local extreme point of a special number of plies is
avoided.Thus,when calculating the distance between any two
individuals 𝐼𝑖, 𝐼𝑗 in problem (1), only the distance component
in the direction of the number of plies is calculated:

𝐷𝑖𝑗 = 𝑛𝑖 − 𝑛𝑗, (17)

where 𝑛𝑖 represents the number of plies of individual 𝐼𝑖.
We believe 𝐼𝑖 and 𝐼𝑗 are in the same niche if 𝐷𝑖𝑗 = 0

(i.e., the numbers of plies for 𝐼𝑖 and 𝐼𝑗 are the same). The
fitness values of 𝐼𝑖 and 𝐼𝑗 are then compared, and a penalty is
imposed on the individual with the smaller fitness. We refer
to this as the effective direction niching technique.

Niching technology is a selection strategy that is com-
monly used in conjunction with an evolutionary algorithm.
In this paper, the effective direction niching technique is
combined with the differential evolution (DE) algorithm
proposed by Storn and Price in 1997 [29] to solve optimiza-
tion problem (1). The optimization method proposed here is
simplified as the INDE method.

3.2. Process of INDE. Themain difference between the INDE
method and existing methods is that the fitness values of

individuals should be adjusted before the selection oper-
ations. Before optimization, the following steps should be
performed.

(1) Encoding Mode. The search interval contains the number
of plies 𝑛𝑠 = {1, 2, . . . , 𝑁}, inner diameter 𝑑𝑠 = [𝑑𝑙, 𝑑𝑢], and
ply orientation 𝜃𝑠 = [−90, 90]. The structure of the real code
string is shown in Figure 5, and the length is𝑁+2. The range
of the real code is set as [−90, 90]; the purpose of this is to
directly equate code values with ply orientations. The first𝑁
codes 𝑒1∼𝑒𝑛 represent ply orientations, whereas the (𝑁+1)th
code 𝑒𝑁+1 represents the number of plies. The relationship
between them is
𝑛
= {{{{{

𝑁 if 𝑒𝑁+1 = 90
Round(𝑁 ∗ (𝑒𝑁+1 + 90)180 + 0.5) else,

(18)

where the function “Round” applies the rounding operation
to the argument.The (𝑁+2)th code 𝑒𝑁+2 represents the inner
diameter, given by

𝑑 = (𝑒𝑁+2 + 90) (𝑑𝑢 − 𝑑𝑙)180 + 𝑑𝑙. (19)

(2) Transformation of the Objective Function. The penalty
function method proposed by Rajeev and Krishnamoorthy
[30] is adopted to transform the constrained optimization
into an unconstrained form. If an individual satisfies the
constraints, its objective function value remains unchanged.
If the individual does not satisfy the constraints, the objective
function value of the individual increases sharply, signifi-
cantly reducing its fitness. Take the axial compression stiff-
ness constraint 𝑔𝑠 ≥ 𝐺𝑠 as an example.The axial compression
stiffness of individual 𝐼𝑖 is 𝑔𝑠(𝐼𝑖), and the axial compression
stiffness violation-factor 𝑐𝑠 is defined as

𝑐𝑠 = {{{{{
0 if 𝑔𝑠 (𝐼𝑖) ≥ 𝐺𝑠𝐺𝑠𝑔𝑠 (𝐼𝑖) − 1 else.

(20)

Other violation-factors are defined in a similar manner to 𝑐𝑠.
The relationship between the different violation-factors is

𝐶 = nc∑
𝑖=1

𝑐𝑖. (21)

Finally, the objective function 𝑚 is transformed into the
following form:

𝜙 (𝐼𝑖) = 𝑚 (𝐼𝑖) (1 + 𝐾𝑐 ∗ 𝐶) , (22)

where 𝜙 represents the converted objective function and 𝐾𝑐
is a constant used to control punishment (typically,𝐾𝑐 = 10).
(3) Process of INDE in Solving Optimization Problem (1)

Step 1. Generate the initial population op of M individuals
and calculate the fitness of each individual. The size of M is
typically 10∼20 times the number of niches. The number of
niches is the same as N, soM is 10∼20 times N.
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Table 1: Material properties of E-glass/epoxy laminate.

Material properties Value
𝐸1/GPa 95𝐸2 = 𝐸3/GPa 7.4𝐺12 = 𝐺21/GPa 3.6
V12 = V13 0.3
V23 0.35𝑋𝑡/MPa 1100𝑋𝑐/MPa 750𝑌𝑡 = 𝑌𝑐/MPa 31𝑍𝑡 = 𝑍𝑐/MPa 110𝑆𝑥𝑦/MPa 49

Step 2. Arrange the individuals of op in descending order
according to their fitness values. Store the top T individuals
to form the crowding population np (the size of np is always
M/2).The role of np is to concentrate population op2 in Step 4
to retain good genes.

Step 3 (replication). Individuals in np are replicated in pro-
portion to their fitness values. Population op1 ofM individu-
als is obtained. Replication can achieve the goal of retaining
good codes.

Step 4. Perform crossover, mutation, and selection opera-
tions on population op1. Population op2 is thereby obtained.

Step 5 (niching operation). Merge np into op2 to obtain pop-
ulation np3 of (M + T) individuals. Adjust the fitness values
of individuals in population np3 according to formula (17)
to obtain population np4. Arrange the individuals of op
in descending order according to their fitness values. Store
the top M individuals to form the new op and the top T
individuals to form the new np.

Step 6 (termination). If the termination condition is satisfied,
stop and output the result. Otherwise, go to Step 2.

4. Test Example and Discussion

4.1. Test Example 1

4.1.1. Description of the Test Example. The length of a cylin-
drical truss rod is 𝐻 = 100mm. The rod is fabricated
from E-glass/epoxy laminates of thickness 𝑡 = 0.05mm and
density 𝜌; the tube is subjected to axial compression load 𝑃.
The laminates are balanced and symmetrically arranged. The
properties of the E-glass/epoxy laminate are listed in Table 1.

The strength constraint 𝑔st ≥ 𝐺st and local buckling
critical load constraint 𝑔bl ≥ 𝐺bl are considered, where 𝐺st =2.0𝑒5N and 𝐺bl = 2.0𝑒5N. The strength calculation is based
on the 3D elastic theory [31], first ply failure criteria, and Tsai
andWu tensor theory [32]. The calculation of the local buck-
ling critical load is based on classical lamination theory [33].

First, the intron method and segmented coding method
(based on the basic DE algorithm) are used to solve the

Table 2: Parameters of DE.

Parameter Value
Population size 200
Maximum generations 2500
Crossover probability 0.9
Mutation probability 0.5

Table 3: Effects of 𝜑 on results of intron method.

𝜑 500 400 300 200 100 92
pb 0.305 0.367 0.462 0.621 0.947 0.989
E(n) (×4) 4.27 5.14 6.47 8.70 13.26 13.85𝑚opt (𝜌H) 418.1 346.4 346.9 296.0 294.1 268.6
𝑛opt (×4) 7 8 8 9 9 10

problem in the test example. The results are presented to
verify the analysis in Section 2. The problems are then solved
using the proposed INDE method. The effects of DE and the
INDEmethod are compared.Theparameters forDE are listed
in Table 2.

4.1.2. Discussion

(1) Intron Method. The parameters of the intron method
based on the basic DE algorithm are listed in Table 2. The
upper limit of the number of plies is set as 𝑁 = 14, 𝑑𝑠 =[5mm, 60mm], 𝜃𝑠 = [−90, 90], and 𝑒𝑖 ∈ [−90, 𝜑] (𝜑 > 90,𝑖 = 1, 2, . . . , 𝑁). The binomial distribution probabilities 𝑝𝑏
obtained according to formula (10) are presented in the
second row of Table 3 for different 𝜑 values. The expected
values for ply numbers 𝐸(𝑛) obtained according to formula
(8) are presented in the third row of the table. The numbers
in the fourth and fifth rows are the optimal results and
corresponding numbers of plies for different 𝜑 values.

The results indicate that the expected values for each ply
number and the optimal results vary with changes in 𝜑. The
results are optimal when 𝜑 = 92, corresponding to 10 plies.
Other values of 𝜑 give greater objective function values, and
the corresponding ply numbers are different.Hence, the value
of 𝜑 in the intron method has an important influence on
the optimization results. An improper 𝜑 value may cause the
results to converge to a local extreme point. The previous
analysis of this method is verified.

(2) Segmented Coding Method. In this section, we examine
the impact of the search interval [𝑑𝑙, 𝑑𝑢] on the optimiza-
tion results given by the segmented coding method. The
parameters of the segmented method (based on the basic DE
algorithm) are listed in Table 2. The structure of the code
string is the same as that in Figure 5. The upper limit on the
number of plies is set to𝑁 = 14 and 𝑑𝑙 is fixed at 𝑑𝑙 = 5mm.
The optimal results and numbers of plies corresponding to
different 𝑑𝑢 values are listed in the second and third rows of
Table 4.

When 𝑑𝑢 is set to 20, 25, or 40, the optimization results
are relatively good. For other values of 𝑑𝑢, the objective
function values are clearly higher, and the corresponding
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Table 4: Effects of du on results of segmented coding method.

du (mm) 20 25 40 50 60 80 120𝑚opt (𝜌H) 268.8 267.5 268.9 294.1 352.9 359.2 398.2𝑛opt (×4) 11 10 10 9 8 8 7

Table 5: Results of the INDE method (𝜌H).

𝑛opt (×4) du (mm)
20 40 60 80 120

7 — — 392.5 439.9 423.8
8 — 356.1 360.4 363.9 357.6
9 — 297.8 301.9 302.3 297.2
10 — 268.8 267.3 270.9 269.8
11 267.2 269.5 269.4 270.6 269.2
12 275.6 273.7 273.7 269.4 269.7
13 268.8 278.2 275.6 275.5 273.0
14 272.6 279.9 281.8 280.1 273.3

ply numbers are different. The results in Table 4 show that
the value of 𝑑𝑢 greatly affects the optimization results in the
segmented codingmethod. An improper value of 𝑑𝑠may lead
to convergence to a local extreme point.The previous analysis
of the segmented coding method is verified.

(3) INDEMethod.The INDEmethod is now used to optimize
the test example. The upper limit of the number of plies is set
as𝑁 = 14, and 𝑑𝑙 is fixed at 𝑑𝑙 = 5mm. The structure of the
code string is the same as in Figure 5. Results corresponding
to different 𝑑𝑢 values are listed in Table 5.

The results for the different methods indicate that the
intron technology and segmented coding method based on
the basic evolutionary algorithm can only produce optimal
results once per calculation.Moreover, the optimal results are
strongly affected by parameters in the optimization method,
such that they sometimes cannot converge to global extreme
points. The INDE method can produce more than one opti-
mal result for different inner diameters. At the same time, the
results are less affected by the parameters in the optimization
model. This example demonstrates the advantages of the
proposed INDE method.

4.2. Test Example 2. Rangaswamy et al. [7] conducted the
optimization of a tubular drive shaft made of E-glass/epoxy
laminates based on the basic GA. Weight (𝑚) of the drive
shaftwas set to be the objective function.The design variables
included the number of plies 𝑛, thickness of the ply 𝑡, and
ply orientations 𝜃𝑖. The design of the drive shaft needed to
meet the following performance requirements: the torque
transmission capability (𝑇) and torsional buckling capacity
(𝑇𝑐𝑟) of the drive shaft should be larger than 3500Nm and
the fundamental natural bending frequency (𝑁𝑐𝑟𝑡) should
be higher than 6500 rpm. The performance calculations are
based on the classical lamination theory [24]; more details
can be allocated in [7]. Optimal design values based on GA
in the literature are shown in Table 6. Also, the problem
is solved based on INDE proposed by the paper; number
of individuals in the population, crossover probability, and

mutation probability are shown in Table 2. After 1000 times
of iterations, parts of the optimal design values of INDE are
shown in Table 6 to compare with results of GA.

FromTable 6, the optimal design value of composite drive
shaft based on GA is 4.44 kg, multiple better design values of
different numbers of plies can be obtained based on INDE,
and the optimal design value is 3.54 kg, decreased by 20.27%
compared to that of GA.The advantages of the INDEmethod
are demonstrated again.

5. Conclusions

Through the research and analysis in this study, some useful
results have been obtained. For the optimization problem of a
composite laminated tube, considering the number of plies as
one of the design variables, there is at least one local extreme
point for each number of plies and more than one optimal
design point. The distribution of the objective function is
more complicated than that when the number of plies is fixed.
While dealing with such problems, existing models based
on the basic evolutionary algorithm have disadvantages. The
results are easily affected by the initial parameters and not
all optimal design points can be found. The proposed INDE
method combines the advantages of the niching evolutionary
algorithm and the characteristics of the objective function.
Test examples have verified the analyses of the performance of
existing methods based on the basic evolutionary algorithm
and the INDE method. The calculation results show that the
INDE method has stronger global search ability and can find
more than one optimal result for different numbers of plies.

Nomenclature

𝐴min: Cross-sectional area corresponding to the
minimum weight of the composite laminated tube𝐴 𝑖: Cross-sectional area of the 𝑖th ply𝐶: Violation-factor of constraints𝑐𝑠: Violation-factor corresponding to constraint
function 𝑔𝑠𝐷𝑖𝑗: Distance between individuals 𝐼𝑖 and 𝐼𝑗𝑑: Inner diameter of the composite laminated tube𝑑𝑠: Search interval of 𝑑𝑑𝑙: Upper limit of 𝑑𝑠𝑑𝑢: Lower limit of 𝑑𝑠𝑑𝑘,min: The minimum inner diameter in local feasible
region when 𝑛 = 𝑘(𝐹𝑘)𝐸(𝑛): Expected value of number of plies 𝑛𝐸11: The elastic modulus along the fiber orientation𝐸𝑖: The effective engineering modulus in the axial
direction of the 𝑖th ply𝑒𝑖: The 𝑖th code in the code string𝐹: Feasible region𝐹𝑘: Local feasible region when 𝑛 = 𝑘𝑓𝐼: Fitness of individual 𝐼𝐺𝑗: Boundary of the 𝑗th constraint function 𝑔𝑗𝑔𝑗: The 𝑗th constraint function𝐻: Height of the composite laminated tube𝐼𝑖: A random individual𝐼𝑘,𝑖: A random individual with the number of pliers of 𝑘
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𝐼𝑘,𝑠: A random individual within the feasible region of
number of pliers of 𝑘𝐾𝑐: Factor used to control the power of punishment𝐿: Length of the code string that represents the ply
orientations𝑀: Number of individuals in populations𝑚: Weight of the tube𝑁: Upper limit of search interval of 𝑛𝑠𝑛: Number of plies of the composite laminated tube𝑛𝑠: Search interval of variable 𝑛𝑛𝑥: Number of plies of individual 𝑥

nc: Number of constraint functions𝑂𝑘: Design point corresponding to 𝑑𝑘,min𝑃: Compressive load applied at the tube centroid𝑝𝑏: Probability that a code in the code string represents
a ply𝑝𝑠: Probability that a code in the code string represents
no ply𝑅: The niche radius𝑆𝑘: Relationship between𝑚 and 𝑑 when 𝑛 is fixed at𝑛 = 𝑘𝑡: Thickness of the ply𝑉: Volume of the composite laminated tube

V: Number of design variables𝜃𝑖: Ply orientation of the 𝑖th laminate𝜌: Density of the laminate𝜃𝑠: Search interval of ply orientation𝜑: Upper limit of 𝜃𝑠 in the intron method𝜙: The converted objective function.
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[2] B. Paluch,M.Grédiac, andA. Faye, “Combining a finite element
programme and a genetic algorithm to optimize composite
structures with variable thickness,” Composite Structures, vol.
83, no. 3, pp. 284–294, 2008.

[3] M. M. Salama, G. Stjern, T. Storhaug, B. Spencer, and A.
Echtermeyer, “The First Offshore Field Installation for a Com-
posite Riser Joint,” in Proceedings of the Offshore Technology
Conference, pp. 247–253, usa, May 2002.

[4] M. Salama and B. Spencer, Multiple seal design for composite
risers and tubing for offshore applications, U.S. Patent, No.
6719058, 2004.

[5] M. M. Shokrieh, A. Hasani, and L. B. Lessard, “Shear buckling
of a composite drive shaft under torsion,” Composite Structures,
vol. 64, no. 1, pp. 63–69, 2004.

[6] A. R. Abu Talib, A. Ali, M. A. Badie, N. Azida Che Lah, and
A. F. Golestaneh, “Developing a hybrid, carbon/glass fiber-
reinforced, epoxy composite automotive drive shaft,”Materials
and Corrosion, vol. 31, no. 1, pp. 514–521, 2010.

[7] T. Rangaswamy, S. Vijayarangan, R. A. Chandrashekar, T.
K. Venkatesh, and K. Anantharaman, “Optimal design and
analysis of automotive composite drive shaft,” in Proceedings of
the International Symposium of Research Students on Materials
Science and Engineering, vol. 4, pp. 1–9, 2002.

[8] H. Ghoneim and D. J. Lawrie, “Analysis of the flexural vibration
of a composite drive shaft with partial cylindrical constrained
layer damping treatment,” Journal of Vibration and Control, vol.
12, no. 1, pp. 25–55, 2006.

[9] D. C. Jegley, K. C. Wu, J. E. Phelps, M. J. Mckenney, and L.
Oremont, “Structural efficiency of composite struts for aero-
space applications,” Journal of Spacecraft and Rockets, vol. 49,
no. 5, pp. 915–924, 2012.

[10] J. Smith, “Evolved composite structures for Atlas V,” in Pro-
ceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference Exhibit, Indianapolis, Ind, USA, July 2002.

[11] D. Zhang, Y. Huang, Q. Zhao, F. Li, F. Li, and Y. Gao, “Structural
performance of a hybrid FRP-aluminum modular triangular
truss system subjected to various loading conditions,” The
Scientific World Journal, vol. 2014, Article ID 615927, 2014.

[12] D. Zhang, Q. Zhao, Y. Huang, F. Li, H. Chen, and D. Miao,
“Flexural properties of a lightweight hybrid FRP-aluminum
modular space truss bridge system,” Composite Structures, vol.
108, no. 1, pp. 600–615, 2014.

[13] X. Yang, Y. Bai, and F. Ding, “Structural performance of a large-
scale space frame assembled using pultruded GFRP compos-
ites,” Composite Structures, vol. 133, pp. 986–996, 2015.

[14] A. Todoroki and M. Sasai, “Improvement of design relia-
bility for buckling load maximization of composite cylinder
using genetic algorithm with recessive-gene-like repair,” JSME
International Journal, Series A: Solid Mechanics and Material
Engineering, vol. 42, no. 4, pp. 530–536, 1999.
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