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Crane safety evaluation is significant for reducing the casualties and economic losses. Various evaluationmethods have been applied
to evaluate crane safety. However, when index standard with respect to every level is described in terms of intervals, existing crane
safety evaluation models are not ideal. Although variable fuzzy sets (VFS) method has successfully solved similar problems, its
evaluation processes are rather complex complicated and tedious. In this paper, we provided an improved VFS evaluation method
with normal membership function for solving crane safety problem, in which the evaluation criteria are described in terms of
intervals. To demonstrate our presented method, the improved variable fuzzy sets (IVFS) method was applied to two numerical
cases including an application to crane safety assessment. It is shown that our proposed method possesses the merit to simplify
assessment processes of traditional VFS and can be applied to assess crane safety when criteria values are defined as interval
numbers.

1. Introduction

As a high-risk special equipment, crane has been widely used
in industrial andmining enterprises, real estate, ports, railway
transportation, and so forth [1]. Its safety problems consti-
tuted a great threat to people’s life and property. According
to the record from US Labor Statistics, there were 632 crane-
related construction worker deaths from 1992 to 2006 in the
United States [2]. Besides, there were 41 fatalities resulting
from crane accidents in 2006 in Japan [3]. Only in the year
of 2015, China recorded 79 crane accidents, accounting for
30.74% of the total special equipment accidents [4]. Crane
safety problems have been received extensive attention [5, 6].

In order to guarantee the safety of the crane, many fuzzy
theories and methods have been employed to assess crane
safety such as fuzzy AHP [7, 8], 3-scale AHP [9], uncertainty
measurement theory [10, 11], and grey theory [12]. Although
fuzzy mathematics methods possess the advantages of simple
calculation and easy understanding, but these evaluation
models rely heavily on experts’ judgments and their per-
sonal experiences. In recent years, the intelligent evaluation
methods based on machine learning, such as BP artificial

neural network [13], fuzzy neural network [14], support
vector machine [15], and Fisher discriminance and analysis
method [16], were applied in the crane safety evaluation,
but these artificial intelligent assessment approaches depend
on reliable and typical samples which are often unavailable,
so as to restrict its application. In practice, fuzzy evaluation
methods aremost commonly used in crane safety assessment.
However, existing crane safety evaluation models are not
ideal, when index standard with respect to every level is
described in terms of interval. As a matter fact, in many
applications, evaluation standards of crane index are given as
intervals [17, 18]. To solve the problem, new assessmentmodel
for crane safety should be deeply investigated.

Fortunately, VFS proposed by Chen can successfully deal
with similar problems [19]. It has been widely applied in such
fields as flood control systems evaluation [20], agricultural
drought risk assessment [21], and water quality assessment
[22]. However, its calculation is complicated and tedious
[23, 24]. In spite of the fact thatWu’s set pair analysis-variable
fuzzy sets (SPA-VFS) method [23] simplifies assessment
processes, some concepts of SPA are not easy to understand
and the calculation of RMD is not very intuitive. This will
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be illustrated in Section 4 through the examination of a case.
To make up the insufficiency of VFS and SPA-VFS evaluation
methods discussed above, we attempt to propose an improved
VFS evaluation method, by using normal membership func-
tions to calculate relative membership degrees, and apply the
new model to crane safety assessment.

The rest of this paper is organized as follows. Section 2
introduces the traditional VFS assessment method. Section 3
presents entropy weight method and the IVFS model with
normal membership function. Section 4 investigates two
cases involving an application to crane safety assessment and
makes some comparison analysis. Finally, Section 5 offers the
conclusions.

2. Traditional VFS Assessment Method

2.1. Variable Fuzzy Sets. In 2009, Chen developed variable
fuzzy sets theory [20] based on engineering fuzzy sets
[25] and the relative difference function [26], which broke
through the static fuzzy set [27] established by Zadeh without
considering the dynamic changing process of things. Variable
fuzzy sets theory is described briefly as follows.

Let 𝑋 be a fuzzy concept and �̃� and �̃�𝑐 represent the
acceptability and repellency, respectively. For any element 𝑥
in 𝑋, 𝜇𝐴

̃
(𝑥) and 𝜇𝐴

̃

𝑐(𝑥) are the relative membership degrees
(RMD) of x to �̃� and �̃�𝑐, and 𝜇𝐴

̃
(𝑥)+𝜇𝐴

̃

𝑐(𝑥) = 1, 0 ≤ 𝜇𝐴
̃
(𝑥) ≤1, 0 ≤ 𝜇𝐴

̃

𝑐(𝑥) ≤ 1. Suppose 𝐷𝐴
̃
(𝑥) = 𝜇𝐴

̃
(𝑥) − 𝜇𝐴

̃

𝑐(𝑥), where𝐷𝐴
̃
(𝑥) is the relative difference degree (RDD) of 𝑥 to �̃� and�̃�𝑐. Mapping𝐷 : 𝑥 → 𝐷(𝑥) ∈ [−1, 1] is defined as the relative

difference degree (RDD) of 𝑥 to𝐴.Therefore, the relationship
of RDD and the RMD is𝐷𝐴

̃
(𝑥) = 2𝜇𝐴

̃
(𝑥) − 1,

or 𝜇𝐴
̃
(𝑥) = (𝐷𝐴̃ (𝑥) + 1)2 . (1)

Let𝑉 = {(𝑥,𝐷) | 𝑥 ∈ 𝑋, 𝐷𝐴
̃
(𝑥) = 𝜇𝐴

̃
(𝑥) − 𝜇𝐴

̃

𝑐 (𝑥) , 𝐷∈ [−1, 1]} ,𝐴+ = {𝑥 | 𝑥 ∈ 𝑋, 0 < 𝐷𝐴
̃
(𝑥) < 1} ,𝐴− = {𝑥 | 𝑥 ∈ 𝑋, −1 < 𝐷𝐴
̃
(𝑥) < 0} ,𝐴0 = {𝑥 | 𝑥 ∈ 𝑋, 𝐷𝐴

̃
(𝑥) = 0} ,

(2)

where 𝑉 is defined as VFS of X, and 𝐴+, 𝐴−, and 𝐴0
are defined as attracting sets, repelling sets, and balance
boundary of VFS 𝑉, respectively [19].
2.2. Relative Difference andMembership Degree Function. We
suppose that𝑋0 = [𝑎, 𝑏] is attraction domain of𝑉 on the real
axis. And 𝑋 is a certain interval [𝑐, 𝑑] containing 𝑋0 (𝑋0 ⊂𝑋) (see Figure 1). Based on the definition of VFS, we can infer

Mc x a b d

Figure 1: Location relationship between points 𝑥,𝑀 and𝑋0,𝑋.
that the intervals [𝑐, 𝑎] and [𝑏, 𝑑] are both exclusive domains;
that is, −1 < 𝐷𝐴

̃
(𝑥) < 0. Suppose that 𝑀 is point value

of 𝐷𝐴
̃
(𝑥) = 1 (𝜇𝐴

̃
(𝑥) = 1) in attracting domain [𝑎, 𝑏]. 𝑥

is a random point in interval 𝑋. If 𝑥 locates on the left side
of𝑀, relative difference degree function 𝐷𝐴

̃
(𝑥) and relative

membership degree function 𝜇𝐴
̃
(𝑥) are as follows [32, 33]:𝐷𝐴

̃
(𝑥) = ( 𝑥 − 𝑎𝑀 − 𝑎) , 𝑥 ∈ (𝑎,𝑀) ,𝐷𝐴
̃
(𝑥) = − (𝑥 − 𝑎𝑐 − 𝑎 ) , 𝑥 ∈ (𝑐, 𝑎) ;𝜇𝐴
̃
(𝑥) = 0.5 (1 + 𝑥 − 𝑎𝑀 − 𝑎) , 𝑥 ∈ (𝑎,𝑀) ,𝜇𝐴
̃
(𝑥) = 0.5 (1 − 𝑥 − 𝑎𝑐 − 𝑎 ) , 𝑥 ∈ (𝑐, 𝑎) ;

(3)

If 𝑥 locates on the right side of𝑀,𝐷𝐴
̃
(𝑥) and 𝜇𝐴

̃
(𝑥) are𝐷𝐴

̃
(𝑥) = ( 𝑥 − 𝑏𝑀 − 𝑏) , 𝑥 ∈ (𝑀, 𝑏) ,𝐷𝐴
̃
(𝑥) = −(𝑥 − 𝑏𝑑 − 𝑏) , 𝑥 ∈ (𝑏, 𝑑) ;𝜇𝐴
̃
(𝑥) = 0.5 (1 + 𝑥 − 𝑏𝑀 − 𝑏) , 𝑥 ∈ (𝑀, 𝑏) ,𝜇𝐴
̃
(𝑥) = 0.5 (1 − 𝑥 − 𝑏𝑑 − 𝑏) , 𝑥 ∈ (𝑏, 𝑑) .

(4)

2.3. Synthesis Relative Membership Degree Function. Suppose
there are 𝑚 (𝑖 = 1, 2, . . . , 𝑚) indexes and 𝑘 (ℎ = 1, 2, . . . , 𝑘)
levels, synthesis relative membership degree [34] can be
calculated by

𝛽𝑖ℎ (𝑥) = {{{1 + [∑𝑚𝑖=1 [𝑤𝑖 (1 − 𝜇𝑖ℎ (𝑥))]𝑝∑𝑚𝑖=1 [𝑤𝑖𝜇𝑖ℎ (𝑥)]𝑝 ]𝛼/𝑝}}}
−1 , (5)

where 𝛽𝑖ℎ(𝑥) is the synthetic relative membership degree
to level ℎ; 𝑤𝑖 is the index weight; 𝜇𝑖ℎ(𝑥) is the relative
membership degree of 𝑖th index to level ℎ;𝑚 is the number of
index; ℎ is the grade of the evaluation standard;𝑝 is a distance
parameter.When𝑝 = 1, it is calledHamming distance.When𝑝 = 2, it is Euclidean distance. 𝑎 is an optimization criterion
parameter. When 𝑎 = 1, it is least single criterion. When𝑎 = 2, it is least square criterion. There are four combination
forms: 𝑝 = 1, 𝑎 = 1; 𝑝 = 1, 𝑎 = 2; 𝑝 = 2, 𝑎 = 1; 𝑝 = 2, 𝑎 = 2.

When 𝑝 = 1, 𝑎 = 1, (5) can be expressed as follows:𝛽𝑖ℎ (𝑥) = 𝑚∑
𝑖=1

𝑤𝑖𝜇𝑖ℎ (𝑥) . (6)



Mathematical Problems in Engineering 3

2.4. Traditional Assessment Steps Based on Variable Fuzzy Sets

Step 1. According to intervals of evaluation standard to
establish the interval criterion matrix I𝑎𝑏 = ([𝑎, 𝑏]𝑖ℎ),

I𝑎𝑏 = ([𝑎𝑖ℎ, 𝑏𝑖ℎ])
=( [𝑎11, 𝑏11] [𝑎12, 𝑏12] ⋅ ⋅ ⋅ [𝑎1𝑘, 𝑏1𝑘][𝑎21, 𝑏21] [𝑎22, 𝑏22] ⋅ ⋅ ⋅ [𝑎2𝑘, 𝑏2𝑘]... ... ... ...[𝑎𝑚1, 𝑏𝑚1] [𝑎𝑚2, 𝑏𝑚2] ⋅ ⋅ ⋅ [𝑎𝑚𝑘, 𝑏𝑚𝑘]), (7)

where 𝑖 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑘.
Step 2. According to the interval criterion matrix I𝑎𝑏 and
intervals of evaluation standard to establish variable interval
matrix I𝑐𝑑,

I𝑐𝑑 = ([𝑐𝑖ℎ, 𝑑𝑖ℎ])
=( [𝑐11, 𝑑11] [𝑐12, 𝑑12] ⋅ ⋅ ⋅ [𝑐1𝑘, 𝑑1𝑘][𝑐21, 𝑑21] [𝑐22, 𝑑22] ⋅ ⋅ ⋅ [𝑐2𝑘, 𝑑2𝑘]... ... ... ...[𝑐𝑚1, 𝑑𝑚1] [𝑐𝑚2, 𝑑𝑚2] ⋅ ⋅ ⋅ [𝑐𝑚𝑘, 𝑑𝑚𝑘]), (8)

where 𝑖 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑘.
Step 3. Establish the point value mapping matrixM:

M = (𝑀𝑖ℎ) =(𝑀11 𝑀12 ⋅ ⋅ ⋅ 𝑀1𝑘𝑀21 𝑀22 ⋅ ⋅ ⋅ 𝑀2𝑘... ... ... ...𝑀𝑚1 𝑀𝑚2 ⋅ ⋅ ⋅ 𝑀𝑚𝑘), (9)

where 𝑖 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑘.
Step 4. Establish the RMDmatrix 𝜇(𝑢) based on (1) to (4):

𝜇 (𝑥) = [𝜇𝑖ℎ (𝑥)] = [[[[[[[
𝜇11 (𝑥) 𝜇12 (𝑥) ⋅ ⋅ ⋅ 𝜇1𝑘 (𝑥)𝜇21 (𝑥) 𝜇22 (𝑥) ⋅ ⋅ ⋅ 𝜇2𝑘 (𝑥)... ... ... ...𝜇𝑚1 (𝑥) 𝜇𝑚2 (𝑥) ⋅ ⋅ ⋅ 𝜇𝑚𝑘 (𝑥)

]]]]]]] ,𝑖 = 1, 2, . . . , 𝑚; ℎ = 1, 2, . . . , 𝑘.
(10)

Step 5. Determine the index weights. In this step, subjective
or objective weighting method can be used to calculate index
weights. Let index weight vector be

W = (𝑤𝑖) = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ 𝑤𝑚) , 𝑚∑
𝑖=1

𝑤𝑖 = 1. (11)

Step 6. Calculate the SRMD 𝛽(𝑥) vector based on (5):

𝛽 (𝑥) = (𝛽1 (𝑥) , 𝛽2 (𝑥) , . . . , 𝛽𝑘 (𝑥)) = (𝛽ℎ (𝑥)) . (12)

Step 7. Normalize the SRMD 𝛽ℎ(𝑥):𝛽ℎ (𝑥) = 𝛽ℎ (𝑥)∑𝑘ℎ=1 𝛽ℎ (𝑥) . (13)

Step 8. Calculate the level feature value H.𝐻(𝑥) = 𝑘∑
ℎ=1

𝛽ℎ (𝑥) × ℎ, (ℎ = 1, 2, . . . , 𝑘) . (14)

Step 9. Determine the safety level by discrimination rule [20]:1 < 𝐻 (𝑥) ≤ 1.5 it belongs to grade 1;ℎ − 0.5 < 𝐻 (𝑥) ≤ ℎ + 0.5
it belongs to grade ℎ, ℎ = 2, 3, . . . , 𝑘 − 1;𝑘 − 0.5 < 𝐻 (𝑥) ≤ 𝑘, it belongs to grade 𝑘. (15)

3. An Improved VFS Assessment Model

3.1. Entropy Weight. Shannon firstly introduced entropy into
information theory [35]. As an objective weighting method,
entropy method has been widely in water quality assessment
[22], flood risk prioritization [36], intrusion detection system
evaluation [37], and so forth. Entropy weighting method can
fully use the data provided and objectively reflect the relative
importance of each indicator. The entropy value of the 𝑖th
index can be expressed as𝐸𝑖 = −∑𝑘ℎ=1 𝜇𝑖ℎ ln 𝜇𝑖ℎln 𝑘 , 𝑖 = 1, 2, . . . , 𝑚, (16)

where 𝜇𝑖ℎ is the relative membership degree of 𝑖th index to
level ℎ. To ensure that 𝜇𝑖ℎ ln 𝜇𝑖ℎ has mathematical meaning,𝜇𝑖ℎ ln 𝜇𝑖ℎ is defined as 0 when 𝜇𝑖ℎ = 0 [38].

The entropy weight of the 𝑖th index is𝑤𝑖 = 1 − 𝐸𝑖𝑚 − ∑𝑚𝑖=1 𝐸𝑖 , (0 ≤ 𝑤𝑖 ≤ 1, 𝑚∑
𝑖=1

𝑤𝑖 = 1) . (17)

3.2. Improved VFS Assessment Model with Normal Member-
ship Function. Although the traditionalVFS assessmentmodel
is successfully applied to many fields, the RMD calculation
is complicated and tedious. To overcome the drawback
mentioned above and simplify evaluation procedures, this
paper modified the traditional VFS assessment model by
incorporating the normal membership function. Member-
ship function is an important component for comprehensive
evaluation.There are variablemembership functions.Normal
membership function is one of the very popular functions.
From Figure 2, it is clearly that the shapes of normal and VFS
membership functions are similar. What is more, graphs of
normal membership function are smooth and continuous,
while graphs of VFS membership function are nonsmooth
and piecewise.The property of normal membership function
is anticipated to avoid the trouble for selecting piecewise
linear membership function to calculate RMD. So this work
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Figure 2: Graphs of normal membership function and VFS membership function: (a) d–c > 2(b–a); (b) d–c < 2(b–a); (c) d–c = 2(b–a).

uses normal membership function to replace traditional VFS
membership function. Suppose that 𝐶𝑖 is 𝑖th (𝑖 = 1, 2, . . . , 𝑚)
index and the level variable is ℎ (ℎ = 1, 2, . . . , 𝑘). The figure
of normal membership function has symmetry property,
which has the desired ability to overcome tedious calculation
about RMD inVFS.Therefore, we adopt normalmembership
function [39, 40] to calculate RMD.That is,𝜇𝑖ℎ (𝑥) = exp{−[(𝑥 − 𝑡)𝑠 ]2} , (18)

where t and 𝑠 are nonnegative characteristic parameters; 𝑥 is
characteristic value of 𝑖th index; 𝜇𝑖ℎ(𝑥) represent RMD.

(1) Let 𝑥, index 𝑖’s feature value of u, belong to level
h (ℎ = 2, 3 . . . , 𝑘 − 1), according to the evaluation
standard intervals [𝑎𝑖ℎ, 𝑏𝑖ℎ]; then 𝜇𝑖ℎ(𝑥 = (𝑎𝑖ℎ + 𝑏𝑖ℎ)/2)
and 𝜇𝑖ℎ(𝑥 = 𝑎𝑖ℎ = 𝑏𝑖ℎ) are equal to 1 and 0.5 [41],
respectively. Putting 𝑥 = (𝑎𝑖ℎ + 𝑏𝑖ℎ)/2 and 𝜇ℎ(𝑥) = 1
into (18), we have𝑡 = (𝑎𝑖ℎ + 𝑏𝑖ℎ)2 . (19)

Substituting (19) into (18), we have𝜇𝑖ℎ (𝑥) = exp{−[(𝑥 − (𝑎𝑖ℎ + 𝑏𝑖ℎ) /2)𝑠 ]2} . (20)
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Putting 𝑥 = 𝑎𝑖ℎ (or 𝑏𝑖ℎ) and 𝜇ℎ(𝑥𝑖) = 0.5 into (20), we
have 𝑠 = 𝑎𝑖ℎ − 𝑏𝑖ℎ2√− ln 0.5 . (21)

Putting (19) and (21) into (18), (18) can be rewritten as𝜇𝑖ℎ (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎𝑖ℎ + 𝑏𝑖ℎ))𝑎𝑖ℎ − 𝑏𝑖ℎ ]2}}} . (22)

(2) Let 𝑥, index 𝑖’s feature value of 𝑢, belong to level 1
(ℎ = 1), according to the evaluation standard intervals[𝑎1, 𝑏1 = 𝑎2]; then 𝜇ℎ=1(𝑥𝑖 = 𝑎1) and 𝜇ℎ=1(𝑥𝑖 = 𝑏1) are
equal to 1 and 0.5 [41]. Putting 𝑥 = 𝑎1 and 𝜇ℎ(𝑥𝑖) = 1
into (18), we have 𝑡 = 𝑎1. (23)

Substituting (23) into (18), we have

𝜇𝑖1 (𝑥) = exp{−[(𝑥 − 𝑎1)𝑠 ]2} . (24)

Putting 𝑥 = 𝑏1 and 𝜇ℎ(𝑥𝑖) = 0.5 into (24), we have𝑠 = 𝑏1 − 𝑎1√− ln 0.5 . (25)

Putting (23) and (25) into (18), (18) can be rewritten
as𝜇𝑖1 (𝑥) = exp

{{{−[√− ln 0.5 (𝑥 − 𝑎1)𝑏1 − 𝑎1 ]2}}} . (26)

(3) Let 𝑥, index 𝑖’s feature value of 𝑢, belong to level ℎ (ℎ =𝑘), according to the evaluation standard intervals[𝑎𝑘 = 𝑏𝑘−1, 𝑏𝑘]; then 𝜇ℎ=𝑘(𝑥 = 𝑎𝑘) and 𝜇ℎ=𝑘(𝑥𝑖 =𝑏𝑘) are equal to 0.5 and 1 [41], respectively. Putting𝑥 = 𝑏𝑘 and 𝜇(𝑥) = 1 into (18), we have𝑡 = 𝑏𝑘. (27)

Substituting (27) into (18), we have

𝜇𝑖𝑘 (𝑥) = exp{−[(𝑥 − 𝑏𝑘)𝑠 ]2} . (28)

Putting 𝑥 = 𝑎𝑘 and 𝜇 = 0.5 into (28), we have𝑠 = 𝑏𝑘 − 𝑎𝑘√− ln 0.5 . (29)

Putting (27) and (29) into (18), (18) can be rewritten
as𝜇𝑖𝑘 (𝑥) = exp

{{{−[√− ln 0.5 (𝑥 − 𝑏𝑘)𝑎𝑘 − 𝑏𝑘 ]2}}} . (30)

According to VFS, RMD 𝜇𝑖ℎ is larger 0 to attraction
domain [a, b] and exclusive domains [c, a] and [b, d], while
RMD𝜇𝑖ℎ to other domains is 0.That is to say, if x locates in the
discussed h level, the RMDs to discussed and adjacent levels
can be determined by (22), (26), and (30), and the RMDs to
the other intensity levels are 0. Generally, for 𝑘 = 5 in this
case study, the calculating equations of 𝜇𝑖ℎ (𝑖 = 1, 2, . . . , 𝑚;ℎ = 1, 2, . . . , 𝑘 = 5) are as follows.

If 𝑥 locates in the discussed level 1, the RMDs 𝜇𝑖ℎ can be
calculated by𝜇𝑖(ℎ=1) (𝑥) = exp

{{{−[√− ln 0.5 (𝑥 − 𝑎1)𝑎1 − 𝑏1 ]2}}} ,𝑥 ∈ [𝑎1, 𝑏1 = 𝑎2] ,𝜇𝑖(ℎ=2) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎2 + 𝑏2))𝑎2 − 𝑏2 ]2}}} ,𝜇𝑖(ℎ=3) (𝑥) = 𝜇𝑖(ℎ=4) (𝑥) = 𝜇𝑖(ℎ=5) (𝑥) = 0.

(31)

If 𝑥 locates in the discussed level 2, the RMDs 𝜇𝑖ℎ can be
calculated by𝜇𝑖(ℎ=1) (𝑥) = exp

{{{−[√− ln 0.5 (𝑥 − 𝑎1)𝑎1 − 𝑏1 ]2}}} ,𝜇𝑖(ℎ=2) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎2 + 𝑏2))𝑎2 − 𝑏2 ]2}}} ,𝑥𝑖 ∈ [𝑎2 = 𝑏1, 𝑏2 = 𝑎3] ,𝜇𝑖(ℎ=3) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎3 + 𝑏3))𝑎3 − 𝑏3 ]2}}} ,𝜇𝑖(ℎ=4) (𝑥) = 𝜇𝑖(ℎ=5) (𝑥) = 0.

(32)

If 𝑥 locates in the discussed level 3, the RMDs 𝜇𝑖ℎ can be
calculated by𝜇𝑖(ℎ=1) (𝑥) = 0,𝜇𝑖(ℎ=2) (𝑥)= exp

{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎2 + 𝑏2))𝑎2 − 𝑏2 ]2}}} ,
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Table 1: Measured values of evaluation indicators.

Samples Rock mass
quality C1

Uniaxial compressive
strength C2 (MPa)

Integrality degree
of rock mass C3

Groundwater percolation capacity
C4 (L/(min⋅10m)) Joint C5

1 0.12 185.5 0.89 6 8
2 0.27 176.4 0.80 8 7
3 0.08 158.2 0.94 6 7
4 0.04 201.1 0.97 5 9
5 0.24 181.9 0.92 9 8

𝜇𝑖(ℎ=3) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎3 + 𝑏3))𝑎3 − 𝑏3 ]2}}} ,𝑥𝑖 ∈ [𝑎3 = 𝑏2, 𝑏3 = 𝑎4] ,𝜇𝑖(ℎ=4) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎4 + 𝑏4))𝑎4 − 𝑏4 ]2}}} ,𝜇𝑖(ℎ=5) (𝑥) = 0.

(33)

If 𝑥 locates in the discussed level 4, the RMDs 𝜇𝑖ℎ can be
calculated by𝜇𝑖(ℎ=1) (𝑥) = 𝜇𝑖(ℎ=2) (𝑥) = 0,𝜇𝑖(ℎ=3) (𝑥)= exp

{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎3 + 𝑏3))𝑎3 − 𝑏3 ]2}}} ,𝜇𝑖(ℎ=4) (𝑥)= exp
{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎4 + 𝑏4))𝑎4 − 𝑏4 ]2}}} ,𝑥 ∈ [𝑎4 = 𝑏3, 𝑏4 = 𝑎5] ,𝜇𝑖(ℎ=5) (𝑥) = exp

{{{−[√− ln 0.5 (𝑥 − 𝑏5)𝑎5 − 𝑏5 ]2}}} .

(34)

If 𝑥 locates in the discussed level 5, the RMDs 𝜇𝑖ℎ can be
calculated by𝜇𝑖(ℎ=1) (𝑥) = 𝜇𝑖(ℎ=2) (𝑥) = 𝜇𝑖(ℎ=3) (𝑥) = 0,𝜇𝑖(ℎ=4) (𝑥)= exp

{{{−[2√− ln 0.5 (𝑥 − 0.5 × (𝑎4 + 𝑏4))𝑎4 − 𝑏4 ]2}}} ,

𝜇𝑖(ℎ=5) (𝑥) = exp
{{{−[√− ln 0.5 (𝑥 − 𝑏5)𝑎5 − 𝑏5 ]2}}} ,𝑥 ∈ [𝑎5 = 𝑏4, 𝑏5] .

(35)

Using (31)–(35), the RMD matrix 𝜇(𝑥) = (𝜇𝑖ℎ(𝑥)) can be
obtained. Although the normal membership function is a
nonlinear model, it can be easily solved by using Microsoft
Excel software. Based on the above analysis, the RMD
calculation of traditional VFS model was improved with
normal membership function. The flow chart of assessment
procedure is provided in Figure 3. The evaluation procedure
with the proposed approach is as follows:

(1) Establish assessment indexes system and classifica-
tion standards.

(2) Establish the single index RMD matrix 𝜇(𝑥) with
(31)–(35).

(3) Determine the index weights.
(4) Calculate SRMD to each level with (5).
(5) Normalize the SRMD with (13).
(6) Calculate the level feature valueH and determine the

assessment level with (14)-(15).

4. Case Study

In this section, we examined two numerical cases using
the proposed IVFS method. The first case was used to
demonstrate the validity and reliability of our approach.Then
the second case was the application of the proposed approach
to cranemetal structure after assessment. Finally, the analysis
and comparison of the evaluation results are also conducted
to show the superiority of our proposed model.

Case 1. The surrounding rock stability assessment data for
5 samples [28, 29] are listed in Table 1. According to
previous studies, stability of surrounding rock is usually
divided into five levels [28, 29]. And the assessment levels
for stability of surrounding rock are shown in Table 2. The
weights of the indexes cited from [28] are as follows: w =(0.241, 0.198, 0.145, 0.197, 0.219).

Let us take index 𝐶1 of sample 1 as an example to
demonstrate the specific calculation steps. The characteristic
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Calculate the SRMD

Normalize the SRMD

Determine the assessment level

Establish the RMD matrix

Establish assessment indexes system

and classification standards

Establish the interval 

Establish the variable 

Establish the point value 

Establish the RMD matrix 

Determine index weights

Determine index weights 

The proposed evaluation process Traditional evaluation

criterion matrix Iab

interval matrix Icd

mapping matrix M

Figure 3: Evaluation flowchart of the proposed approach.

Table 2: Level standard to surrounding rock stability.

Stability level Rock mass
quality C1

Uniaxial compressive
strength C2 (MPa)

Integrality degree of
rock mass C3

Groundwater percolation capacity
C4 (L/(min⋅10m)) Joint C5

Very good I 0–0.10 200–300 0.75–1.00 0–5 9-10
Good II 0.10–0.25 100–200 0.55–0.75 5–10 7–9
Fair III 0.25–0.40 50–100 0.30–0.55 10–25 4–7
Poor IV 0.40–0.60 25–50 0.15–0.30 25–125 2–4
Very poor V 0.6–1.00 0–25 0–0.15 125–250 0–2

value of the rock mass quality (𝐶1) of sample 1 is known as
0.12, which belongs to the intervals [𝑎12 = 0.1, 𝑏12 = 0.25].
Step 1. Utilize (32) to calculate RMDs to levels I, II, and III
respectively:𝜇11 (𝐶1)= exp{−[√− ln 0.5 (0.12 − 0.5 × (0 + 0.1))0 − 0.1 ]2}= 0.3686, (36)

𝜇12 (𝐶1)= exp{−[2 × √− ln 0.5 (0.12 − 0.5 × (0.1 + 0.25))0.1 − 0.25 ]2}= 0.6888, (37)

𝜇13 (𝐶1)= exp{−[2 × √− ln 0.5 (0.12 − 0.5 × (0.25 + 0.4))0.25 − 0.4 ]2}= 0.0056. (38)

According to VFS and (31)–(35), RMDs to levels IV and
V are as follows: 𝜇14 (𝐶1) = 0,𝜇15 (𝐶1) = 0. (39)

The RMD vector was denoted by 𝜇1 as

𝜇1 = (0.3686, 0.6888, 0.0056, 0, 0) . (40)
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Table 3: Results of case study and comparison.

Samples Proposed
model

Basic quality
grading method [28]

Variable fuzzy
set method [28]

Triangular fuzzy
number method [29]

Set pair-extenics
method [30]

1 II II II II II
2 II II II II II
3 II II II II II
4 I I I I I
5 II II II II II

Similarly, we get the RMD vectors of the rest indexes to
all levels. And the RMDmatrix of sample 1 to every level is as
follows:

𝜇sample 1 = [[[[[[[[[
0.3686 0.6888 0.0056 0 00.4030 0.7051 0 0 00.8744 0.0185 0 0 00.3686 0.7792 0.1960 0 00.0625 1 0.1458 0 0

]]]]]]]]]
. (41)

Step 2. Using (5), the SRMD vectors of sample 1 to all levels
are
𝛽sample 1 = (0.3817, 0.6808, 0.0719, 0, 0)(𝑝 = 1, 𝑎 = 1) ;
𝛽sample 1 = (0.3902, 0.6627, 0.0255, 0, 0)(𝑝 = 2, 𝑎 = 1) ;
𝛽sample 1 = (0.3361, 0.7618, 0.0006, 0, 0)(𝑝 = 1, 𝑎 = 2) ;
𝛽sample 1 = (0.2905, 0.7943, 0.0007, 0, 0)(𝑝 = 2, 𝑎 = 2) .

(42)

Step 3. Using (13), the normal SRMD vectors of sample 1 are

𝛽

sample 1 = (0.3365, 0.6001, 0.0634, 0, 0)(𝑝 = 1, 𝑎 = 1) ;
𝛽

sample 1 = (0.3618, 0.6145, 0.0236, 0, 0)(𝑝 = 2, 𝑎 = 1) ;
𝛽

sample 1 = (0.3059, 0.6935, 0.0006, 0, 0)(𝑝 = 1, 𝑎 = 2) ;
𝛽

sample 1 = (0.2676, 0.7318, 0.0006, 0, 0)(𝑝 = 2, 𝑎 = 2) .

(43)

Step 4. Utilizing (14), the average feature value for sample 1 is
calculated as 𝐻sample 1 = 1.704. (44)

According to the level discriminant rule (15), sample 1
belongs to level 2. All the calculations are implemented inMS
Excel worksheets.

Doing the same calculation to sample 1 to sample 5, the
evaluation results of 5 samples are shown in Table 3. The
surrounding rock stability levels of the five samples obtained
by other four methods, that is, basic quality method [28],
variable fuzzy set method [28], triangular fuzzy number
method [29], and set pair-extenics method [30] were also
listed in Table 3. It is obvious that the evaluation results of our
approach are in a good agreement with that obtained by the
other four methods. It suggests that our proposed approach
is validated and reliable.

Case 2. The safety of a crane depends directly on its key
systems or components. Cranemetal structure approximately
accounts for 60–70% of total weight [42]. Crane metal struc-
ture plays an important role in the whole machine and even
determines the service life of the crane. Accurate analysis and
evaluation of the safety state of the crane metal structure can
effectively prevent accidents and reducing economic losses
and provide useful quantitative information for the crane
management departments.

Consider an application of the improved VFS model to
crane metal structure safety assessment. The crane metal
structure safety assessment is a synthetic evaluation and con-
sists of many factors. Based on the previous studies [31], we
selected crack (C1), strength (C2), stiffness (C3), deformation
(C4), and corrosion (C5) as the evaluation indicators. Five
levels of crane metal structure in the study include very good
(I), good (II), fair (III), poor (IV), and very poor (V). Index
classification standards [18] are listed inTable 4. Table 5 shows
the dimensionless values of indicator and subjective weights
obtained by AHP from a port crane [31].Then, we proceed to
use the proposed method to assess the port crane.

Step 1. Using (31)–(35), we get the RMD 𝜇crane matrix as
follows:

𝜇crane = [[[[[[[[[
0 0 0 0.8261 0.43560.7759 0.0099 0 0 00.3327 0.8524 0.0141 0 00 0.3546 0.6581 0.0048 00 0.0108 0.8071 0.2357 0

]]]]]]]]]
. (45)
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Table 4: Safety level for metal structure safety assessment of a port crane.

Safety level Crack (C1) Strength (C2) Stiffness (C3) Deformation (C4) Corrosion (C5)
Very good I 0.9–1 0.6–1 0.8–1 0.8–1 0.8–1
Good II 0.8–0.9 0.4–0.6 0.6–0.8 0.6–0.8 0.6–0.8
Fair III 0.7–0.8 0.25–0.4 0.4–0.6 0.4–0.6 0.4–0.6
Poor IV 0.5–0.7 0.15–0.25 0.2–0.4 0.2–0.4 0.2–0.4
Very poor V 0–0.5 0–0.15 0–0.2 0–0.2 0–0.2

Table 5: Index assessment values and weights.

Crack (C1) Strength (C2) Stiffness (C3) Deformation (C4) Corrosion (C5)
Dimensionless values [31] 0.5475 0.7580 0.7480 0.5777 0.4444
Subjective weights (AHP) [31] 0.561 0.2115 0.108 0.0713 0.0483
Objective weights (entropy) 0.1989 0.2495 0.1911 0.1693 0.1911

Step 2. Utilize (16) and (17) to get the objective weight vector.
To compare the assessment results to different weights, we
also considered 5 subjective weights for the port crane [31].
Objective and subjective weights are both listed in Table 5,
respectively.

Step 3. With the use of subjective weights [31] and (5), the
SRMDvector denoted by𝛽crane is obtained. According to (13),
normal SRMD denoted by 𝛽crane is obtained and listed in
Table 6.

Step 4. The average level’s feature value is𝐻crane = 3.68.
Step 5. According to the level discriminant rule (15), the
assessment result is level IV.

Evaluation results of the port crane metal structure
were listed in Table 8. Using the subjective weight vector
W = (0.561, 0.2115, 0.108, 0.0713, 0.0483) [31], the
safety level feature value is 3.68. That is to say, the
safety of port crane structure belongs to level IV. Adopt-
ing the objective weight vector W = (0.1989, 0.2495,0.1911, 0.1693, 0.1911), the safety level feature value is
2.58. The safety grade of port crane structure changes to level
III. From the results given by the subjective and objective
weight vectors, it can be conclude that the index sensibility
is apparent.

To further test the feasibility of IVFS, VFS and SPA-VFS
models were also employed for the port cranemetal structure
safety assessment. Here, we only present the brief assessment
procedures of SPA-VFS method proposed in [23]. Its single
index connection degree V𝑖ℎ can be calculated as follows:

𝑟𝑖ℎ =
{{{{{{{{{{{{{{{{{{{{{{{

1 − 2  𝑝𝑖(ℎ−1) − 𝑥𝑝𝑖(ℎ−1) − 𝑝𝑖(ℎ−2)  if 𝑥 locates in the adjacent ℎ − 1 grade1 if 𝑥 locates in discussed ℎ grade1 − 2  𝑥 − 𝑝𝑖ℎ𝑝𝑖(ℎ+1) − 𝑝𝑖ℎ  if 𝑥 locates in the adjacent ℎ + 1 grade−1 if 𝑥 locates in the other intensity grade,
(46)

where 𝑝𝑖ℎ is extremum value of evaluation standard to level
h. x is characteristic value of 𝑖th index. 𝑖 = 1, 2, . . . , 𝑚, ℎ =1, 2, . . . , 𝑘. 𝑟𝑖ℎ is the uncertainty component coefficients of
discrepancy degree that represents the relation between x and
level h.

The RMD 𝜇𝑖ℎ between the 𝑖th index and level ℎ is
𝜇𝑖ℎ = 0.5 + 0.5 × 𝑟𝑖ℎ. (47)

Step 1. With the use of (46), the single index connection
degree matrix rcrane can be written as

rcrane = [[[[[[[[[
−1 −1 −0.525 1 0.5251 0.21 −1 −1 −10.48 1 −0.48 −1 −1−1 0.777 1 −0.777 −1−1 −0.556 1 0.556 −1

]]]]]]]]]
. (48)
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Table 6: The RMD vector 𝛽crane and SRMD vector 𝛽crane of the port crane by IVFS.

a&p 𝛽crane 𝛽crane𝑎 = 1, 𝑝 = 1 0.2000 0.1199 0.0874 0.4751 0.2443 0.1775 0.1064 0.0776 0.4216 0.2168𝑎 = 1, 𝑝 = 2 0.2264 0.1368 0.0910 0.6329 0.3763 0.1547 0.0935 0.0622 0.4325 0.2571𝑎 = 2, 𝑝 = 1 0.0588 0.0182 0.0091 0.4504 0.0946 0.0932 0.0289 0.0144 0.7135 0.1500𝑎 = 2, 𝑝 = 2 0.0789 0.0245 0.0099 0.7482 0.2668 0.0699 0.0217 0.0088 0.6631 0.2365

Table 7: The RMD vector 𝛽crane and SRMD vector 𝛽crane of the port crane by SPA-VFS.

a&p 𝛽crane 𝛽crane𝑎 = 1, 𝑝 = 1 0.2914 0.3100 0.2809 0.6065 0.4277 0.1520 0.1618 0.1466 0.3165 0.2232𝑎 = 1, 𝑝 = 2 0.2846 0.2398 0.2498 0.6956 0.5996 0.1375 0.1159 0.1207 0.3361 0.2897𝑎 = 2, 𝑝 = 1 0.1446 0.1679 0.1324 0.7037 0.3584 0.0960 0.1114 0.0878 0.4669 0.2378𝑎 = 2, 𝑝 = 2 0.1367 0.0905 0.0998 0.8393 0.6917 0.0736 0.0487 0.0537 0.4517 0.3723

Table 8: Assessment results of port crane and comparison.

Weighting
method

Evaluation
method

Ranking feature value Mean ranking feature value level𝑎 = 1, 𝑝 = 1 𝑎 = 1, 𝑝 = 2 𝑎 = 2, 𝑝 = 1 𝑎 = 2, 𝑝 = 2
Subjective weigh
(AHP)

Ref. [31] III
IVFS 3.39 3.54 3.80 3.97 3.68 IV

SPA-VFS 3.29 3.52 3.64 4.00 3.62 IV
VFS 3.26 3.46 3.68 3.89 3.57 IV

Objective weigh
(entropy)

Ref. [31] II
IVFS 2.66 2.73 2.44 2.48 2.58 III

SPA-VFS 2.66 2.77 2.46 3.13 2.75 III
VFS 2.63 2.70 2.51 2.44 2.57 III

Step 2. Using (47), we transform rcrane to RMDmatrix 𝜇crane

𝜇crane = [[[[[[[[[
0 0 0.2375 1 0.76251 0.6050 0 0 00.7400 1 0.2600 0 00 0.8885 1 0.1115 00 0.2220 1 0.7780 0

]]]]]]]]]
. (49)

Step 3. With the use of subjective weights [31] and (5), the
SRMDvector denoted by𝛽crane is obtained. According to (13),
normal SRMD denoted by 𝛽crane is obtained and listed in
Table 7.

Step 4. The average level’s feature value is𝐻crane = 3.62.
Step 5. According to the level discriminant rule (15), the
safety of port crane metal structure belongs to level IV.

For comparison, the results of port crane by various
methods are all listed in Table 8. From it, we can find that
the results obtained by IVFS are in a good agreement with
those given by SPA-VFS and VFS. The fundamental reason
why the safety level given by IVFS is identicalwith that byVFS
lies in the characteristics of IVFS membership function. As
shown in Figure 2, the graph of IVFSmembership function is

similar to that of VFS membership function. The assessment
results reflect the consistency of IVFS and VFS. It assumes
that the results given by the proposed model are acceptable
in crane safety level assessment. However, the safety levels of
the port crane obtained by Wu and Shen [31] and this study
are different. Take the results given by subjective weights, for
example. The obtained assessment grades by IVFS, SPA-VFS,
and VFS are IV, while the grade is level III by using AHP
method in [31]. One reason is that AHP approach has not
the ability to determine RMD. Another is that [31] adopted
integral assessment standards leading to very crude level of
the port crane. As a matter of fact, in many applications,
crane metal structure evaluation standard is described by an
interval such as the crack (C1) index, in which level II is
0.8–0.9 and level III is 0.7–0.8 (see Table 4). It is obvious
that the IVFS, SPA-VFS, and VFS methods are all suitable
for application in crane metal structure assessment for safety
standard described by an interval and overcome the shortages
of Wu’s approach [31].

From amethodology point of view, VFS and SPA-VFS use
the linear functions to describe the RMD, while ours adopts
nonlinear functions, for example, normal membership func-
tion. Two cases illustrate the feasibility that traditional linear
membership functions are replacedwith normalmembership
ones.
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Figure 4: The comparison of ranking feature values using IVFS, SPA-VFS, and VFS, respectively: (a) subjective weighting method and (b)
objective weighting method.

According to the comparison shown in Figure 4, the
curve of the ranking feature values determined by IVFS
appears relatively smooth. On the whole, the two curves of
the ranking feature values determined by IVFS and VFS are
similar. It is consistent with the hypotheses in Section 3.2.The
line of the ranking feature values determined by determined
by SPA-VFS is more complicated than the other two. So it can
be inferred that the level feature values obtained by IVFS and
VFS are more stable than that by SPA-VFS.

In this study, we proposed IVF method for crane safety
evaluation. Compared withWu’s method [31], VFS, and SPA-
VFS, the IVFS method has the merits as follows.(1) Compared with Wu’s method [31], IVF can deal
with the evaluation problem of crane safety when crane risk
standards are expressed in intervals.(2) Compared with VFS, the IVFS method, by replacing
traditional VFS membership function with normal mem-
bership function, does not need to select piecewise linear
membership function to calculate RMD and thus simplifies
assessment processes.(3) Compared with SPA-VFS, the advantage of IVFS is
validated as shown in Figure 4. That is, level feature values
obtained by IVFS are more stable than that from SPA-
VFS. In addition, although SPA-VFS has the merit of simple
computation over to VFS [43], the calculations of IVFS are
even slightly concise and straightforward than those of SPA-
VFS which needs to transform connection degree matrix to
RMDmatrix.

Although normal membership function may look com-
plicated, it can be solved by Microsoft Excel easily. Thus, it is
not hard to see that our proposed model has some desirable
advantages over the Wu’s method [31], VFS, and SPA-VFS.

5. Conclusions

Crane safety evaluation is of great significance to reduce
casualties and economic losses. Therefore, it has drawn close
attention from scholars and engineering. However, previous

crane safety evaluation models are not ideal for dealing with
assessment standard described in terms of interval. This
paper presents an improved VFS method so as to simplify
the evaluation process with nonlinear membership function,
for example, normal membership function, and applied it
to evaluate crane safety when the criteria are expressed as
intervals. Some conclusions are drawn as follows.(1) This paper solves the assessment problem of crane
safety when crane evaluation standards are described in
intervals. Two cases including an application to port crane
metal structure safety assessment have been examined using
IVFS and demonstrated its superiorities and the detailed
implementation process.(2)The results show that the IVFS model is feasible for
assessing the crane metal structure safety and convenient
for practical applications. This proposed method may be an
effective alternative approach for safety evaluation of other
problems with no much modification.

Nomatter whether we use subjective or objective weights,
the results obtained by IVFS are consistent with those given
by VS and SPA-VFS. So it can provide a valuable reference
for crane risk assessment. However, the results are based on
relatively limited data samples.Thus, it is necessary to involve
more empirical studies in future. In addition, Table 8 shows
that the assessment levels given by subjective weights [31]
and objective weights are different. Therefore, more rational
weighting method should be considered in the future study.
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