Hindawi

Mathematical Problems in Engineering
Volume 2017, Article ID 3472319, 8 pages
https://doi.org/10.1155/2017/3472319

Research Article

Hindawi

Stochastic Interest Model Based on Compound Poisson
Process and Applications in Actuarial Science

Shilong Li,"? Chuancun Yin,' Xia Zhao,’ and Hongshuai Dai*

!School of Statistics, Qufu Normal University, Qufu, Shandong 273165, China

2School of Insurance, Shandong University of Finance and Economics, Jinan, Shandong 250014, China

3School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China
4School of Statistics, Shandong University of Finance and Economics, Jinan, Shandong 250014, China

Correspondence should be addressed to Xia Zhao; zhaoxia-w@163.com

Received 9 March 2017; Accepted 30 April 2017; Published 24 May 2017

Academic Editor: Weihai Zhang

Copyright © 2017 Shilong Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound
Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest
with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important
integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this
new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done
to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

1. Introduction

In traditional study of life insurance, interest rate is assumed
to be deterministic. However, durations of policies are
typically very long (often 20 or even more years) in life
insurance and life annuity. So the uncertainty of future
interest rate influences the accuracy of its actuarial values
deeply. In addition, stochastic models have been widely used
in finance and insurance (such as [1-4]). Hence, it is necessary
and natural to consider stochastic interest models in life
contingencies.

So far, many models have been investigated in order to
describe the randomness of interest in actuarial literature.
Reference [5] first treated the force of interest as a random
variable in his actuarial research. In [6], autoregressive
models of order one are introduced to model interest rate.
References [7, 8] computed moments of insurance and annu-
ity functions using similar models. Reference [9] modeled the
force of interest as an ARIMA(p, d, q) process and utilized
this model to analyze the moments of present value functions.
Reference [10] used a Markov process to model the series of
interest rates in the research of ruin probability. The above

literatures enriched the application of stochastic interest
models in actuarial science, but they assume that the interest
rate in one year is fixed, which does not always agree with the
practice of financial market.

To capture the randomness of interest rates in actuarial
science better, the method of stochastic perturbation was
proposed. In this method, the interest force at time ¢ is
expressed as

8, =0+X(), )

where 6 is an interest force unrelated to the time t and
X(t) denotes a stochastic process resulting in perturbation of
fixed interest force §. Hence, the accumulated interest force
function is

t t
It = J 65d5=8-t+J X(s)ds=8-t+2(). ()
0 0

There are two modeling ways about perturbation meth-
ods in actuarial literatures. The first one considers Z(t) as a
stochastic process, like Wiener process, Ornstein-Uhlenbeck
process, Poisson process, and so on. References [11, 12]
constructed stochastic interest rate models regarding Z(t)
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as Ornstein-Uhlenbeck process and Wiener process, respec-
tively, and investigated the mean and the standard deviation
of continuous-time life annuities. Reference [13] studied the
mean and the variance of the present value of discrete-time
streams in life insurance under these models. Reference [14]
also discussed the distribution of life annuities with stochastic
interest models driven by Wiener process and Ornstein-
Uhlenbeck process, respectively. Considering the jumps in
interest process, [15, 16] expressed the accumulated force of
interest by Wiener process and Poisson process and further
studied the optimal dividend strategy in ruin theory and
pricing perpetual options, respectively.

In the second way, the researchers first describe the
perturbation of interest force X(t) as a special stochastic
process and then find the accumulated interest force func-
tion by stochastic integration. References [17, 18] discussed
the first three moments of homogeneous portfolios of life
insurance and endowment policies by modeling the force of
interest directly based on the Wiener process or the Ornstein-
Uhlenbeck process and [19] also generalized these results
to heterogeneous portfolios. The stochastic upper and lower
bounds on the present value of a sequence of cash flows are
discussed in [20]. Reference [21] also introduced a class of
stochastic interest model in which the force of interest is
driven by second order stochastic differential equation. Refer-
ence [22] compared these two approaches to the randomness
of interest rates by modeling the accumulated force of interest
rate and by modeling the force of interest.

Both of these two modeling ways have attracted much
attention from researchers. The first way brings convenience
to calculation, but the behavior of the force of interest can
not be expressed distinctly. In the second way, so far only
a few special and simple processes have been considered
because of great difficulty to the related stochastic calcula-
tions, especially under the case with random jumps. However,
the market interest rate often jumps discontinuously and
randomly (such as the Federal reserve rate and the China’s
central bank benchmark interest rate). Here we introduce a
new class of stochastic interest model in which the force of
interest is expressed by compound Poisson process directly.
This model might characterize the stochastic jumping of
market interest rate more honestly and directly.

This paper is organized as follows. In Section 2, we
give stochastic interest model based on compound Poisson
process and further obtain mathematical expectation of
present value of the payment paid at a future time point. In
Section 3, its properties and applicability are investigated. In
Section 4, we discuss actuarial present values of life annuities
in discrete and continuous cases. Simulation results show
the influences of the parameters on actuarial present values
of annuities. In Section 5, we conclude this paper and put
forward some interesting problems in the following sequel
researches.

2. Stochastic Interest Model under
Compound Poisson Process

In this section, we construct a new class of stochastic interest
models. As a premise, the following assumptions are given:
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(1) the adjustment interarrival times of interest rate are
random;

(2) the adjustment direction (rise or fall) of interest rate
in every stage is independent of each other;

(3) the adjustment range of interest rate in every stage is
identical.

As we know, these assumptions coincide with plenty
of practical finance markets. All random variables and
stochastic processes under consideration are defined on an
appropriate probability space (Q, P, &) and are integrable.

2.1. Compound Poisson Process. Compound Poisson process
has been widely used in the field of finance and actuarial
science, especially in classical ruin probability model. It is
described as follows:

N()
S(t)= )Y, t>0,5(0)=0, 3)
n=1

where {N(t),t > 0} is a Poisson process with rate A > 0 which
will indicate the adjustment number of the market interest
rate on time interval [0, t] in this paper. {Y, }/°, is a sequence
of i.i.d. random variables with common distribution F(x) =
P(Y, < x),and {N(t),t > 0} and {Y,};2, are independent.
Suppose that {X,,X,,...,X,,...} are the interoccurrence
times between adjacent adjustments of interest rate; then they
are independent and obey exponential distribution with the
same parameter A > 0.

For Poisson process {N(t),t > 0}, we first introduce the
following important property (see [23]).

Lemma 1. Given that N(t) = n, the n arrival times Ty,
T,,..., T, have the same distribution as the order statistics
corresponding to n independent random variables uniformly
distributed on the interval [0,t]. That is, the joint density
function of T}, T, ..., T, is

n!
f(typty..t,) = o 0<t <t,<--<t,<t. (4
From Lemma 1, we usually say that, under condition
N(t) = n, the times T},T,,...,T, at which events occur,
considered as unordered random variables, are distributed

independently and uniformly on the interval [0, ¢].

2.2. Stochastic Interest Model under Compound Poisson Pro-
cess. Suppose that the force of interest {3,,t > 0} is expressed

by
N(t)
8 =08 +a) Y, tel0,+00). (5)
i=1

Here, Y; (i = 1,2,3,...) is the direction of the ith adjustment
of the force of the interest rate with {Y; = 1} for the raise and
{Y; = -1} for the reduction. Meanwhile P(Y; = 1) = 1 -
P(Y; = -1) = p(0 < p < 1and{Y; (i = 1,2,...)} are
i.i.d. and also independent of {N(t), ¢ > 0}. In this model, the
adjustment range of interest force in every change is the same

as that denoted by a.
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FIGURE 1: Representing graph of the integration of J;.

The process {8,,t > 0} is a special continuous-time
Markov process, the birth and death process. The initial status
of this process is §,, and the corresponding birth rate and
deathrateare gy, 5 . = Apandqs s _, = AM(1-p), respectively.

Substituting formula (5) into (2), we can find correspond-
ing expression of accumulated interest force function. Since
the direct integration is extremely difficult, we use another
integration technique, changing the integral direction similar
to the idea of Stietjes integral. The integration procedure can
be understood from Figure 1. Suppose that there are three
adjustments of interest rate on the interval [0,¢] and the
adjustment times are T}, T,, and T3, respectively. Then the
integral Iot d,ds can be expressed as §,t — a(t — T;) + a(t —
T,)+a(t—Ts). Thatis, [} 8,ds = 8yt +a Yo, X,(t—T,), where
X;,i=1,2,3, show adjustment directions of interest rate.

So we can obtain

N(@)
Jo=8t+a) X, (t-T), (6)

i=1

where T; denotes the time of the ith adjustment of the force
of the interest rate.

From formula (6), the random present value of one unit
payment at time f can be expressed as

N(©)
exp (—]5) = exp (=8,t) H exp(—aX;(t-T))), (@)

i=1

and its mathematical expectation is

E (exp (~15))

N (8)
. exp(—aotw(nexp(—axi <t—T,->>).

i=1

It can be found from the law of total expectation that

E (exp (—](t))) = exp (=8,t)

N )
-E (E(H exp (—aX, (t - Ti))) | N(t)> .

From Lemma 1, we can obtain that

E (exp <—och(t)Xi (t- Ti)> | N(t) = n)

i=1

- l_ﬁ[E (exp (—aX; (t - U3)))

. ! ﬂx(tfx)l (10)
[p(J, = fax)

i=1

+(1-p) (Lt ea(t_x)%dxﬂ = oc’}t” [p(l - e_“t)
+(1-p) (e -1)]" =B,

where random variables, U}, U,, ..., U, are distributed inde-
pendently and uniformly on the interval [0, t], and

[p(1- e_"‘t) +(1-p)(e* - 1)]

[(e"‘t - 1) +p (2 —e M - e“t)] .

Based on formula (10), we can find that f3, is nonincreas-
ing with respect to p if at is fixed and satisfies the following
properties.

(1) If p = 0, the market interest will always decrease at the
adjusting times of interest rate. Because e — 1 > at, we can
find that 5, = (1 Jat)(e* — 1) > 1. In this condition, it may
happen that the interest rate will be negative if the number
of adjusting interest rate times on the interval [0, ¢] is large
enough.

(2) If p = 1, the market interest will always increase at the
adjusting times of interest rate. Since 1 — ™ < at, we have
B = (1/at)(1 - ™) < 1. In this condition, the larger the
number of adjusting interest rate times on the interval [0, f]
is, the smaller the present value of the currency is.

3)If

P
n

2|~ &~

exp (at) —at -1

P=p = exp (at) + exp (—at) — 2
_exp (at) (exp (at) —at — 1) (12)

- (exp (at) — 1)

we find that 8, = 1 which means that mathematical expecta-
tion of the present value of one unit currency at time ¢ will be
exp(—6,t). That is, from the point of view of the mathematical
expectation, the randomness of the market interest rate will
not have an effect on this present value. Hence p” is called the
equilibrium probability at time t here. At the same time, the
following theorem can be obtained.

Theorem 2. The equilibrium probability p* in formula (12)
satisfies the following properties:

(1) p* is an increasing function with respect to at;
(2)05<p* < 1;
(3) limy,_,,oop” =1 andlim,,_,,p* = 0.5.



Proof. Let y = at and ¢(y) = e’(e’ — y - 1)/(e - 1)% then
P"=¢0).

Since ¢’ (y) = (¢’ (¢’ —y—1)+(e”~1))/2(¢’ 1) > 0, we can
show that ¢(y) is a strictly increasing function on R* which
illustrates that p* is an increasing function with respect to at.

Further, it is easy to prove that lim_,,  ¢(y) = 1 and
lim,_:¢(y) = 0.5. The proof is completed. ]

The following theorem shows the expression of the
mathematical expectation of the random present value of one
unit currency at time t given in formula (8).

Theorem 3. Under stochastic interest model (5), the mathe-
matical expectation of the random present value of one unit
currency at time t can be expressed as

E (exp (<Jo)) = exp (=85t + At (B, - 1)). (13)

Proof. Based on the properties of the condition expectation,
it can be obtained by substituting (10) into (9) that

E (exp (-1p)) = exp (-8,t) E(B)

SINEYS Pt
n=0

! n!
(14)
T(BAM)"
= exp (=8t — At) ;T
=exp (=8t + At (B, — 1)).
O

3. Validity of Stochastic Interest Model

Under stochastic interest model (5), we can find that the
expected present value of one unit currency at time t will
be larger than that under fixed force of interest §, when
p = 0.5, and the larger the adjustment frequency intensity
of the interest rate, A, is, the larger the difference between
the two above-mentioned values is. That is, when the market
interest rate is adjusted frequently, the future interest rate will
tend to be underestimated if stochastic interest rate model in
formula (5) is considered. This phenomenon often appears
in modeling the stochastic interest rate based on a Wiener
processes too, such as [11, 12, 17].

If we use 8" = &, — A(B; — 1) as the equivalent force of
interest of the stochastic interest model, formula (13) can be
expressed equivalently as E(exp(— ]5)) = exp(-87t).

3.1. Validity Condition of Interest Model. In this stochastic
model, if p < p*, then B, > 1; E(exp(—J;)) will be larger than
1 when t is large enough, and this is not consistent with the
actual situation in most cases. In this section, we will discuss
how to restrict the value of the future time in this stochastic
interest model.

Let
f(t) =08t —At(B,—1); 15)
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then
@)=y +A)-A[(1-p)e* +pe™].  (16)
Since f'(0) = 8, > 0 and lim,_,,, f'(t) < 0, there is at least

one critical value t* which satisfies f'(t*) = 0. Now, we will
try to find the value of t*.

Let us solve the equation
8y +A)=A[(1-p)e* + pe ] =0, 17)
which can be rearranged to
A1-p) () = (8 + e +Ap=0.  (8)
Now we investigate the quadratic function
g =A1-p)y" =G+ D) y+Ap. (19
Obviously, g(0) = Ap > 0, g(1) = =§, < 0, and g(+oc0) —
+00; then two real roots of (19) lie in the interval (0, 1) and
the interval (1, +00), respectively. Because e* > 0 when the

condition t > 0, we can only consider the root in the interval
(1, +00) which is

B0+ )+ VG + 1)’ = 42p(1=p) o (a9
24(1-p) ’

and then the critical value of the interest rate model is

)}:

*

t

1[G G ) -aip(1-p) | @)
Tl 21 (1- p) '

3.2. Numerical Simulation Analysis. Based on the above

analysis, when ¢t < t*, the expected present value E(e™h) is
decreasing with respect to investment term ¢. That is, only
when ¢ < t* can the stochastic interest model be used in
practice. Figures 2 and 3 show the variation tendency of the
critical value with the change of p from 0.4 to 0.7 under
8y = 0.04 and 0.05, respectively, and the curves from top
to bottom are based on A = 1, 1.5, 2, 2.5, and 3. In Table 1,
the critical values t* under different §,, A, and p are given.
From Figures 2 and 3 or Table 1, the critical value becomes
larger and larger with p or §, increasing. On the contrary, the
critical value will decrease if A increases. Hence, while using
this stochastic interest model, we should consider the values
of every parameter and verify whether the term of investment
is less than the corresponding critical value.

Fortunately, from the actual conditions of adjustments of
interest rate in financial markets and ordinary life insurance
periods, we find that the critical value ¢* can satisfy the
application condition of this interest rate model in general
case.
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TaBLE 1: Critical values t* under different 8, A, and p.

8, A p =004 p =005 p =006 p =007
1.0 58.4220 112.7633 220.6081 374.8367

1.5 42.1442 92.1720 204.3302 363.6570

0.04 2.0 33.1076 79.8673 195.2936 357.7981
2.5 27.3141 71.4591 189.5001 354.1869

3.0 23.2686 65.2474 185.4547 351.7368

1.0 69.4389 125.9699 231.6250 382.8061

1.5 50.5440 102.9948 212.7300 369.3314

0.05 2.0 39.9502 89.2574 202.1362 362.2103
2.5 33.1076 79.8673 195.2936 357.7981

3.0 28.3015 72.9286 190.4876 354.7940

1 79.6701 137.8804 241.8561 390.4626

1.5 58.4220 112.7633 220.6080 374.8367

0.06 2 46.4156 97.7363 208.6016 366.5163
2.5 38.6138 87.4613 200.7999 361.3366

3 33.1076 79.8673 195.2936 357.7981

400 T T T T T T 400

350

Critical value
— — (3] [3%) (o
o Ul o Ul o
o o o o o
-

u
(=}

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

p value

FIGURE 2: Values of t* under §, = 0.04, « = 0.0025, and A = 1, 1.5,
2,2.5, 3, respectively.

4. Life Annuities under
Stochastic Interest Model

Following the notations in [24], the symbol (x) is used to
denote alife-age-x. The future lifetime and the curtate-future-
lifetime of x are denoted by T'(x) and K(x), respectively.

4.1. Actuarial Present Values for Discrete Life Annuities. There
are two classes of the discrete life annuities: the discrete
life annuities-due and the discrete life annuities-immediate.
First of all, we consider the former. In the nomenclature, an
annuity is called a whole life annuity-due if the annuity pays a
unit amount at the beginning of each year that the annuitant
(x) survives, and the actuarial present value of the annuity
can be expressed as

dx = E( K(x)+1 ) Z k+1

P(K(x)=k),  (22)

350

Critical value
— — (3] [3%) (o]
S @ S o 3
s &5 & &S 3
- -

v
S

0 1
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

p value

FIGURE 3: Values of t* under 8, = 0.05, « = 0.0025, and A = 1, 1.5,
2,2.5, 3, respectively.

where P(K(x) = k) = ;. = ;Px dx+k in actuarial theory
and according to interest theory, we have

k " k .
dleI =E <Ze_ s a’dt> = ZE (e_]")
n=0 n=0
(23)
— ie—%nﬂln(ﬁn—l).

n=0

Combining formula (22) with formula (23), we obtain
the following formula under stochastic interest model intro-
duced here:

+00
Gy =1+ Y e oD (24)

n=1
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TABLE 2: Values of d, 5 for different §y, , A, and p under the stochastic interest rate model.
8, « A p =045 p=05 p =0.505 p =051 p=06 p=07
1.0 17.9990 17.5461 175023 17.4587 16.7152 15.9727
1.5 18.2774 17.5840 17.5180 17.4525 16.3648 15.3324
0.0025 2.0 18.5662 17.6222 17.5337 17.4463 16.0312 14.7529
2.5 18.8659 17.6606 17.5495 17.4401 15.7134 14.2268
0.04 3.0 19.1768 17.6992 17.5654 17.4339 15.4105 13.7477
1.0 18.1289 17.5795 17.5266 17.4741 16.5884 15.7219
1.5 18.4807 17.6344 17.5546 17.4756 16.1843 14.9951
0.0030 2.0 18.8489 17.6899 17.5828 17.4772 15.8027 14.3480
2.5 19.2345 17.74560 17.6112 17.4788 15.4420 13.7695
3.0 19.6385 17.8026 17.6398 17.4804 15.1007 13.2501
Nonrandom 17.4712
1.0 16.0694 15.7005 15.6647 15.6291 15.0217 14.4128
15 16.2953 15.7308 15.6769 15.6235 14.7341 13.8854
0.0025 2.0 16.5293 15.7613 15.6891 15.6178 14.4599 13.4064
2.5 16.7718 15.7919 15.7014 15.6122 14.1982 12.9699
0.05 3.0 17.0232 15.8228 15.7138 15.6066 13.9484 12.5711
1.0 16.1746 15.7271 15.6840 15.6412 14.9174 14.2062
1.5 16.4596 15.7711 15.7060 15.6416 14.5854 13.6064
0.0030 2.0 16.7575 15.8154 15.7281 15.6420 14.2713 13.0702
2.5 17.0690 15.8602 15.7504 15.6425 13.9738 12.5888
3.0 17.3950 15.9054 15.7729 15.6429 13.6917 12.1547
Nonrandom 15.6405
Fo%‘ n-year temporary life anngity—due of 1 per year, the 4 -F (Jt exp (_ J” 5.d S) d u>
actuarial present value under this stochastic interest rate f 0 0o
model can be expressed as .
n-1 = | E(exp(-J3))dt.
G =1+ Ze—éokwlk(ﬁk—l) Pe. (25) L (exp (-J5))
k=1 (28)

The procedures used above for annuities-due can be
adapted for annuities-immediate where payments are made
at the ends of the payment periods. Such that, for a whole life
annuity-immediate, the actuarial present value can be given
as

—8gn+An(B,—1
ax = Ze ’ " npx’

n=1

(26)

and the actuarial present value of n-year temporary life
annuity for the annuitant (x) is

n
—8ok+Ak(B—1)
a = Ze ! e kpx .

x|

k=1

(27)

4.2. Actuarial Present Value for Continuous Life Annuities. In
order to analyze the actuarial present value of this class of
annuities, we first consider the whole life annuity payable
continuously at the rate of 1 per year. For an annuitant (x),
the actuarial present value of this life annuity is denoted by
a,.. From [24], we can obtain the following formula:

+00
a, = E (am) = J,O aﬂdFT(x) (t),

Using Fubini’s theorem, from formulas (28), we have

+00
a, - j E(exp (-J5)) pa dt. (29)
0
Substituting formula (13) into formula (29), we have
7, = J exp (=8, + At (B, — 1)), pedts  (30)
0

and then the actuarial present value of an n-year temporary
continuous life annuity for the annuitant (x) is

ax:rTI = Jn exp (_80t + At ([))t - 1)) tPx dt. (31)
0

4.3. Numerical Analysis. Based on the results in Sections
4.1 and 4.2, we calculate the actuarial present value of both
a 30-year temporary discrete life annuity-due and a 30-
year temporary continuous life annuity for the annuitant
(30) under different &, &, A, and p. The simulation results
are shown in Tables 2 and 3, respectively. In these calcula-
tions, the experience life table of the Chinese life insurance
(2000-2003) (male) is used. It should be noted that the
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TABLE 3: Values of 630:37)‘ for different 8, «, A, and p under the stochastic interest rate model.

8, « A p =045 p=05 p =0.505 p =051 p=06 p=07
1.0 17.6555 17.1858 171404 17.0952 16.3264 15.5610

1.5 17.9455 17.2257 171572 17.0894 15.9653 14.9034

0.0025 2.0 18.2466 17.2658 171742 17.0836 15.6220 14.3099

2.5 18.5594 17.3063 1719011 17.0777 15.2955 13.7724

0.04 3.0 18.8846 17.3470 17.2082 17.0719 14.9847 13.2841
1.0 17.7910 17.2209 171661 171117 16.1959 15.3034

1.5 18.1578 17.2788 171960 17.1142 15.7799 14.5580

0.0030 2.0 18.5423 17.3373 17.2262 17.1167 15.3876 13.8964

2.5 18.9457 17.3963 17.2565 17.1192 15.0174 13.3065

3.0 19.3692 17.4561 17.2871 171218 14.6677 12.7783

Nonrandom 171069

1.0 15.6838 15.3024 15.2655 15.2288 14.6025 13.9766

1.5 15.9182 15.3342 15.2786 15.2234 14.3070 13.4364

0.0025 2.0 16.1614 15.3662 15.2917 15.2180 14.0256 12.9470

2.5 16.4137 15.3984 15.3049 15.2127 13.7575 12.5021

0.05 3.0 16.6756 15.4308 15.3181 15.2073 13.5017 12.0964
1.0 15.7932 15.3304 15.2859 15.2416 14.4955 13.7650

1.5 16.0893 15.3765 15.3092 15.2427 14.1546 13.1514

0.0030 2.0 16.3993 15.4230 15.3328 15.2438 13.8326 12.6044

2.5 16.7241 15.4701 15.3565 15.2450 13.5281 12.1146

3.0 17.0646 15.5176 15.3804 15.2461 13.2398 11.6740

Nonrandom 15.2396

Uniform Distribution assumption—the classical fractional
age assumption—is used in the calculation of the actuarial
present values of the continuous life annuity.

From Tables 2 and 3, we can find that the actuarial present
values become smaller and smaller as the probability that
the interest rate rises at the change time point, p, increases
continuously when other parameters are fixed and this result
is obvious because the probability of the future force of
interest rising will become larger and larger with p increasing.
Furthermore, all the values when p = 0.5 are larger than those
under the nonrandom condition (i.e., §, = §, for t > 0),
which verifies Theorem 2 from the quantitative aspect. At
the same time, under the condition that §,, &, and p are
fixed, the actuarial present value becomes larger and larger
with increasing A, and this result illustrates that the present
value will increase if the interest rate changes frequently. If
other conditions are fixed, the actuarial present value also
becomes larger and larger with increasing o which means that
the present value will increase if the range of every interest
rate change is larger. At last, we can find that the actuarial
present value will become larger with decreasing §, which
verifies that the present value of the money at future time
will decrease in general if the initial interest rate increases in
practice.

5. Conclusion

In this paper, we introduce a new stochastic interest model
in which the force of interest is driven by compound Poisson

process directly. Different from the references, the modeling
method makes the interest model more reasonable and
the random jumping behavior of interest rate is described
directly. We investigate the validity conditions of this model
and introduce a conception called the critical value of the
interest rate model. Based on this model, several common
life annuities are studied and the numerical results under
different parameters are compared adequately.

This paper proposes a new research perspective of
modeling stochastic interest. Following this idea, there are
several meaningful issues which deserve to study further. (1)
Some continuous stochastic processes can be blended into
modeling stochastic interest rate on the basis of the model in
this paper. (2) This model can be generalized by using some
random variables for the change ranges of the force of interest
and for the frequency parameter of the Poisson process in this
model. (3) Both the empirical study and the statistical analysis
about this stochastic interest rate should be made. We will
explore these issues in our future researches.
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