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Amedium lift-to-drag ratio lunar return vehicle with trim-flaps is presented in this paper.The trajectory optimization design under
heat-rate constrain for skip entry lunar return vehicle is analyzed. The optimization problem with a first-order state constraint is
introduced. The trajectory applying the Pontryagin maximum principle under the performance of minimum heat is optimized,
and the optimal expression of lift coefficient is derived. The simulation studies show that this research method can decrease the
heat-rate effectively.

1. Introduction

When the lunar return vehicle reenters the atmosphere, its
speed is up to 11 km/s, and its kinetic energy is about twice
that of the near-earth orbiter. Low lift-drag ratio lunar return
vehicle, such as the Apollo spacecraft, using the way of direct
reentry has the large reentry overload and the high rate of
heat flow in its return process, so it is not conducive to the
safety return of return vehicle. And its poor mobility makes
it difficult to achieve precise landing.

Appropriately increasing the return capsule lift-drag ratio
and using the way of skip reentry can improve the safety
performance of the return vehicle. It also can significantly
improve the maneuvering ability of the lunar return vehicle
and offer more choices for spacecraft landing site [1–3]. The
vehicle with trim-flaps is a kind of medium lift-drag ratio
vehicle, which has a simpler structure than that of lift type
vehicle. Since the 1990s, scholars like Shui et al. [4–7] have
done some studies in conceptual design and return optimal
trajectory for vehicles with trim-flaps.

Skip entry is the way that return vehicle flies out of the
atmosphere boosted by the lift after the vehicle reentry with
a smaller reentry angle and then does some ballistic flight
outside the atmosphere; then it reenters the atmosphere again
[7, 8]. Istratie et al. have done a series of studies in the initial

reentry optimal trajectory design of the near-earth orbit skip
reentry [8–11].

In view of such fact that a lot of research has been done
for reentry trajectory optimization design of near-earth orbit
returning spacecraft, only initial reentry of vehicle skip reen-
try is discussed in this paper. A return vehicle with trim-flap
is used as the lunar return vehicle model; the optimization
problem with a first-order state constraint is introduced; the
trajectory applying the Pontryaginmaximumprinciple under
the performance of minimum heat is optimized and the
optimal expression of lift coefficient is derived in this paper.

2. Reentry Model of Sample Return Vehicle

Thephysical model of return vehicle with trim-flaps is shown
in Figure 1.

Themaximum lift-drag ratio of vehicle is about 0.7. At the
end of the vehicle there is the aerodynamicwing, and it is used
to control the attitude of the vehicle in the reentry process.
The lift-drag ratio curve of the vehicle is shown in Figure 2.

In the initial stage of vehicle design, the motion of the
center of mass is only needed to be considered in order
to understand the aerospace vehicle flight path and flight
performance. In this paper, the earth is assumed to be

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 3498350, 7 pages
https://doi.org/10.1155/2017/3498350

https://doi.org/10.1155/2017/3498350


2 Mathematical Problems in Engineering

Heat shield

Heat proof tile

Vehicle flattened surface

Aerodynamic wing

Attitude control system

Figure 1: Return vehicle with trim-flaps.
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Figure 2: Curves of lift-to-drag ratio.

round; only the motion equation of the longitudinal plane
is considered. If the control system is in the ideal work, the
effect of the attitude control system force can ignored, and
the return vehicle is in unpowered reentry, so the equations
of motion for vehicle can be described as follows [7–10]:

dV
d𝑡 = −𝐶𝐷𝜌V

2𝐴2𝑚 − 𝑔 sin 𝜃,
d𝜃
d𝑡 = 𝐶𝐿𝜌V𝐴2𝑚 + (V𝑟 − 𝑔V ) cos 𝜃,
dℎ
d𝑡 = V sin 𝜃,

(1)

where V is vehicle speed, 𝜃 is vehicle flight path angle, 𝑟
is vehicle radial distance, ℎ is vehicle height, 𝜌 is vehicle

air density, 𝑔 is vehicle acceleration of gravity, 𝑚 is vehicle
quality, 𝐴 is vehicle reference area, 𝐶𝐷 is vehicle drag
coefficient, and 𝐶𝐿 is vehicle lift coefficient.

And

𝜌 = 𝜌0𝑒−𝛽ℎ,
𝐶𝐷 = 𝐶𝐷0 + 𝐾𝐶𝐿2, (2)

where𝜌0 is sea level atmospheric density and𝛽 is atmospheric
scale height coefficient. For a certain aerospace vehicle, 𝐶𝐷
and𝐾 are constants determined.

The input variable of this control system is vehicle lift
coefficient 𝐶𝐿. When the motion parameters of the vehicle
reentry point are known and the control variable 𝐶𝐿 is
determined, the motion equation has a unique solution.

3. The Description of Optimal
Reentry Problem

In the skip reentry process, there are some effects on the
vehicle by the aerodynamic force and the force of gravity, and
the attitude is adjusted to change the flight path. After some
time of flight, the vehicle escapes the atmosphere by lift, and
then it enters the new Kepler orbit. After doing some ballistic
movement, it will reenter the atmosphere again.

The attitude of the vehicle in the air flight is adjusted to
change its lift-drag ratio. So the optimal flight trajectory can
be found, and it can make the vehicle reach the minimum
total heat absorption and meets the heat flow constraint.

During the flight, the heat flux equation of vehicle can be
given as follows [9, 10]:

�̇� = 𝜌V3. (3)

Heat flow constraint is �̇� ≤ �̇�max, and it can also be described
as follows:

𝑃0 = �̇� − �̇�max, (4)

where 𝑃0 ≤ 0, �̇�max is the maximum heat flow value, and it is
also a positive real number.

Because 𝑃0 does not explicitly include the control param-
eter 𝐶𝐿 and 𝑃0 explicitly includes the control parameter 𝐶𝐿
on the first derivative of the time, the heat flow constraint is a
first-order state variable inequality constraint.

With derivation of this number 𝑃0, we can obtain

d𝑃0
d𝑡 = d𝜌V3

d𝑡
= 3𝜌V2 (−𝐶𝐷𝜌V2𝐴2𝑚 − (𝑔 + 𝛽V23 ) sin (𝜃)) ; (5)

𝑆 is defined as

𝑆 = −𝐶𝐷𝜌V2𝐴2𝑚 − (𝑔 + 13𝛽V2) sin 𝜃. (6)

During the flight, the lift coefficient constraint is

−𝐶𝐿max ≤ 𝐶𝐿 ≤ 𝐶𝐿max, (7)



Mathematical Problems in Engineering 3

where 𝐶𝐿max is the maximum lift coefficient, and it is also a
positive real number.

The optimization objective function is the relative value
of the total heat absorption. It can be described as follows:

𝑄 = ∫𝑡𝑓
0
𝜌V3d𝑡. (8)

The initial state of the vehicle is
V (𝑡0) = V0,
𝜃 (𝑡0) = 𝜃0,
ℎ (𝑡0) = ℎ0.

(9)

The terminal constraint of the vehicle is
V (𝑡𝑓) = V𝑓,
ℎ (𝑡𝑓) = ℎ𝑓,
𝜃 (𝑡𝑓) = 𝜃𝑓.

(10)

The optimal control problem under the heat flow con-
straints can be described as follows: constraints (1), (4), and
(7) should be met during the flight; constraint (9) should
be met at the initial moment; constraint (10) should be met
at the terminal time. Under the condition that all of the
above constraints are met, the minimum problem of the
performance index 𝑄 is to be researched.

4. Optimal Trajectory Design

According to Pontryagin maximum principle, Hamiltonian
can be obtained as follows [10–13]:

𝐻 = 𝜌V3 + 𝜆V dVd𝑡 + 𝜆𝜃 d𝜃d𝑡 + 𝜆ℎ dℎd𝑡 , (11)

where 𝜆V, 𝜆𝜃, 𝜆ℎ are adjoint variables.
The adjoint equations are described as follows:

d𝜆V
d𝑡 = −𝜕𝐻𝜕V − 𝜇𝜕𝑆𝜕V ,
d𝜆𝜃
d𝑡 = −𝜕𝐻𝜕𝜃 − 𝜇𝜕𝑆𝜕𝜃 ,
d𝜆ℎ
d𝑡 = −𝜕𝐻𝜕ℎ − 𝜇𝜕𝑆𝜕ℎ ,

(12)

where 𝜇 is Kuhn-Tucker multiplier.
According to the literature [12], the optimal curve can be

divided into the free section [𝑡0, 𝑡1), the constraint section[𝑡1, 𝑡2], and the free section (𝑡2, 𝑡𝑓]. 𝑡1 is the time to enter
the restriction moment. 𝑡2 is the time to exit the restriction
moment.

In the free section, 𝑃0 < 0, 𝜇 = 0, according to 𝜕𝐻/𝜕𝐶𝐿 =0, we have
𝐶𝐿 =

{{{{{{{{{

𝜆𝜃2𝐾V𝜆V 0 ≤ 𝐶𝐿 ≤ 𝐶𝐿max𝐶𝐿max 𝐶𝐿 ≻ 𝐶𝐿max−𝐶𝐿max 𝐶𝐿 ≺ −𝐶𝐿max.
(13)

In the restricted section, 𝑃0 = 0, 𝜇must meet [14, 15]

𝜕𝐻𝜕𝐶𝐿 + 𝜇 𝜕𝑆𝜕𝐶𝐿 = 0,
𝜇 = 𝜆𝜃 − 2𝐾𝐶𝐿V𝜆V2𝐾𝐶𝐿V . (14)

According to 𝑆 = 0, we have
𝐶𝐿 = √−2𝑚(𝑔 + (1/3) 𝛽V2) sin 𝜃 − 𝜌V2𝐴𝐶𝐷0𝜌V2𝐴𝐾 . (15)

Thus, the adjoint equations can be written as follows:

d𝜆V
d𝑡 = −3𝜌V2 + 𝜌V𝐴𝐶𝐷𝑚 𝜆V

− [𝜌𝐴𝐶𝐿2𝑚 + (1𝑟 + 𝑔V2 ) cos 𝜃] 𝜆𝜃 − sin 𝜃𝜆ℎ
+ 𝜇(𝜌V𝐴𝐶𝐷𝑚 + 23𝛽V sin 𝜃) ,

d𝜆𝜃
d𝑡 = 𝑔 cos 𝜃𝜆V + (V𝑟 − 𝑔V ) sin 𝜃𝜆𝜃 − V cos 𝜃𝜆ℎ

+ 𝜇(𝑔 + 13𝛽V2) cos 𝜃,
d𝜆V
d𝑡 = 𝛽𝜌V3 − (𝛽𝜌V

2𝐴𝐶𝐷2𝑚 + 2𝑔𝑟 sin 𝜃)𝜆V
− [(2𝑔𝑟V − V𝑟2 ) cos 𝜃 − 𝛽𝜌V𝐴𝐶𝐿2𝑚 ]𝜆𝜃
− 𝜇(𝛽𝜌V2𝐴𝐶𝐷2𝑚 + 2𝑔𝑟 sin 𝜃) .

(16)

At the moment 𝑡1, we have
𝑃0𝑡1 = 0,𝐻|𝑡1+ − 𝐻|𝑡1− = 0,

𝐶𝐿 (𝑡1+) = 𝐶𝐿 (𝑡1−) ,
𝜆V (𝑡1+) = 𝜆V (𝑡1−) − 𝜂 𝜕𝑃0𝜕V

𝑡1 ,
𝜆𝜃 (𝑡1+) = 𝜆𝜃 (𝑡1−) − 𝜂 𝜕𝑃0𝜕𝜃

𝑡1 ,
𝜆𝑟 (𝑡1+) = 𝜆𝑟 (𝑡1−) − 𝜂 𝜕𝑃0𝜕𝑟

𝑡1 ,

(17)

where 𝜂 is a real number.
From 𝜆V(𝑡1+) = 𝜆V(𝑡1−) − 𝜂(𝜕𝑃0/𝜕V)|𝑡1 , we have

𝜂 = 𝜆V (𝑡1−) − 𝜆V (𝑡1+)3𝜌V2 . (18)
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According to (13), (15), and (18), we have

𝜂 = 𝜆𝜃 (𝑡1+) /2𝐾V𝐶𝐿 (𝑡1+) − 𝜆V (𝑡1+)3𝜌V2 . (19)

At the moment 𝑡2, we have
𝐻|𝑡2+ − 𝐻|𝑡2− = 0,

𝐶𝐿 (𝑡2+) = 𝐶𝐿 (𝑡2−) ,
𝜆V (𝑡2+) = 𝜆V (𝑡2−) ,
𝜆𝜃 (𝑡2+) = 𝜆𝜃 (𝑡2−) ,
𝜆𝑟 (𝑡2+) = 𝜆𝑟 (𝑡2−) .

(20)

From the above analysis, the optimal reentry problem
under the heat flow restriction is the two-point boundary
value problemwhichmustmeet the connection requirements
of the constraints section ends, when the initial state and the
terminal state are known. Adjacent extreme method can be
used to solve this problem. 𝑡2 is selected as the initial moment
for calculation.

At the moment 𝑡2, V(𝑡2), 𝜃(𝑡2), ℎ(𝑡2), 𝜆V(𝑡2), 𝜆𝜃(𝑡2), and𝜆ℎ(𝑡2) are unknown. According to 𝑃0 = 0, vehicle height at
this time can be described as follows:

ℎ (𝑡2) = ln (�̇�max/𝜌0V3)−𝛽 . (21)

According to 𝐶𝐿(𝑡2+) = 𝐶𝐿(𝑡2−), we have
𝜆𝜃 (𝑡2)
= 2𝐾V𝜆V (𝑡2)√ −2𝑚 (𝑔 + (1/3) 𝛽V2) sin 𝜃𝐾𝜌V2𝐴 − 𝐶𝐷0𝐾 . (22)

The value of 𝜆ℎ(𝑡2) can be calculated by adjacent extreme
method. 𝜆V(𝑡2) can be retroactively integrated from time 𝑡2
to time 𝑡1 to calculate the value 𝜆V(𝑡1+). According to (8), the
value of 𝜂 can be calculated. Substituting 𝜂 into (17), the values
of 𝜆V(𝑡1−), 𝜆𝜃(𝑡1−), and 𝜆ℎ(𝑡1−) can also be calculated. Then,
reverse operations of integral are done from 𝑡1, and the end
time is determined by the initial state.

5. Simulation and Analysis

Calculations are done for two cases in this paper. One is in
the case of restricted lunar return vehicle heat flow; the other
is just the opposite. Vehicle parameters are given as follows:

𝑚 = 600 kg,𝐴 = 0.754m2,𝐶𝐷0 = 0.4,𝐾 = 1.11,𝐶𝐿max = 1.5.
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Figure 3: Time histories of the altitude.

The initial values are given as follows:

V(0) = 11 km/s,𝜃(0) = −8∘,ℎ(0) = 110 km.

A large number of numerical simulations show that the
aerospace vehicle has minimum value in the initial reentry.
Heat flow constraint value can not take arbitrarily small value.
In this paper, heat flow constraint value is given as follows:

�̇�max = 6.5 × 104W/cm2.

For no power return vehicle, its terminal velocity should
be less than 7800m/s. In order to make the safe reentry, the
secondary reentry angle can not be too large. Thus, the end
state is set by

ℎ(𝑡𝑓) = 110 km,
V(𝑡𝑓) = 7750m/s,

𝜃(𝑡𝑓) = 5.7∘.
Through the simulation of optimization model, the actual
terminal state is set by

ℎ(𝑡𝑓) = 110000.2m,
V(𝑡𝑓) = 7753.4m/s,

𝜃(𝑡𝑓) = 5.749∘,𝑡𝑓 = 141.2 s,Δ𝑡2 = 3.88 s.

Curves of vehicle height, velocity, flight path angle, lift
coefficient, lift-to-drag ratio, heat flux, pressure, and overload
in the atmospheric flight changing with time in the two cases
are given by Figures 3–10.The solid line is the heat constraint
optimization curve, and the dashed line is no heat constraint
optimization curve in the figures.

During the initial stage with heat constraint, lift coeffi-
cient can maintain maximum. This can decrease the speed
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of the vehicle faster than that in unconstrained case. So it
can meet the heat flux constraints during the flight. The
maximum dynamic pressure value is smaller than that in
unconstrained case, and the maximum dynamic pressure
value is greater than that in unconstrained case. The lift
coefficient in keeping the maximum value will become
smaller after a period of time. This will make the lift-drag
ratio become larger. As the reentry vehicle is at low altitude,
where the air density is larger, increasing the lift-drag ratio
can slow down the speed of the vehicle descent rate. So it
canmeet the terminal velocity requirement.The flight time in
the atmosphere of the return vehicle in heat flow constraint
conditions is slightly longer than that in unconstrained
conditions.

6. Conclusion

A medium lift-to-drag ratio lunar return vehicle with trim-
flaps is presented as the programming of the lunar return
vehicle in this paper. By the numerical simulation above, the
following conclusions can be obtained:

(1) In heat flow constraint conditions, the maximum
dynamic pressure value of return vehicle is greater
than that in unconstrained case. For lunar return
vehicle with trim-flaps, the heat flux constraints can
not only reduce the quality of thermal protection
system of the return vehicle, but also reduce the loads
on the control wing.

(2) In heat flow constraint conditions, the maximum
overload of the return vehicle is 12.6 g, which is
10.6 g larger than that in unconstrained case. That
is acceptable for the unmanned vehicle. But the
maximum overload will need to be constrained for
the manned vehicle.
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