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Using the dynamic properties of fractional-orderDuffing system, a sequential parameter identificationmethod based on differential
evolution optimization algorithm is proposed for the fractional-order Duffing system. Due to the step by step parameter
identification method, the dimension of parameter identification of each step is greatly reduced and the search capability of the
differential evolution algorithm has been greatly improved. The simulation results show that the proposed method has higher
convergence reliability and accuracy of identification and also has high robustness in the presence of measurement noise.

1. Introduction

Since the gradual development of chaos control theory in the
1990s, nonlinear system identification has gradually devel-
oped into an important direction of modern control the-
ory [1]. Compared with traditional integer-order calculus,
fractional-order calculus can better depict various materials
and processes with memory; hence, theory of fractional-
order calculus has become a popular topic in the development
of nonlinear science [2].With the continuous development of
fractional-order calculus theory, fractional-order nonlinear
system identification has gradually attracted the attention
of scholars [3–5]. The general system identification problem
can be converted into an optimization problem, which
can be solved; traditional identification methods, such as
step response, impulse response, frequency response, least
squares, and maximum likelihood, exhibit good recognition
performance for linear system identification problems; how-
ever, they cannot frequently obtain satisfactory identification
results for nonlinear system identification [6].

In recent years, intelligent optimization algorithms, such
as the genetic algorithm, the ant colony algorithm, and par-
ticle swarm optimization (PSO), have been applied to system
identification, thereby opening up a new train of thought
for nonlinear system identification problems [7–9]. However,
the introduction of fractional orders and the complexity

of nonlinear systems have made fractional-order nonlinear
system identificationmore difficult than integer-order system
identification; consequently, achieving accurate identification
is more difficult when using traditional intelligent optimiza-
tion algorithms for nonlinear system parameters.

PSO is a swarm intelligence optimization algorithmbased
on the foraging behavior of birds; it has easy-to-understand
features, less parameters, and simple programming, and easy
implementation [10]. However, PSO also has defects, such
as low optimization efficiency and the tendency to be easily
trapped in the local optimumwhen the problem dimension is
too high [11]. Yuan and Yang combined PSO and active con-
trol theory to realize fractional-order chaotic system param-
eter identification and synchronous control [12]. Huang et al.
used PSO based on quantum parallel characteristics for the
parameter identification of fractional-order Lorenz system
and Chen system [13].

The differential evolution (DE) algorithm, proposed by
Storn et al. in 1997, is a new method based on “the survival
of the fittest” rule of the intelligent evolutionary algorithm; it
has received considerable attention and has extensive applica-
tions because of its simple operation, less control parameters,
high stability, andpowerful global optimization capability [14,
15]. Compared with other evolution algorithms, DE applies
a global search strategy based on population. It uses real
number coding based on the simple mutation operation of
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difference and one-on-one competition survival strategy to
reduce the complexity of genetic operations. Simultaneously,
the uniquememory capability ofDE enables it to dynamically
track current search conditions to adjust its search strategy,
thereby achieving powerful global convergence capability and
robustness. In 2012, Tang et al. realized parameter identifi-
cation on a fractional-order Liu system in the same order
using DE [16]. Zhu et al. completed parameter identification
on a fractional-order chaotic systemwithmeasurement noise
based on an improved DE algorithm [17].

As a matter of fact, most of the existing optimiza-
tion algorithms based parameter identification methods for
fractional-order chaotic systems use only one objective func-
tion. The major challenge is that an intelligent optimization
algorithmmay be trapped in the local optima of the objective
function, which leads to a slow convergence speed and low
identification accuracy. This issue is particularly challenging
when the dimension of the problem is high and there are
numerous local optima [18]. Although the DE algorithm has
the advantages of simple structure, ease of use, and high speed
of convergence, the DE algorithm may also easily be trapped
in the local optimum because of the high identification
dimension [19].

TheDuffing system is amathematicalmodel that is widely
used in mechanical vibration, physics, biology, neuroscience,
and other fields; its rich nonlinear dynamic behavior has
attracted the interest of numerous scholars. Aguilar-Ibáñez
et al. achieved parameter identification on an integer-
order Duffing system using an improved gradient algorithm
[20]. The traditional integer-order damping model can be
described accurately using fractional-order calculus. Scholars
have recently studied stability, bifurcation, chaos, and other
dynamic characteristics of the fractional-order Duffing equa-
tion [21–24]; however, research on the parameter identifica-
tion problem of a fractional-order Duffing system has not yet
been conducted.

For the fractional-order Duffing system, [25] studied its
steady attractor and found out that the state transition from
“vibration stopped (VS) state” to “small-scale periodic (SSP)
state” of steady attractor is sensitive to regular signals but
immune to noise. In the adjacent area of the steady attractor,
a small perturbation of the parameters of the periodic driving
force can lead to a fundamental change of the systemdynamic
behavior. Based on these properties of the steady attractor,
the authors of [25] proposed a detecting method for weak
periodic sinusoidal signal. Moreover, our study has found
that a reasonable application of the above properties of
the steady attractor can also provide an efficient parameter
estimation method for amplitude and frequency estimation
of a sinusoidal signal. Note that the amplitude and frequency
of the sinusoidal signal are also parameters to be identified of
the fractional-order Duffing system.

Therefore, inspired by the properties of the steady attrac-
tor of the fractional-order Duffing system and the relation-
ship between the two output state, this study firstly finds
out that the original 6-dimensional identification problem
of the fractional-order Duffing system can be transformed
to a successive step by step identification problem, which
only has low identification dimensions. And then a sequential

parameter identification method is established based on
the DE optimization algorithm, which we called sequential
differential evolution (SDE) method. The simulation results
show that when compared with traditional DE based opti-
mization algorithm (we called DE method), the proposed
SDE method in this study can obtain better parameter iden-
tification results with and without noise. Simultaneously, the
comparison of the simulation results of the sequential param-
eter identificationmethod based onPSOalgorithm (we called
sequential particle swarm optimization (SPSO) method) also
shows that the DE algorithm exhibits performance superior
to that of PSO in nonlinear parameter identification prob-
lems.

2. Fractional-Order Duffing System and
Its Numerical Algorithm

In this paper, we consider the following state equations given
by the fractional-order Duffing system [23]:

𝐷𝑝0𝑥1 = 𝑥2,
𝐷𝑝0𝑥2 = 𝑎0𝑥1 − 𝑏0𝑥13 − 𝑘0𝑥2 + 𝑟0 cos (𝜔0𝑡) , (1)

where 𝐷𝑝0𝑥 is the fractional-order derivative based on the
definition of Caputo [2]:

𝐷𝑝0𝑥
= {{{{{{{

1Γ (𝑛 − 𝑝0) ∫
𝑡

0

𝑓(𝑛) (𝜏)(𝑡 − 𝜏)1+𝑝0−𝑛 d𝜏, 𝑛 − 1 < 𝑝0 < 𝑛
d𝑛𝑥
d𝑡𝑛 , 𝑝0 = 𝑛

(2)

in which, Γ(⋅) is the gamma function and Γ(𝑧) =∫+∞
0
𝑡𝑧−1𝑒−1d𝑡. When 𝑝0 = 1, (1) is the classical Duffing

equation.
The observation equation of (1) with additive noise is

Y = X +W, (3)

where X = [𝑥1(𝑡), 𝑥2(𝑡)]𝑇 is state vector, Y = [𝑦1(𝑡), 𝑦2(𝑡)]𝑇
is the output observation vector of system, and W =[𝑤1(𝑡), 𝑤2(𝑡)]𝑇 is the Gaussian white noise vector, in which,𝑤1(𝑡) and 𝑤2(𝑡) are not related to each other.

Here, 𝑎0, 𝑏0, 𝑘0, amplitude 𝑟0, angular frequency 𝜔0,
and order 𝑝0 are unknown parameters to be identified. In
this paper, we suppose these parameters are all positive real
numbers and 𝑝0 ∈ (0, 1].

The numerical algorithm for solving the fractional-order
Duffing equation (1) is based on the numerical algorithm
given in [23]:

𝑥1 [𝑡𝑘] = 𝑥2 [𝑡𝑘−1] ℎ𝑝0 − 𝑘∑
𝑗=V
𝑐(𝑝0)𝑗 𝑥1 [𝑡𝑘−𝑗] ,

𝑥2 [𝑡𝑘] = [𝑎0𝑥1 [𝑡𝑘] − 𝑏0 (𝑥1 [𝑡𝑘])3 − 𝑘0𝑥2 [𝑡𝑘−1]
+ 𝑟0cos (𝜔0𝑡𝑘)] ℎ𝑝0 − 𝑘∑

𝑗=V
𝑐(𝑝0)𝑗 𝑥2 [𝑡𝑘−𝑗] ,

(4)
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where

𝑐(𝑝0)0 = 1,
𝑐(𝑝0)𝑗 = (1 − 1 + 𝑝0𝑗 ) 𝑐(𝑝0)𝑗−1 , 𝑗 = 1, 2, . . . . (5)

3. Differential Evolution Algorithm

Consider a general optimization problem:

Θ̂ = arg
Θ

min 𝑓 (Θ) , (6)

where 𝑓 is the objective function, Θ = [𝜃1, 𝜃2, . . . , 𝜃𝐽] is the𝐽-dimensional parameter vector, and 𝜃𝑗 ∈ [Min 𝜃𝑗,Max 𝜃𝑗],𝑗 = 1, 2, . . . , 𝐽.
The DE algorithm is a kind of evolutionary algorithms,

which has the advantages of simple structure, ease of use,
and high speed of convergence [14]. The main steps of
DE algorithm to search the extreme value of the objective
function are given as follows.

(1) Initialization Operation. The DE algorithm randomly gen-
erates an initial population with size of 𝑁𝑃, and then the
initial value of the 𝑖th individual is

Θ (𝑖, 0) = [𝜃1 (𝑖, 0) , 𝜃2 (𝑖, 0) , . . . , 𝜃𝐽 (𝑖, 0)] ,
𝑖 = 1, 2, . . . ,NP, (7)

in which, 𝜃𝑗(𝑖, 0) = Min 𝜃𝑗 + [Max 𝜃𝑗 −Min 𝜃𝑗] × rand(1), 𝑗 =1, 2, . . . , 𝐽, and rand(1) denotes random numbers generated
by a uniform distribution. At the same time, set up the
mutation factor 𝐹 ∈ [0, 2], crossover probability CR, and
maximum evolution times 𝐿.
(2) Mutation Operation. The DE algorithm uses two differ-
ence individual vectors randomly chosen from the popula-
tion as the random change in the source of third individual;
the weighted difference vector of the two individual vectors is
added to the third individual according to certain rules. For
each individual targetΘ(𝑖, 𝑙), themutation vector is produced
by the following difference strategy:

V (𝑖, 𝑙 + 1) = [V1 (𝑖, 𝑙 + 1) , V2 (𝑖, 𝑙 + 1) , . . . , V𝐽 (𝑖, 𝑙 + 1)]
= Θ (𝑟1, 𝑙) + 𝐹 × [Θ (𝑟2, 𝑙) −Θ (𝑟3, 𝑙)] , (8)

where the random selected numbers 𝑟1, 𝑟2, and 𝑟3 are not
the same, 𝑟1, 𝑟2, 𝑟3, and the sequence number 𝑖 of the target
vector are also not the same. In the process of evolution,
in order to ensure the effectiveness of the solution, if the
mutation vector does not meet the boundary conditions, a
new mutation vector is regenerated using the same random
method in the step of initialization.

(3) Crossover Operation. In order to increase the diversity of
the parameter vector, for the 𝑙th generation and its mutation

population, 𝑙th generation test vector was introduced by the
crossover operation

U (𝑖, 𝑙 + 1)
= [𝑢1 (𝑖, 𝑙 + 1) , 𝑢2 (𝑖, 𝑙 + 1) , . . . , 𝑢𝐽 (𝑖, 𝑙 + 1)] , (9)

in which,

𝑢𝑗 (𝑖, 𝑙 + 1) = {{{
V𝑗 (𝑖, 𝑙 + 1) , if rand (0, 1) ≤ CR
𝜃𝑗 (𝑖, 𝑙) , otherwise,

𝑗 = 1, 2, . . . , 𝐽.
(10)

(4) Selection Operation. The DE algorithm selects the next
generation of the population using the greedy algorithm; if
the objective function values of the test individuals are less
than those of the target individual, then the test individuals
replace the target individual in the next generation; other-
wise, target individuals still preserved:

Θ (𝑖, 𝑙 + 1)
= {{{

U (𝑖, 𝑙 + 1) , if 𝑓 (U (𝑖, 𝑙 + 1)) ≤ 𝑓 (Θ (𝑖, 𝑙))
Θ (𝑖, 𝑙) , otherwise,

𝑖 = 1, 2, . . . ,NP.
(11)

4. Parameter Identification of
Fractional-Order Duffing System

Based on the dynamic characteristics of the fractional-
order Duffing system, the parameter identification method
proposed in this paper will be divided into three steps:

Step 1. Identification of order 𝑝0;
Step 2. Identification of amplitude 𝑟0 and angular frequency𝜔0;
Step 3. Identification of 𝑎0, 𝑏0, and 𝑘0.

Based on the above three steps, the original 6-dimension-
al identification problem is transformed into a successive step
by step identification problem, including a 1-dimension iden-
tification problem, a 2-dimension identification problem,
and a 3-dimensional identification problem, thereby greatly
reducing the search dimension and improving the search
efficiency.

4.1. Identification of Order 𝑝0. From the first equation of the
fractional-order Duffing system (1) and the measurement
equation (3) we can see, in the absence of noise, the second
component 𝑦2(𝑡) of the final output vector Y(𝑡) is the frac-
tional derivative of the first component 𝑦1(𝑡) with order 𝑝0,
that is,𝐷𝑝0𝑦1 = 𝑦2.

Suppose𝐷𝑝𝑦1 = 𝑦𝑝, then if and only if 𝑝 = 𝑝0, the energy
difference of 𝑦𝑝(𝑡) and 𝑦2(𝑡) reaches its minimum value. The
estimated value of order 𝑝0 can be obtained by adjusting the
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order of𝑝 and searching for theminimumvalue of the energy
difference:

𝑝0 = arg min
𝑝∈(0,1]

𝑦𝑝 − 𝑦22 , (12)

where ‖𝑥(𝑡)‖2 denotes the energy of 𝑥(𝑡).
Therefore, in the first step of our identification method,

the objective function 𝑓1 of DE algorithm is chosen as the
energy difference of the fractional-order derivative𝐷𝑝𝑦1 and𝑦2(𝑡):

𝑓SDE1 (𝑝) = 𝐷𝑝𝑦1 − 𝑦22 ; (13)

the order 𝑝0 is then estimated by using the DE algorithm.

4.2. Identification of Amplitude 𝑟0 and Angular Frequency 𝜔0
4.2.1. Oscillation Variance of the Output of the Fractional-
Order Duffing System. For each 𝑝0 ∈ (0, 1], there are three
equilibrium points of the fractional-order Duffing system (1),(0, 0), and (±√𝑎0/𝑏0, 0).

For the equilibrium point (±√𝑎0/𝑏0, 0), its Jacobian
matrix is given by

𝐻 = [ 0 1−2𝑎0 −𝑘0] . (14)

Then there are two cases:
(1) If 𝑘02 ≥ 8𝑎0, the characteristic values of 𝐻 are two

negative numbers:

𝜆1,2 = [−𝑘0 ± √𝑘0
2 − 8𝑎0]2 , (15)

whose arguments are both 𝜋.
(2) If 𝑘02 < 8𝑎0, the characteristic values of 𝐻 are a pair

of conjugate complex numbers:

𝜆1,2 = [−𝑘0 ± 𝑖√8𝑎0 − 𝑘0
2]

2 , (16)

whose arguments are

arg (𝜆1) = 𝜋2 + atan 𝑘0√8𝑎0 − 𝑘02 ,

arg (𝜆2) = 𝜋 + atan√8𝑎0 − 𝑘02𝑘0 .
(17)

Since 0 < 𝑝 ≤ 1, then both the two cases satisfy |arg(𝜆𝑖)| >(𝑝/2)𝜋, 𝑖 = 1, 2. From the conclusions in [26], the equilibrium
points (±√𝑎0/𝑏0, 0) are stable focus points; that is, the phase
trajectory from any initial value will eventually be attracted
and converge to these two points.

For the equilibrium point (0, 0), its Jacobian matrix is
given by

𝐻 = [ 0 1𝑎0 −𝑘0] ; (18)

the characteristic values of 𝐻 are one negative and one
positive number 𝜆1,2 = [−𝑘0 ±√𝑘02 + 4𝑎0]/2. Thus, (0, 0) is a
saddle point; it is neither an attractor nor a repeller.

Similar to the integer-order Duffing system, the output
X(𝑡) of the fractional-order Duffing equation (1) varies as
the amplitude 𝑟0 of the periodic driving force varies. In the
following section, we set the parameters as 𝑎0 = 1, 𝑏0 = 1, 𝑘0 =1, and 𝜔0 = 1, and the fractional-order 𝑝0 is 0.96. We set the
amplitude 𝑟0 as 0, 0.1, 0.7, 0.922, 0.933, and 1.8, respectively,
and then compare and analyze the first component 𝑥1(𝑡) of
the output X(𝑡) of the system.

(1) When 𝑟0 = 0, for any given initial value, the output
response 𝑥1(𝑡) oscillates around one of the stable focus
points and the oscillation amplitude gradually reduces to
zero; the system will converge to the phase trajectory of the
focus, which reached a steady state.The corresponding phase
trajectory and output time response are shown in Figures 1(a)
and 1(b), respectively.

When 𝑟0 > 0, since the Duffing system is a bistable
system, which has two stable focus points and a saddle point,
in the presence of the periodic driven force 𝑟0 cos(𝜔0𝑡), there
is a critical threshold𝐴𝑐 in the bistable system: if 0 < 𝑟0 < 𝐴𝑐,
then the output response 𝑥1(𝑡) will produce local periodic
motion near one steady attractor when the time is long
enough. Then 𝑥1(𝑡) has the same frequency of the periodic
driving force. At this time, the phase plane trajectory shows
the attractor under Poincaré mapping. The corresponding
phase trajectory and output time response are shown in
Figures 1(c) and 1(d), respectively.

(2) When 𝑟0 > 𝐴𝑐, 𝑥1(𝑡) will create a wide-range tran-
sition around the two steady attractors; as the value of 𝑟0
increases, the oscillation amplitude of 𝑥1(𝑡) also increases,
and the phase trajectory will go through four states in turns,
namely, “homoclinic orbit state,” “chaotic state,” “chaotic
critical state,” and “large-scale periodic state,” as shown in
Figure 2.

It can be observed that the first component 𝑥1(𝑡) of
system output around the equilibrium point has increasing
oscillation amplitude as the amplitude 𝑟0 increases. Note that
the horizontal coordinate of the focus point can be regarded
as the mean value of 𝑥1(𝑡) at time domain, and the variance
of 𝑥1(𝑡) at time domain exactly characterizes the oscillation
degree of the signal around its mean value.

Suppose the first component of the output of (1) with
initial value 𝑋0 = (𝑥0, 𝑦0) is 𝑥1(𝑡); we may assume that its
steady state response starts at time 𝑇0; then the oscillation
variance of 𝑥1(𝑡) on [𝑇0, 𝑇] is defined by

𝜎𝑥 = 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

[𝑥1 (𝑡) − 𝑚𝑥]2 d𝑡, (19)

in which, 𝑚𝑥 = (1/(𝑇 − 𝑇0)) ∫𝑇𝑇0 𝑥1(𝑡)d𝑡 denotes the mean
value of 𝑥1(𝑡) in [𝑇0, 𝑇].
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Figure 1: The phase trajectory and output time response of the fractional-order system with 𝑟0 = 0 and 𝑟0 = 0.1.
With a fixed angular frequency 𝜔0, the oscillation vari-

ance 𝜎𝑥 is a function of the input amplitude 𝑟0. The smaller
the oscillation variance of output time response is, the closer
the phase state is to the steady state, and the closer the
corresponding input signal is to a zero value signal and vice
versa. In this paper, we use the oscillation variance 𝜎𝑥 of 𝑥1(𝑡)
to estimate the amplitude of the input periodic driving force.

Figure 3 shows the oscillation variance 𝜎𝑥 of fractional-
orderDuffing systemwith different orders varies as a function
of 𝑟0, in which, sampling interval ℎ = 0.01 s and sampling
time 𝑇 = 20𝜋 s.

From Figure 3 we can see, for any fractional-order Duff-
ing system, the oscillation variance 𝜎𝑥 is an increasing func-
tion of absolute value of the amplitude 𝑟0 and reaches its
minimumvalue at 𝑟0 = 0. In Section 4.2.2, this dynamic char-
acteristic of fractional-order Duffing system is used to esti-
mate the unknown parameters of its periodic driving force.

4.2.2. Identification of 𝑟0 and 𝜔0 Based on the Oscillation Vari-
ance. Input 𝑢 = −𝑟cos(𝜔𝑡) into the fractional-order Duffing
system (1); we obtained the following controlled system:

𝐷𝑝0𝑥1 = 𝑥2,
𝐷𝑝0𝑥2 = 𝑎0𝑥1 − 𝑏0𝑥13 − 𝑘0𝑥2 + 𝑅 cos (𝜔0𝑡 + 𝜙) . (20)

Suppose 𝑟0 + Δ𝑟 = 𝑟, 𝜔0 + Δ𝜔 = 𝜔, then
𝑅 = √𝑟02 − 2𝑟0 (𝑟0 + Δ𝑟) cos (Δ𝜔𝑡) + (𝑟0 + Δ𝑟)2
𝜙 = atan[ (𝑟0 + Δ𝑟) sin (Δ𝜔𝑡)𝑟0 − (𝑟0 + Δ𝑟) cos (Δ𝜔𝑡)] .

(21)

Since 1 ≥ cos(Δ𝜔𝑡) ≥ −1 then we have

𝑅 = √𝑟02 − 2𝑟0 (𝑟0 + Δ𝑟) cos (Δ𝜔𝑡) + (𝑟0 + Δ𝑟)2
≥ |Δ𝑟| ≥ 0. (22)

Thus, 𝑅 = 0 if and only if

Δ𝑟 = 0,
Δ𝜔 = 0 ←→ 𝑟 = 𝑟0,𝜔 = 𝜔0.

(23)

For any 𝑟, 𝜔, the oscillation variance of the first output
component 𝑥1(𝑡) of (20) is a function of 𝑟, 𝜔:𝜎 (𝑟, 𝜔)

= 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

[𝑥1 (𝑡) − 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

𝑥1 (𝑡) d𝑡]2 d𝑡. (24)
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Figure 2: Continued.
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Figure 2: The phase trajectory and output time response of the fractional-order system of “homoclinic orbit state,” “chaotic state,” “chaotic
critical state,” and “large-scale periodic state.”
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Figure 3: Curves of the oscillation variance of the output of the fractional-order Duffing system as functions of the amplitude 𝑟0 of the input
periodic driving force.

Then from the above discussion in Section 4.2.1, we know that𝑅 = 0 if and only if 𝑟 = 𝑟0, 𝜔 = 𝜔0, while 𝑅 = 0 if and only
if the output is in the steady state, and in this case, 𝜎(𝑟, 𝜔)
reaches at its minimum. Thus, the amplitude 𝑟0 and angular
frequency 𝜔0 can be estimated by searching the minimum
value of the output oscillation variance of 𝑥1(𝑡):
𝑟0, �̂�0 = argmin

𝑟,𝜔
𝜎 (𝑟, 𝜔) ,

𝑟 ∈ [0, 𝑟max] , 𝜔 ∈ [0, 𝜔max] , (25)

in which, 𝑟max and 𝜔max are the search upper bounds of 𝑟 and𝜔, respectively.
Therefore, in the second step of our identification meth-

od, the objective function of DE algorithm is chosen as the
oscillation variance of (20):

𝑓SDE2 (𝑟, 𝜔) = 𝜎 (𝑟, 𝜔)
= 1𝑇 − 𝑇0 ∫

𝑇

𝑇0

[𝑥1 (𝑡) − 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

𝑥1 (𝑡) d𝑡]2 d𝑡; (26)
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the amplitude 𝑟0 and angular frequency𝜔0 are then estimated
by using the DE algorithm.

4.3. Identification of 𝑎0, 𝑏0, and 𝑘0. After identification of the
order 𝑝0, the amplitude 𝑟0, and angular frequency 𝜔0, we
obtained the estimated values 𝑝0, 𝑟0, and �̂�0, and then the
remaining parameters to be identified are 𝑎0, 𝑏0, and 𝑘0. The
identification of these three parameters can still be considered
as a multidimensional continuous optimization problem.
Thus, the approximate response system corresponding to
system (3) with noise is

𝐷𝑝0𝑧1 = 𝑧2,
𝐷𝑝0𝑧2 = 𝑎𝑧1 − 𝑏𝑧13 − 𝑘𝑧2 + 𝑟0 cos (�̂�0𝑡) . (27)

Therefore, in the last step of our identification method,
the objective function ofDE algorithm is chosen as the energy
difference between the first component of the output 𝑦1(𝑡) in
driving system (3) and the first component 𝑧1(𝑡) of the output
in approximate response system (27):

𝑓SDE3 (𝑎, 𝑏, 𝑘) = 𝑦1 − 𝑧12 . (28)

The remaining parameters 𝑎0, 𝑏0, and 𝑘0 are then estimated
by using the DE algorithm.

4.4. Design Steps of the Proposed SDE Method. The whole
design steps for parameter identification of fractional-order
Duffing system using SDE method can be summarized as
follows.

Step 1. Identification of order 𝑝0.
Step 1.1. Choose control parameters of DE, that is, population
size NP, mutation factor 𝐹, crossover probability CR, and
the maximum evolution times 𝐿. Randomly initialize NP
individuals in the search space as Θ(𝑖, 𝑙) = 𝑝(𝑖, 𝑙), 𝑖 =1, 2, . . . ,NP. Let iteration number 𝑙 = 0.
Step 1.2. Solve the systems (1) and (3) under initial state 𝑋0
and obtain output states 𝑌 = [𝑦1, 𝑦2]𝑇 using the numerical
method given by (4)-(5). For the 𝑖th individual, obtain output
states of𝐷𝑝(𝑖,𝑙)𝑦1 = 𝑦𝑝 from initial state𝑋0, and then calculate
its objective function according to (13).

Step 1.3. Perform mutation operation according to (8). Per-
form crossover operation according to (9) to obtain crossover
trial vectors. Calculate the objective function of crossover
trial vectors by (13). Perform selection operation according
to (11) to generate individuals for next generation.

Step 1.4. Check if the stopping criterion is met (i.e., 𝑙 = 𝐿). If
it is met, then output the optimal solution 𝑝0; otherwise, let𝑙 = 𝑙 + 1 and go to Step 1.3.

Step 2. Identification of amplitude 𝑟0 and angular frequency𝜔0.

Step 2.1. Randomly initialize NP individuals as Θ(𝑖, 𝑙) =[𝑟(𝑖, 𝑙), 𝜔(𝑖, 𝑙)], 𝑖 = 1, 2, . . . ,NP. Let iteration number 𝑙 = 0.
Step 2.2. For the 𝑖th individual, input 𝑢 = −𝑟(𝑖, 𝑙)cos(𝜔(𝑖, 𝑙)𝑡)
into the fractional-order Duffing system (1) and get the
estimated system (20), obtain output states of (20) from initial
state 𝑋0, and then calculate its objective function according
to (26).

Step 2.3. The same as Step 1.3.

Step 2.4. Check if the stopping criterion is met (i.e., 𝑙 = 𝐿). If
it is met, then output the optimal solution 𝑟0, �̂�0; otherwise,
let 𝑙 = 𝑙 + 1 and go to Step 2.3.

Step 3. Identification of parameters 𝑎0, 𝑏0, and 𝑘0.
Step 3.1. Randomly initialize NP individuals Θ(𝑖, 𝑘) =[𝑎(𝑖, 𝑙), 𝑏(𝑖, 𝑙), 𝑘(𝑖, 𝑙)], 𝑖 = 1, 2, . . . ,NP. Let iteration number𝑙 = 0.
Step 3.2. For the 𝑖th individual, solve the approximate
response system (27) with estimated parameters 𝑝0, 𝑟0, and�̂�0 under initial state 𝑋0 and obtain output states, and then
calculate its objective function according to (28).

Step 3.3. It is the same as Step 1.3.

Step 3.4. Check if the stopping criterion ismet (i.e., 𝑙 = 𝐿). If it
ismet, then output the optimal solution 𝑎0, �̂�0, �̂�0; otherwise,
let 𝑙 = 𝑙 + 1 and go to Step 3.3.

5. Numerical Simulations and Analysis

To verify the validity of the proposed sequential parameter
identification method based on the DE algorithm (i.e., SDE
method), a numerical simulation experiment on parame-
ter identification in a fractional-order Duffing system is
performed using the SDE method. The experiment result
is compared with the identification results obtained by
directly applying the parameter identification method of the
DE algorithm (i.e., DE method), and sequential parameter
identification method based on PSO (i.e., SPSO method).

In the procedure of DEmethod, suppose the output noisy
observation vector of system (1) is Y = [𝑦1(𝑡), 𝑦2(𝑡)]𝑇; the
estimated system corresponding to system (1) with noise is

𝐷𝑝𝑧1 = 𝑧2
𝐷𝑝𝑧2 = 𝑎𝑧1 − 𝑏𝑧13 − 𝑘𝑧2 + 𝑟 cos (𝜔𝑡) . (29)

Thus, the state vector of the estimated system is 𝑍 = [𝑧1(𝑡),𝑧2(𝑡)]𝑇; the objective function of the DE method with 6
parameters is defined as follows:

𝑓DE (𝑝, 𝑟, 𝜔, 𝑎, 𝑏, 𝑘) = 𝑦1 − 𝑧12 . (30)

The parameters 𝑎0, 𝑏0, and 𝑘0 are then estimated by using the
DE algorithm.

The SPSO method has the same steps and objective
functions as those of the SDE method. The only difference
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Figure 4: Design steps for parameter identification using SDE, SPSO, and DE methods.

Table 1: Main parameters of the SDE, SPSO, and DE methods.

Genetic factor Mutation factor Maximum iteration
SDE 𝐹 = 0.8 CR = 0.9 𝐿 = 300

Learning factor Inertia weight Maximum iteration
SPSO 𝑐1 = 𝑐2 = 2 𝑤 = 0.6 𝐿 = 300

Genetic factor Mutation factor Maximum iteration
DE 𝐹 = 0.8 CR = 0.2 𝐿 = 300
between SPSO and SDE method is that the SPSO method
searches optimal parameters of each step by using PSO
algorithm, and the SDEmethod searches optimal parameters
by using DE algorithm.

The design steps for parameter identification using SDE
method, SPSO method, and DE method are shown in
Figure 4, respectively.

Following simulation experiments, the sampling step ℎ =0.01.The real value of the order is𝑝0 = 0.96, and the variation
range is (0, 1]. The real values of the other parameters are set
as 𝑎0 = 1, 𝑏0 = 1, 𝑘0 = 1, 𝑟0 = 1, and 𝜔0 = 1. The variation
range of each parameter is [0, 3]. Other main parameters of
the SDE, SPSO, and DE methods are listed in Table 1.

5.1. Numerical Simulation 1. Firstly, assuming there is no
measurement noise, the fractional-order Duffing system is
allowed to evolve freely. In order to find the relationship

between the identification errors and the population size, we
did 9 sets of numerical simulations; the population sizes of
three method are all set as 30, 50, and 100, respectively. After
the system achieves a transient state, a point is arbitrarily
selected as the initial value 𝑋0. From the initial value, the
evolution time is set to 𝑇 = 3 s. We calculate the convergence
curves of the logarithmic identification errors (LIE) based on
the aforementioned threemethods, as shown in Figures 5 and
6. In these two figures, the cutoff of curve denotes that the
error has been reduced to zero and the logarithmic results are
negative infinity and, thus, cannot be displayed.

As can be seen from Figure 5, the convergence speeds
and the last LIE of the SPSO method and the SDE method
with population sizes 30, 50, and 100 are almost the same.
It follows that when the population size is greater than 30,
the population size has little effect on the final estimation
accuracy and convergence speed of the SDE and SPSO
methods. Thus, in the following simulation experiments, we
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Figure 5: Evolutionary convergence curves of the logarithmic identification errors (LIE) of the SDE and SPSO methods.

only consider the population size of the SDE and SPSO
methods as NP = 30.

In particular, Figure 5(a) shows the convergence curves
of the LIE achieved by the SDE and SPSO methods to
identify the order 𝑝0. The SDE with population size 30

proposed in this study converges to the real value after 48
iterations. Its evolution is highly efficient. By contrast, SPSO
with population size 30 converges to the real value after 149
iterations. Figure 5(b) shows the convergence curve of the
LIE of the SDE and SPSO methods to identify parameters
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Table 2: Average value and cost time comparison of the calculation results of SDE, SPSO, and DE (without noise).

True values SDE SPSO DE𝑝0 0.96 0.960000000000001 0.960000000000001 0.906261312663094𝑟0 1 1.000000000000000 1.000000000000000 0.999794594584971𝜔0 1 1.000000000000000 1.000000000000000 1.012465240090026𝑎0 1 1.000000000000000 1.000000000000000 1.016663593275141𝑏0 1 1.000000000000000 1.000000000000000 1.013125743617082𝑘0 1 1.000000000000000 1.000000000000000 1.165684838310568
Cost time (seconds) 109 5015 244
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Figure 6: Evolutionary convergence curves of the logarithmic
identification errors (LIE) of DE method.

𝑟0, 𝜔0. SDE with population size 30 converges to the real
value after 115 iterations, whereas SPSO with population
size 30 converges after 196 iterations. Figure 5(c) shows the
convergence curve of the LIE of SDE and SPSO to identify𝑎0, 𝑏0, and 𝑘0. SDE with population size 30 converges to
the real value after 185 iterations, whereas the SPSO with
population size 30 converges after 300 iterations to reduce the
identification error to a magnitude of 10−31.

Figure 6 shows the convergence curve of the LIE of DE
method to identify all the 6 parameters (𝑝0, 𝑟0, 𝜔0, 𝑎0, 𝑏0, 𝑘0);
the population sizes of DE method are set as 30, 50, and 100,
respectively. The DE method with population size 30 con-
verges after 114 iterations and reduces identification error only
to amagnitude of 10−1.11, theDEmethodwith population size
50 converges after 212 iterations and reduces identification
error to a magnitude of 10−1.29, and the DE method with
population size 100 converges after 178 iterations and reduces
identification error to a magnitude of 10−1.32. Thus, the DE
method with population size 100 has the best estimation
performance and, in the following simulation experiments,
we fixed the population size of DE method as NP = 100.

Table 3: RMSE comparisons of the calculation results of SDE, SPSO,
and DE (without noise).

SDE SPSO DE𝑝0 0 0 0.229349161461870𝑟0 0 0 0.345647703975610𝜔0 0 0 0.285615515196729𝑎0 0.25470 × 10−15 0.78505 × 10−15 0.245726407787693𝑏0 0 0 0.232148495895464𝑘0 0 0 0.664922349600648

In summary, the successive identification methods pro-
posed in this study, that is, SDE and SPSO methods, exhibit
higher identification precision and convergence speed than
the direct parameter identificationmethod—the DEmethod.
This result can be attributed to the use of the fractional-
order Duffing equation dynamic characteristics, thereby
achieving successive step by step identification, which signif-
icantly reduces identification dimension and, consequently,
improves identification speed and accuracy.

5.2. Numerical Simulation 2. To obtain more accurate results
to compare with the calculation results of the DE and
SPSOmethods, we also conducted 20 independent numerical
experiments using the three methods and use the average
value as the final identification result of parameters in Table 2.
The root mean squared errors (RMSE) of all the parameters
of all the three methods are also given in Table 3. Here, the
RMSE of parameter 𝜃 is given by

RMSE of 𝜃 = √∑𝑁𝑖=1 (𝜃𝑖 − 𝜃0)2𝑁 , (31)

where 𝜃0 is the true value of 𝜃 and 𝜃𝑖 is the 𝑖th estimated value
of 𝜃, 𝑖 = 1, 2, . . . , 𝑁.

Themain parameters of the SDE, SPSO, and DEmethods
are the same as numerical simulation 1, the population sizes of
the SDE, SPSOmethods are both set as 30, and the population
size of the DE method is set as 100. It can be observed from
Tables 2 and 3 that the SDE and SPSO methods can achieve
almost entirely accurate identification for all the parameters.
The average values and RMSE (except the RMSE of 𝑎0) of
all the parameters obtained by SDE method are the same
as those obtained by the SPSO method, while the RMSE
of 𝑎0 obtained by the SDE method is a little higher than
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Table 4: Average value and cost time comparison of the calculation results of SDE, SPSO, and DE (with noise,𝐷 = 0.05).
True values SDE SPSO DE𝑝0 0.96 0.960046346271175 0.959492674736478 0.955663495569419𝑟0 1 1.002265003070312 1.010175006124644 1.174963453288619𝜔0 1 1.002160216098992 1.004045047242484 0.957180452883223𝑎0 1 0.993668488134535 0.983730930793959 1.030124861207625𝑏0 1 0.996382591525655 0.984664492992783 1.024923059605036𝑘0 1 0.996729257854148 1.029990427269699 1.221970425815988

Cost time (seconds) 182 5086 454

Table 5: RMSE comparisons of the calculation results of SDE, SPSO, and DE (with noise,𝐷 = 0.05).
SDE SPSO DE𝑝0 0.001584953335274 0.001293305038638 0.023784962594894𝑟0 0.017375130670679 0.020862720773417 0.440801581318434𝜔0 0.009230747360439 0.012166424039078 0.120480160254245𝑎0 0.037996942936807 0.055568589135587 0.199587022659009𝑏0 0.032648336359859 0.048481351301828 0.202914504433050𝑘0 0.050175281400924 0.057163873938459 0.748553299332483

that of the SPSO method. As seen from the last columns of
Tables 2 and 3, simply using the DE algorithm (i.e., the DE
method) can also achieve parameter identification. However,
the estimation accuracy of the DE method is considerably
lower than the aforementioned sequential parameter iden-
tification algorithm. In addition, the SDE algorithm has the
shortest computation time. The DE consumes twice time as
much as the SDE method does, while SPSO consumes the
longest time, which is nearly 46 times that of the SDE meth-
od.

To further test the validity of the algorithm, and con-
sidering the effect of noise in practical application results,
we add a Gaussian white noise with a standard deviation of
0.05 into (3) and recalculate the average identification results
via an independent numerical simulation using the three
aforementioned methods after 20 iterations, as shown in
Table 4. The RMSE of all the parameters of all the three
methods are also given in Table 5. As can be seen from
Tables 4 and 5, in the presence of noise, the proposed SDE
method and the SPSO method can still achieve parameter
identification with high accuracy. The average values of all
the parameters obtained by the proposed SDE method are
closer to the true values than those obtained by the SPSO
method. Compared with the SPSOmethod, the SDE method
can achieve a litter bigger RMSE for the order 𝑝0, but lower
RMSEs for 𝑟0, 𝜔0, and 𝑎0, 𝑏0, 𝑘0, which shows that the
stability of PSO is lower than that of the DE algorithm with
the increase of identification dimension. However, the SPSO
method takes too long a computation time, which is nearly
27 times that of the SDE method. Meanwhile, the accuracy
of the identification provided by DE method is considerably
lower than those of the SDE and SPSO methods.

These results (Tables 2–5) also suggest that comparedwith
the SPSO and DE methods, the proposed SDE method has

faster convergence speed and better identification accuracy,
both in the presence and absence of noise.

6. Conclusion

This study first analyzes the stability of equilibrium points
in a fractional-order Duffing system and then combines
the dynamic characteristics of this equation to establish a
sequential parameter identification method based on the DE
algorithm. First, on the basis of the relationship between
the two output states of the fractional-order Duffing sys-
tem, identification of fractional-order is estimated using DE
algorithm. Then, the relationship between system output
oscillation variance and amplitude of the periodic driving
force is considered and combined with the DE algorithm
to identify unknown parameters of the periodic driving
force.The remaining parameters are then identified using DE
algorithm. The introduction of the sequential identification
method gradually decreases identification dimension (in the
three-step process, identification dimensions are 1, 2, and
3, resp., and the total identification dimension is 6), which
significantly improves identification speed and accuracy.

Through a simulation experimental analysis, the SDE
method with successive step by step identification steps is
proposed to obtain optimal performance. This method is
stable. The identification accuracy of the SPSO method with
successive step by step identification steps ranks second.
However, the SPSO method costs a lot of computation time
because of the PSO searching algorithm. The identification
accuracy of the DE method which directly applies the
parameter identification is quite lower than those of the other
two methods. In addition, the comparison of the simulations
of the DE and PSO algorithm shows that although PSO
demonstrates rapid convergence during the early stage, it
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takes obviously more computation time to obtain the same
identification accuracy as DE algorithm.
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