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This paper proposes a discrete-time switching controller strategy for a hydraulic process pumping station. The proposed solution
leads to improving control system performances with two tests: combination of Fuzzy-PD and PI controllers and Fuzzy-PID and PI
controllers.The proposed designmethodology is based on accuratemodel for pumping station (PS), which is developed in previous
works using Fuzzy-CMeans (FCM) algorithm.The control law design is based on switching control; a fuzzy supervisormanages the
switching from one to another and regulates the rate of participation of each order, in order to satisfy various objectives of a stable
pumping station like the asymptotic stability of the tracking error. To validate the proposed solution, experimental tests are made
and analyzed. Compared to the conventional PI and fuzzy logic (FL) approaches, the results show that the switching controller
allows exhibiting excellent transient response over a wide range of operating conditions and especially is easier to be implemented
in practice.

1. Introduction

Nonlinear systemmodeling has been a subject of some inter-
est in the field of control theory formany years. In this review,
the material is presented which provides the relevant per-
spective of the subject area with regard to signal processing
applications. Therefore, the biggest challenge to researchers
is to find solutions to problems encountered in real applica-
tions; in our case it is the pumping station. It is a complex
nonlinear and interconnected system; then to build a precise
mathematical model of this system is difficult task because
the mathematical solutions for this system are very complex
and require enormous amounts of computation. Moreover,
it contains many variables which are too vague to model. In
order to build an accurate model for the pumping station
system, several algorithms based on Takagi-Sugeno (T-S)
fuzzy model [1–7] have been carried out recently to identify
the parameters for “black-box” systems using input-output
data sets, among them the Fuzzy-C Means (FCM) algorithm
[8–16]. The latter is particularly the most effective technique
that can be used in nonlinear systems identification.

It is applied in many fields such as image segmentation
[17] and sensor networks [18]. For this, we have used FCM
algorithm to find a mathematical model for pumping station.

Many control laws have been developed in literature for
pumping station using different techniques. The authors of
[19, 20] have used a proportional integral (PI) controller to
drive the pumping station system. In [20, 21] the authors have
applied a fuzzy logic control (FLC) to the same system. More
recently, a hybrid controller based on PI and FLC controllers
has been developed in [22]. However, those aforementioned
works have the major drawbacks. In [19–23], the problems
are higher steady state error, higher overshoot, and having
unstable tracking performance.

To overcome those problems, in this paper a newmethod-
ology based on switching approach is proposed for Single-
Input Multiple-Output (SIMO) discrete-time system.

The control scheme developed consists of a fuzzy super-
visor managing the combination between two controllers in
two tests: the first one is the combination of Fuzzy-PD and PI
controllers [21], and the second deals with the combination
of Fuzzy-PID and PI controllers.
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In literature, combination of different techniques to
obtain the best performances is widely used today.Wong et al.
[24] proposed a combination of three methods: SMC, fuzzy
logic control (FLC), and PI control. The resulting controller
eliminates the chattering and the steady error introduced
by the FLC. Lin and Chen [25] used genetic algorithms to
optimize the mixing of SMC and FLC and hence to reduce
chattering in the system. Barrero et al. [26] developed a FLC-
based hybrid controller to manage the switching between a
SMC and a Fuzzy-PI controller. Reference [27] developed
a hybrid controller to manage the switching between fuzzy
logic and PI controllers. Nevertheless, the above-mentioned
works use a fixed combination or restrictive assumptions for
the rapidity and the stability of the pumping station.

Based on the aforementioned works, the main contri-
bution of this paper is to develop a discrete-time switching
(hybrid) control applied for a water pumping station (Irriga-
tion Station (IS)). It should be noticed that the mathematical
model of IS is discrete-time linearized system described in
[19]. The aim of this paper is to propose a fuzzy supervi-
sor for switching combination between two controllers to
overcome their disadvantages and to ensure the robustness
and the stability of the closed loop system. The discrete-time
switching control is based on the combination of the Fuzzy-
PD or Fuzzy-PID with PI controllers. The developed method
has the advantage of combining the performance of both
controllers. A fuzzy supervisor manages the switching from
one to another controller in order to resolve the tracking
problem of pressure in pipe line and sprinklers. Then, the
proposed switching control applied to thewater pumping sta-
tion is validated experimentally throughMATLAB-Simulink
(R2011b“7.13.0.564”) environment and the dSpace DS1104
card based on real-time data acquisition control system.

This study is organized as follows: In Section 2, the math-
ematical model of pumping station is presented. In the next
section, there exists presentation of different control laws (PI,
Fuzzy-PD, and Fuzzy-PID). The switching control structure
is designed and expressed in a suitable form. To demonstrate
the various features of the proposed switching controller
scheme, formulating switching controller problems, fuzzy
logic supervisor, and the proposed approach, simulation
results are given and compared to classical PI, Fuzzy-PD, and
Fuzzy-PID controllers. The experimental validation of the
switching control implemented to pumps is detailed in Sec-
tion 4. Finally, Section 5 presents some concluding remarks.

2. Pumping Station Model

Thepumping stationmodel is developed in previous research.
The authors [22, 28] used the hydraulic description model,
which is based on the fluid mechanics laws, Navier-Stokes
equations, and their simplification.However, in [19] they used
the Takagi-Sugeno fuzzy model.

In this case, the above system may have the following
form:

𝑥1 (𝑘 + 1) = 𝑓𝑇1 (𝑥1) + 𝑔1 (𝑥1) 𝑥2,
𝑥2 (𝑘 + 1) = 𝑓𝑇2 (𝑥1, 𝑥2) + 𝑔2 (𝑥1, 𝑥2) 𝑢 (𝑘) ,

(1)

where [𝑥1 𝑥2]𝑇 represents the discrete state space vector and𝑢 is the input of system.Theoutput𝑦 is chosen equal to𝑥1 and
the reference signal 𝑦𝑟 is assumed to be known and uniformly
bounded. The linear numerical model is described by (1)
using the fuzzy Takagi-Sugeno technique which is obtained
by the following three steps [19]:

(1) Determination of premises parameters using the
Fuzzy-C Means (FCM) algorithm

(2) Estimating consequential parameters using the
Recursive Least Square (RLS)

(3) Model validation using the Root Mean Square Error
(RMSE) and Variance Accounting For (VAF).

The IS is made up of two nonlinear systems which has
the same inputs and different outputs, one of pressure and
the other of flow, where each one is partitioned in three
subsystems. The pressure and flow subsystems are described
in previous works [19, 21] which are given by the following
equations.

(i) For the pressure subsystems,

𝑅𝑝1 : 𝑦𝑃1 (𝑘) = 1.0853𝑦𝑝1 (𝑘 − 1) − 0.1744𝑦𝑝1 (𝑘 − 2)
+ 0.0570𝑢1 (𝑘 − 1)
+ 0.0318𝑢1 (𝑘 − 2) ,

𝑅𝑝2 : 𝑦𝑃2 (𝑘) = 1.0851𝑦𝑝2 (𝑘 − 1) − 0.1743𝑦𝑝2 (𝑘 − 2)
+ 0.0565𝑢2 (𝑘 − 1)
+ 0.0320𝑢2 (𝑘 − 2) ,

𝑅𝑝3 : 𝑦𝑃3 (𝑘) = 1.0852𝑦𝑝3 (𝑘 − 1) − 0.1750𝑦𝑝3 (𝑘 − 2)
+ 0.0560𝑢3 (𝑘 − 1)
+ 0.0315𝑢3 (𝑘 − 2) .

(2)

(ii) For the flow subsystems,

𝑅𝑄1 : 𝑦𝑄1 (𝑘) = 1.0853𝑦𝑄1 (𝑘 − 1) − 0.1744𝑦𝑄1 (𝑘 − 2)
+ 1.4118𝑢1 (𝑘 − 1)
− 1.31𝑢1 (𝑘 − 2) ,

𝑅𝑄2 : 𝑦𝑄2 (𝑘) = 1.0851𝑦𝑄2 (𝑘 − 1) − 0.1743𝑦𝑄2 (𝑘 − 2)
+ 1.4116𝑢2 (𝑘 − 1)
− 1.33𝑢2 (𝑘 − 2) ,

𝑅𝑄3 : 𝑦𝑄3 (𝑘) = 1.0852𝑦𝑄3 (𝑘 − 1) − 0.1750𝑦𝑄3 (𝑘 − 2)
+ 1.4120𝑢3 (𝑘 − 1)
− 1.31𝑢3 (𝑘 − 2) .

(3)
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For the total system identification, the rule for each subsystem
(flow and pressure) can be calculated by the following
equation [19, 21]:

𝑦 (𝑘 + 1) = ∑𝑐𝑖=1 𝜇𝑖𝑘 ⋅ (𝑥 (𝑘)) ⋅ 𝑦𝑖 (𝑘 + 1)
∑𝑐𝑖=1 𝜇𝑖𝑘 ⋅ (𝑥 (𝑘)) ; (4)

using (2), (3), and (4) the global rules are given by (5) and (6).

(i) For the pressure output,

𝑅𝑃𝐺 : 𝑦𝑃𝐺 (𝑘) = 1.0851𝑦𝑝 (𝑘 − 1) − 0.1745𝑦𝑝 (𝑘 − 2)
+ 0.0563𝑢 (𝑘 − 1) + 0.0317𝑢 (𝑘 − 2) . (5)

(ii) For the flow output,

𝑅𝑄𝐺 : 𝑦𝑄𝐺 (𝑘) = 1.0851𝑦𝑄 (𝑘 − 1) − 0.1745𝑦𝑄 (𝑘 − 2)
+ 1.4116𝑢 (𝑘 − 1) − 1.32𝑢 (𝑘 − 2) . (6)

Thus, the open loop transfer functions are

𝐻BOP = 0.05632𝑧 + 0.0317
𝑧2 − 1.0851𝑧 + 0.1745 ,

𝐻BOQ = 1.4116𝑧 − 1.32
𝑧2 − 1.0851𝑧 + 0.1745 .

(7)

The discrete state representation is given by [19, 21]

[𝑃𝑘+1𝑄𝑘+1] = [1.085 −0.1745
1 0 ] [𝑃𝑘𝑄𝑘] + [10] 𝑢 (𝑘) ,

𝑦𝑘 = [0.0563 0.0317
1.412 −1.32 ] [𝑃𝑘𝑄𝑘] + [00] 𝑢 (𝑘) ,

𝐴 = [1.085 −0.1745
1 0 ] ,

𝐵 = [10] ,

𝐶 = [0.0563 0.0317
1.412 −1.32 ] .

(8)

Based on Shannon theory, the sampling period 𝑇𝑠 is chosen
as 0.04 s.

3. Controls Used on the Pumping Station

This section defines the different controllers such as PI,
Fuzzy-PD, Fuzzy-PID, and the switching between PI/Fuzzy-
PD and PI/Fuzzy-PID.

3.1. PI Control Design. The block scheme of the pumping
station controlled by a PI regulator as shown in Figure 1
is provided by LEROY-SOMMER. This controller ensures

Table 1: Inference matrix of the fuzzy controller.

N Z P
N PB PS NS
Z PS Z NS
P PS NS NB

specific control for the pumps.The originators in the LEROY-
SOMMER company choose the parameters of following
adjustments𝐾𝑝 = 0.5 𝑇𝑖 = 1m:

𝑈 (𝑠)
𝜀 (𝑠) = 𝐾𝑝 (1 + 1

𝑇𝑖𝑠) . (9)

The form of discrete PI controller is given by

𝑈 (𝑧)
𝜀 (𝑧) = 𝐾𝑝 (1 + 𝑇/𝑇𝑖) − 𝐾𝑝𝑧−1

1 − 𝑧−1 = 𝑟0 + 𝑟1𝑧−11 − 𝑧−1
= 𝑟0𝑧 + 𝑟1𝑧 − 1 .

(10)

Simulation results of PI controller are shown in Section 3.5.

3.2. Fuzzy-PD Control Design. The pumping station con-
trolled by the fuzzy logic shown in Figure 2 [21] must be
programmed through the tool “FUZZY”ofMATLAB. Entries
“and” are chosen of Gaussian form (bell) and the universe
of speech for each one is divided into three sets: Z, P, and
N. Thus, by using all the possible combinations, nine fuzzy
rules were generated for five singletons on the level of the
consequence part as shown in Table 1.

In the proposed method each input variable of the fuzzy
logic controller has three Gaussian membership functions.
The fuzzy sets used in the proposed method are as follows:
N: Negative, P: Positive, and Z: Zero. Output variables have
five membership functions as follows: NB: Negative Big, NS:
Negative Small, Z: Zero, PB: Positive Big, and PS: Positive
Small. The variation law of fuzzy controller is shown. The
rules can be written in Table 1.

𝑓 (𝜀 is 𝐴) and ( ̇𝜀 is 𝐵)
then 𝑈𝑐𝑓 = 𝑆𝑖 (𝜀, ̇𝜀) . (11)

The discourse universe of output 𝑈𝑐𝑓 is decomposed in five
fields.Themethodmin-max is used for inferences system and
the gravity centre method for the defuzzification step. Then
the fuzzy controller can be written as follows:

𝑆𝑖 (𝜀, ̇𝜀) = min (𝜇𝑖𝐴 (𝜀) , 𝜇𝑖𝐵 ( ̇𝜀)) ,
𝑈𝑐𝑓𝐺 = max (𝑆𝑖 (𝜀, ̇𝜀)) . (12)

Simulation results of fuzzy controller are shown in Sec-
tion 3.5.

3.3. Fuzzy-PID Control Design. The additive combination
of proportional, integral, and derivative actions is called
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Figure 1: Block scheme of the pumping station controlled by PI regulator.
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Figure 2: Block scheme of the controlled pumping station based on fuzzy logic.

proportional-integral-derivative action [29, 30]. These types
of controllers have been widely used for industrial processes
owing to their heuristic nature associated with simplicity
and effectiveness for both linear and nonlinear systems. A
parallel structure of Fuzzy-PID control systems is proposed
in [29, 30] based on the parallel combination of Fuzzy-PI and
PD controllers which shows its simplicity in determining the
control rules and controller parameters. It is associated with
a tuning method which is based on gain margin and phase
margin specifications. The block diagram of a Fuzzy-PID
control is shown in Figure 3. The input linguistic variables
to the Fuzzy-PID controller are as follows: error (𝑒(𝑘)) and
change in error (𝑒(𝑘)). Error and change in error are defined
on the universe of discourse of −5 to 5. The fuzzy sets have
the same structure as the Fuzzy-PD in Section 3.2.

The simulation results are illustrated in Figures 4 and
5 which present the pressure and the flow outputs of the
proposed system based on switching technique, respectively.

The evolution of the pressure tracking error with Fuzzy-
PID controller is given by Figure 4. From the output tracking
errors, the proposed Fuzzy-PID method shows that the
tracking error is smaller than 1%, which proves the track-
ing accuracy. The proposed design based on combination
of Fuzzy-PI and PD controllers technique shows a better
tracking performance and high efficiency.

3.4. Switching Control Synthesis. The solution presented in
this paper consists in using simultaneously controllers 1 and

2 as illustrated in Figure 6. This solution has the advantage
of combined performances of both controllers based on an
appropriate switching algorithm described in Figure 7.

3.4.1. Fuzzy Supervisor. To ensure the more robustness of
the closed loop system and a fast dynamic response with
the best performance, a combination of the two previously
defined controllers is made. This combination multiplexes
the fuzzy logic control during the transient state and the
PI control in steady state. The first command ensures a fast
convergence of the system to steady state with insensitivity to
external disturbances, while the second takes over steady state
to ensure a more smooth and a minimal static error. To avoid
a sudden transition from one controller to another, a gradual
switching is used [31–34] which has the following form:

𝑈HC = 𝛼𝑈FLC + (1 − 𝛼)𝑈PIC, (13)

where 𝛼 is a weighting factor generated by a fuzzy supervisor.
The rule base of the latter is constructed such that the
output moves “to zero” when the system is far from the
desired value, and “value 1” when the tracking error and its
derivatives converge to zero [31, 32]. The main objective of
fuzzy supervisor is to determine theweighting factor𝛼, which
gives the participation rate of each control signal.

The state space is partitioned in several regions using
a Sugeno fuzzy system. Also, the product inference, the
algebraic sum, and the singleton for the consequent-part are
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Figure 5: Pressure evolution of pumping station with Fuzzy-PID
controller.

used to design fuzzy supervisor as shown in Figure 8. Hence,
the fuzzy system output can be written as follows:

𝛼 = ∑𝑚𝑗=1 𝛼𝑗∏𝑛−1𝑖=1 𝜇𝐻𝑗𝑖 (𝑒(𝑖))
∑𝑚𝑗=1∏𝑛−1𝑖=1 𝜇𝐻𝑗𝑖 (𝑒(𝑖))

, (14)

where 𝐻𝑗𝑖 is a fuzzy set, 𝜇𝐻𝑗𝑖 is the membership degree of 𝑒(𝑖)
to 𝐻𝑗𝑖 , 𝛼𝑗 is a singleton, and 𝑚 is the number of used fuzzy
rules.

3.4.2. Simulation Results. The first test proposes a switching
controller based on the combination between two conven-
tional controllers: PI and Fuzzy-PD. In fact, the evolution of
the pressure and the flow outputs are presented in Figures 9
and 10, respectively.

The second test presents a switching controller based
on the combination between two controllers: conventional
PI and Fuzzy-PID. The pressure and the flow outputs with
PI/Fuzzy-PID controllers are given by Figures 11 and 12.

3.5. Comparative Study. In this section, a comparative study
of all control laws applied for the pumping station is made.

The choice of the reference signal is rich on a vast time
range, in which we find at the beginning a dead zone and
then a ramp and a series of steps signals with different
amplitude. This choice allows highlighting the effect of the
control law in all operation points and studying the system
robustness against the sudden changes of needed water level
into sprinklers.

The obtained results ensure the pressure regulation
because the response follows the given reference as illustrated
in Figures 13 and 14. The response time and the static error
related to the pressure output are summarized in Table 2.
Table 3 presents the response time and the overshoot related
to the flow output. The major drawback of this method of
regulation resides primarily at the adaptation problem of
the controller face to the external variations such as the
extension of drain network, disturbance, and the slowness
outputs response.

Note that a saturation was added in the control loop in
order to limit the overshoot of flow which is motioned in the
constructor document that does not exceed 8m3/h.

Apart from stability, the transient behaviour is another
focus of attention for control systems design. There are
several properties that can be used to evaluate the transient
behaviour of a closed loop control system, for example, steady
state accuracy, settling time, and overshoot [35].

Beyond these properties, more widely used criteria for
quality of control (QoC) relate to the control error, which is
defined as the difference between the setpoint 𝑃∗(𝑘) and the
system outputs 𝑃(𝑘) and 𝑄(𝑘). Some of these performance
indices are given below in both continuous-time anddiscrete-
time forms, where 𝑘0 and 𝑘𝑓 are the initial and final discrete-
times of the evaluation period [35]. The quality of control
criteria are given as follows.
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Table 2: Response time and static error of all controllers for the pressure output.

PI Fuzzy-PD Switch PI-Fuzzy-PD Fuzzy-PID Switch PI-Fuzzy-PID
Response time at ±5% 12.6 s 6.6 s 7 s 6.37 s 6.14 s
Static error of position (in Bar) 0.68 0.1 0.01 0.06 0.02

Table 3: Response time and overshoot of all controllers for the flow output.

PI Fuzzy-PD Switch PI-Fuzzy-PD Fuzzy-PID Switch PI-Fuzzy-PID
Response time at ±5% 13.4 s 11.6 s 8 s 9 s 6 s
Overshoot in % 25.44% 58% 28.94% 30.56% 27.21%

(i) Integral of Absolute Error (lAE):

IAE ≈
𝑘𝑓∑
𝑘=𝑘0

|𝑒 (𝑘)| ≈
𝑘𝑓∑
𝑘=𝑘0

󵄨󵄨󵄨󵄨𝑃∗ (𝑘) − 𝑃 (𝑘)󵄨󵄨󵄨󵄨 . (15)

(ii) Integral of Time-weighted Absolute Error (ITAE):

ITAE ≈
𝑘𝑓∑
𝑘=𝑘0

𝑘 |𝑒 (𝑘)| ≈
𝑘𝑓∑
𝑘=𝑘0

𝑘 󵄨󵄨󵄨󵄨𝑃∗ (𝑘) − 𝑃 (𝑘)󵄨󵄨󵄨󵄨 . (16)

(iii) Integral of Square Error (ISE):

ISE ≈
𝑘𝑓∑
𝑘=𝑘0

(𝑒 (𝑘))2 ≈
𝑘𝑓∑
𝑘=𝑘0

(𝑃∗ (𝑘) − 𝑃 (𝑘))2 . (17)

(iv) Integral of Time-weighted Square Error (ITSE):

ITSE ≈
𝑘𝑓∑
𝑘=𝑘0

𝑘 (𝑒 (𝑘))2 ≈
𝑘𝑓∑
𝑘=𝑘0

𝑘 (𝑃∗ (𝑘) − 𝑃 (𝑘))2 . (18)

According to Figures 13 and 14 the ratio speed/power for
both outputs (pressure and flow) of the studied system with
switching control is higher than other controllers (PI, Fuzzy-
PD, and Fuzzy-PID).

For pressure output, we notice that fuzzy supervisor
approach takes the speed performance of Fuzzy-PDor Fuzzy-
PID controllers and the smooth evolution of PI controller,
so the switching controller eliminates the small oscillation in
transient state for mixing PI/Fuzzy-PD controller.

The obtained results by switching controller show that
this control strategy is able to limit the oscillation in transient
state, without need of the saturation in flow output of
pumping station with fuzzy controller (Fuzzy-PD or Fuzzy-
PID).

Figure 14 shows the stable value of steady state (e.g.,
4.83m3/h between 𝑡 = 60 and 𝑡 = 100), which ensured
the saving of water use and the economy of electrical energy
absorbed by the pumps to reach the pressure set point (5 bar)
in the pipelines of the pumping station even in the sprinklers.

The quantitative comparison as shown in Tables 2, 3, and
4 reflects the switching of PI-Fuzzy-PD and PI-Fuzzy-PID
which are better than single controllers as PI, Fuzzy-PD, and
Fuzzy-PID.

4. Control Algorithm Validation

4.1. Experimental Bench Configuration. To check the per-
formances of the proposed DABs controller, simulations
and experimental tests were carried out based only on the
estimation model. Operational algorithm of pumps and
system regulation are shown in Figure 7. The scheme used
for the experimental setup is shown in Figure 15.

The experimentation has been carried out using
MATLAB-Simulink and dSpace𝐷𝑆1104 real-time controller
board. This board contains a Motorola Power PC 603𝑒
model that operates at the speed of 250MHz and a DSP(𝑇𝑀𝑆320𝐹240 – 20MHz).

The developed experimental test bench of the electri-
cal control cabinet is shown in Figure 16. In the cabinet
configuration, A3, A4, and A5 blocks represent, respec-
tively, flow sensor and two pressure sensors. The electrical
regulator pressure card is described by A2 block. The A1
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Figure 8: Supervisory fuzzy inference machine.

Table 4: Quality of control criteria of all controllers.

PI Fuzzy-PD Switch PI-Fuzzy-PD Fuzzy-PID Switch PI-Fuzzy-PID
IAE 0.943 0.2256 0.115 0.11 0.108
ITAE 188.6 45.11 13.109 11.87 9.73
ISE 0.8893 0.05088 2.416𝑒 − 3 9.27𝑒 − 4 7.415𝑒 − 4
ITSE 177.9 10.18 4.832 3.774 3.027
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Figure 9: Pressure output with PI-Fuzzy-PD switching controller.
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Figure 10: Flow output with PI-Fuzzy-PD switching controller.
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Figure 11: Pressure output with PI-Fuzzy-PID switching controller.

block represents the speed variator. In addition, the cabinet
configuration contains twomotor-pumps: fixed speedmotor-
pump of 1.1 kW rated power and variable speed motor-pump
of 1.5 kW rated power. Table 5 summarizes the characteristics
of the two motor-pumps.

The practical process is controlled as follows:

(1) Measure the pressure (Bar) from A5 block of the
station.
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Figure 13: Performance results of different control laws for pressure
output.

Table 5: Pumps parameters.

Variable speed pump Fixed speed pump
Coupling star 400V/50Hz Coupling star 400V–50Hz
𝑁𝑛V = 2870 tr/min 𝑁𝑛𝑓 = 2835 tr/min
cosV(𝜑) = 0,81 cos𝑓(𝜑) = 0,84
𝐼𝑛V = 3,3A 𝐼𝑛𝑓 = 2,5A
Power: 1,5 kW Power: 1,1 kW
𝐻max = 80m 𝐻max = 58m
𝑁𝑛 represents rated speed, cos(𝜑) is the power factor, 𝐼𝑛 is the rated current,
and𝐻max represents the maximum height of pumps.

(2) Send this information to the controller board of the
dSpace through ADC, 16-bit input.

(3) In another side, we load the parameters of the BS
controller in real-time simulation using MATLAB-
Simulink software, with the presence of the dSpace
card𝐷𝑆1104 plugged in a personal computer.

A PCI bus cable makes the connection between the 𝐷𝑆1104
cards and the controller board. The new control set point is
calculated in dSpace (closed loop system with PI controller).
The𝐷𝑆1104 sends the order to the pumping station by one of
the connectors, DAC, in the controller board. The practical
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Figure 14: Flow performance results of different control laws for
pressure output.
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Figure 15: View of the experimental test system.

dynamics of IS outputs are extracted from the control Desk
software which are given in Figures 17 and 18.

4.2. Experimental Results. The first test proposes an experi-
mental validation result of switching controller based on the
combination between two conventional controllers: PI and
Fuzzy-PD. In fact, the real evolution of the pressure and the
flow outputs are presented in Figures 17 and 18, respectively.

In Figure 17, it is can be noted that the pressure evolution
curve (in red color) can converge towards the reference
pressure. Figure 18 shows that the practical evolution of flow
output is similar to the simulation results, which converge to
4.8m3/h.

The flow response has a relation with the absorbed energy
by the pumps units. It can be noted that the proposed
switching control strategy can guarantee at the same time
the saving of water use, and the economy of electrical energy
absorbed by the pumps to reach the reference pressure in the
pipelines of the pumping station even in the sprinklers.

The second test presents an experimental validation of
switching controller based on the combination between two
controllers: conventional PI and Fuzzy-PID.The pressure and
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Figure 18: First test: experimental result of flow.

the flow outputs with PI/Fuzzy-PID controllers are given by
Figures 19 and 20.

The digital simulation and experimental results show
clearly the improvement in performance of the proposed
switching controller algorithm. Similarly, in Figure 19, the
tracking error between the reference and the real pressure
output reached the objective of the experimental validation
and confirmed the simulation results.

According to the obtained results, the switching con-
troller PI-Fuzzy-PID has a good performance in pressure
output while the switching controller PI-Fuzzy-PD presents
a good performance in flow output. The switching PI-
Fuzzy-PD controller has a benefit in terms of experimental
implementation as convergence time and implementation
simplicity compared to switching PI-Fuzzy-PID controller.

5. Conclusion

Performances of a developed method for high-performance
pumps pressure control based on switching technique that
achieves global asymptotic pressure tracking outputs of a
pumping station are presented. The elaborated switching
control proves a good effectiveness and a simplicity compared
to other controllers. After having developed the technical
aspects of the switching controller using fuzzy supervisor, the
complete control scheme of the pumping station incorporat-
ing the proposed controller experimentally was implemented
using a digital signal processor board𝐷𝑆1104. The proposed
switching controller gave satisfactory results in terms of
pressure reference tracking andminimization of the response
time of pressure and flow, which show the effectiveness of
control for this kind of controller of pumping station. Based
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Figure 19: Second test: experimental result of pressure with trape-
zoidal reference.
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Figure 20: Second test: experimental result of flow.

on the obtained results, it can be concluded that the research
into the switching technique has been very successful and can
be implemented in any pumping station, which can increase
the performance of pumping stations andwill be the objective
of other research.
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