
Research Article
Improving the Accuracy of the Charge Simulation
Method for Numerical Conformal Mapping

Fuming Lai,1 Yingzi Wang,2 Yibin Lu,1 and Jian Wang1

1Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
2Computer Center, Kunming University of Science and Technology, Kunming 650500, China

Correspondence should be addressed to Yibin Lu; luyibin@kmust.edu.cn

Received 8 September 2016; Revised 6 December 2016; Accepted 9 January 2017; Published 31 January 2017

Academic Editor: Salvatore Alfonzetti

Copyright © 2017 Fuming Lai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we present a method to improve the accuracy of the charge simulation method for numerical conformal mapping.
The method constructs the constraint equation by using the charge simulation method. The charges and the conformal radius are
computed by using the Runge-Kutta method based on the dynamic system of the constraint equation. By using this method, we can
obtain new approximated conformal mapping function and improve the accuracy of numerical conformal mapping compared to
the charge simulation method for numerical conformal mapping proposed by Amano. Furthermore, the corresponding numerical
results are shown to illustrate the performance of the proposed method.

1. Introduction

Conformal mapping appears in complex function theory,
which plays important roles for applications in fluidmechan-
ics, image processing, plane elasticity theory, and so on
[1, 2]. As is well known, solutions to conformal mapping
can be divided into analytical and numerical calculation
method. The theoretical basis of analytical method is the
famous Riemann Theorem, which proves the existence of
conformal mapping function but cannot give the expres-
sion for a specific function. This implies that we must use
numerical calculationmethod to solve some related problems
when the conformal mapping functions are complex and
diverse. Symm [3, 4] proposed the integral equation method
for the conformal mapping of a simply connected domain
bounded by a closed Jordan curve onto the unit disk, of
its exterior onto the exterior of the unit disk and of a
doubly connected domain onto a concentric circular annulus.
In [5], a numerical integral method is proposed to find
the specific length-to-width ratio, which is able to improve
the accuracy of the numerical conformal mapping on the
boundaries and makes the mapping method more reliable
when solving problems that are sensitive to accuracy. Nasser

[6–9] proposed a method which can be used to compute the
mapping function onto the five canonical regions in a unified
way. This method is based on a boundary integral equation
with the generalized Neumann kernel. In the year 1969,
Steinberger firstly proposed the charge simulation method
to study the electric field calculation [10]. Following the
work of Steinberger, Amano [11–13] developed the charge
simulation methods and obtained many nice and important
results on the charge simulation method and numerical
conformal mapping. In fact, compared to traditional meth-
ods, the charge simulation method has a higher accuracy
evaluation.

The matrix of Nasser method is well-conditioned, but
the coefficient matrix of the constraint equation of Amano
method is ill-conditioned [8]. It is very important to solve
the constraint equation in order to obtain the high accuracy
charges and the conformal mapping radius. Wilkinson’s
iteration refinement for linear systems [14] is well known
for solution in which Cholesky decomposition is repeatedly
used. It has been shown that if the linear equations are not
too ill-conditioned, the iterative sequence of the approximate
solution will be convergent to the solution. But this method
may not be useful for the too ill-conditioned system of
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Figure 1: Numerical conformal mapping of doubly connected
domains.

linear equations. Reference [15] established a new iteration
improvement of the solution based on the dynamic system
of ordinary differential equations (ODEs), and the new
method is more effective thanWilkinson’s method. However,
the number of iterations required for this method is often
more. This paper applies the Runge-Kutta method for the
constraint equations of doubly connected domains; the new
approach reduced the number of iterations and improved the
accuracy.

This paper is organized as follows. In Section 2, this
paper describes the numerical conformal mapping of dou-
bly connected domains based on the charge simulation
method. In Section 3, a novel algorithm based on Runge-
Kutta method for numerical conformal mapping of doubly
connected domains is proposed. In Section 4, it gives some
numerical examples and shows the superiority of developed
method stated. Section 5 is devoted to the statement of
conclusions.

2. Numerical Conformal Mapping of Doubly
Connected Domains Based on the Charge
Simulation Method

This section will describe the conformal mapping of a finite
doubly connected domain 𝐷 bounded by two closed Jordan
curves𝐶1 and𝐶2 given in the 𝑧-plane onto a circular annulus𝜇 < |𝜔| < 1 in the 𝑤-plane (see Figure 1) [13, 16–19]. The
origin 𝑧 = 0 lies inside the domain bounded by 𝐶2. Then, the
mapping function 𝑓(𝑧) can be expressed as𝑓 (𝑧) = 𝑧𝑒𝑔(𝑧)+𝑖ℎ(𝑧), 𝑧 ∈ 𝐷 = 𝐷 + 𝐶1 + 𝐶2. (1)

Here 𝑔(𝑧) and ℎ(𝑧) are conjugate harmonic functions in 𝐷
and 𝑔(𝑧) is the solution of the Dirichlet problem

∇2𝑔 (𝑧) = 0, 𝑧 ∈ 𝐷,𝑔 (𝑧) = − log |𝑧| , 𝑧 ∈ 𝐶1,𝑔 (𝑧) = log𝜇 − log |𝑧| , 𝑧 ∈ 𝐶2.
(2)

Based on the charge simulation method, 𝑔(𝑧) and ℎ(𝑧)
can be approximated by

𝐺 (𝑧) = − 𝑁∑
𝑖=1

𝑄𝑖 log 󵄨󵄨󵄨󵄨𝑧 − 𝜁𝑖󵄨󵄨󵄨󵄨 , 𝑧 ∈ 𝐷, (3)

𝐻(𝑧) = − 𝑁∑
𝑖=1

𝑄𝑖 arg (𝑧 − 𝜁𝑖) , 𝑧 ∈ 𝐷, (4)

respectively. The charge points 𝜁𝑖 (𝑖 = 1, 2, . . . , 𝑁) are ar-
ranged outside the given domain 𝐷. More precisely, 𝑁/2
charge points are arranged outside the domain bounded by𝐶1 and 𝑁/2 inside the domain bounded by 𝐶2. The charges𝑄𝑖 (𝑖 = 1, 2, . . . , 𝑁) can be determined to satisfy the Dirichlet
boundary condition of collection points 𝑧𝑗 (𝑗 = 1, 2, . . . , 𝑁)
arranged on the boundary 𝐶1 and 𝐶2; that is,

𝑁∑
𝑖=1

𝑄𝑖 log 󵄨󵄨󵄨󵄨󵄨𝑧𝑗 − 𝜁𝑖󵄨󵄨󵄨󵄨󵄨 = log 󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑧𝑗 ∈ 𝐶1,
𝑁∑
𝑖=1

𝑄𝑖 log 󵄨󵄨󵄨󵄨󵄨𝑧𝑗 − 𝜁𝑖󵄨󵄨󵄨󵄨󵄨 + log𝑀 = log 󵄨󵄨󵄨󵄨󵄨𝑧𝑗󵄨󵄨󵄨󵄨󵄨 , 𝑧𝑗 ∈ 𝐶2.
(5)

According to the condition of existence of conjugate har-
monic function, we have

𝑁∑
𝑖=𝑁/2+1

𝑄𝑖 = 0. (6)

From (5) and (6), we obtain the constraint equations

(((((((((
(

𝑎11 ⋅ ⋅ ⋅ 𝑎1,𝑁/2+1 ⋅ ⋅ ⋅ 𝑎1,𝑁 0... ... ... ...𝑎𝑁/2+1,1 ⋅ ⋅ ⋅ 𝑎𝑁/2+1,𝑁/2+1 ⋅ ⋅ ⋅ 𝑎𝑁/2+1,𝑁 1... ... ... ...𝑎𝑁1 ⋅ ⋅ ⋅ 𝑎𝑁,𝑁/2+1 ⋅ ⋅ ⋅ 𝑎𝑁𝑁 10 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 0

)))))))))
)

(((((((((
(

𝑄1...𝑄𝑁/2+1...𝑄𝑁
log𝑀

)))))))))
)
=
(((((((((
(

log 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨...
log 󵄨󵄨󵄨󵄨𝑧𝑁/2+1󵄨󵄨󵄨󵄨...
log 󵄨󵄨󵄨󵄨𝑧𝑁󵄨󵄨󵄨󵄨0

)))))))))
)

(7)



Mathematical Problems in Engineering 3

of doubly connected domains based on the charge simulation
method. Here 𝑎𝑖𝑗 = log |𝑧𝑗 − 𝜁𝑖|.
3. Runge-Kutta Method for Numerical

Conformal Mapping of Doubly
Connected Domain

It is important to find an effective way to solve the constraint
equation (7). We may consider linear equations of the form𝐴𝑥 = 𝑏, (8)

where 𝐴 ∈ 𝑅(𝑁+1)×(𝑁+1) and 𝑏 ∈ 𝑅𝑁+1 and 𝑁 represents the
number of simulation charge points.

Normally, the higher precision of conformal mapping,
the more points of simulation charge points. In this case, the
condition number cond(𝐴) = ‖𝐴‖‖𝐴−1‖ of coefficient matrix𝐴 is large. Hence (8) is ill-conditioned linear systems.

Consider the following preconditioned linear equations:𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏. (9)

Eq. (9) is on both sides plus 𝜇𝑥, where 𝜇 ≥ 0. Thus, we can
construct iterative formula(𝜇𝐼 + 𝐴𝑇𝐴)𝑥𝑛+1 = 𝜇𝑥𝑛 + 𝐴𝑇𝑏, (𝑛 = 0, 1, . . .) . (10)

For the simplicity of expression,we define 𝐴̃ = 𝐴𝑇𝐴, 𝑏̃ = 𝐴𝑇𝑏,
and 𝑈̃ = 𝜇𝐼 + 𝐴𝑇𝐴. Assume that 𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛, then𝑦𝑛 = 𝑈̃−1 (𝑏̃ − 𝐴̃𝑥𝑛) ,𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛. (11)

This can be viewed as explicit Euler method [15, 20] with stepℎ = 1 for solving the system of ordinary differential equations𝑑𝑥𝑑𝑡 = 𝑈̃−1 (𝑏 − 𝐴̃𝑥) , (12)

𝑥 (0) = 𝑥0. (13)

Runge-Kutta method is a high-precision single-step algo-
rithm for numerical solutions of ordinary differential equa-
tions [21–24]. For integral differential equation (12), from 𝑡𝑛
to 𝑡𝑛+1, we obtain𝑥 (𝑡𝑛+1) − 𝑥 (𝑡𝑛) = ∫𝑡𝑛+1

𝑡𝑛

𝑈̃−1 (𝑏̃ − 𝐴̃𝑥 (𝑡)) 𝑑𝑡. (14)

To improve the formula order, it is necessary to increase
the accuracy of the quadrature formula of the right-hand.
Obviously, it is necessary to increase the quadrature node,
for which the right-hand quadrature formula of (14) can be
expressed as

∫𝑡𝑛+1
𝑡𝑛

𝑈̃−1 (𝑏 − 𝐴̃𝑥 (𝑡)) 𝑑𝑡
≈ ℎ 𝑟∑
𝑖=1

𝑐𝑖𝑈̃−1 (𝑏̃ − 𝐴̃𝑥 (𝑡𝑛 + 𝜆𝑖ℎ)) . (15)

In general, the more the nodes 𝑟, the higher the precision.
In order to obtain the explicit method that facilitates calcu-
lating, formula (15) is expressed as

𝑥𝑘+1 = 𝑥𝑘 + ℎ 𝑟∑
𝑖=1

𝑐𝑖𝐾𝑖. (16)

𝐾𝑖 in (16) were given by𝐾1 = 𝑔 (𝑡𝑘, 𝑥𝑘) ,
𝐾𝑖 = 𝑔(𝑥𝑘 + ℎ𝑖−1∑

𝑗=1

𝛼𝑖𝑗𝐾𝑗) , (17)

where 𝑔(𝑡, 𝑥) = 𝑈̃−1(𝑏̃−𝐴̃𝑥), 𝑐𝑖, 𝜆𝑖, and 𝛼𝑖𝑗 are constants given
by [22].

Here we prove the convergence of the algorithm
described above, taking fourth-order Runge-Kutta method
as an example, and it is easy to prove other Runge-Kutta
methods converge.

Theorem 1. For the initial value problems for systems of
ordinary differential equations𝑑𝑥𝑑𝑡 = 𝑔 (𝑡, 𝑥) , 𝑡0 ≤ 𝑡 ≤ 𝑡̃,𝑥 (0) = 𝑥0. (18)

When the function 𝑔(𝑡, 𝑥) on its domain about 𝑥 satisfies Lip-
schitz condition, the increment function 𝜓(𝑡, 𝑥, ℎ) = 1/6(𝐾1 +2𝐾2 + 2𝐾3 + 𝐾4) of the fourth-order Runge-Kutta method
satisfies Lipschitz condition on 𝑥, where 𝑡0 ≤ 𝑡 ≤ 𝑡̃, 0 ≤ ℎ ≤ ℎ̃,
and |𝑥| < ∞.

Proof. For any 𝑥 and 𝑥̂ we obtain󵄨󵄨󵄨󵄨𝜓 (𝑡, 𝑥, ℎ) − 𝜓 (𝑡, 𝑥̂, ℎ)󵄨󵄨󵄨󵄨 = 16 󵄨󵄨󵄨󵄨󵄨(𝐾1 − 𝐾1)+ 2 (𝐾2 − 𝐾2) + 2 (𝐾3 − 𝐾3) + (𝐾4 − 𝐾4)󵄨󵄨󵄨󵄨󵄨≤ 16 (󵄨󵄨󵄨󵄨󵄨𝐾1 − 𝐾1󵄨󵄨󵄨󵄨󵄨 + 2 󵄨󵄨󵄨󵄨󵄨𝐾2 − 𝐾2󵄨󵄨󵄨󵄨󵄨 + 2 󵄨󵄨󵄨󵄨󵄨𝐾3 − 𝐾3󵄨󵄨󵄨󵄨󵄨+ 󵄨󵄨󵄨󵄨󵄨𝐾4 − 𝐾4󵄨󵄨󵄨󵄨󵄨) .
(19)

Since 𝑔(𝑡, 𝑥) on its domain about 𝑥 satisfies Lipschitz condi-
tion, we have󵄨󵄨󵄨󵄨󵄨𝐾1 − 𝐾1󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑥̂)󵄨󵄨󵄨󵄨 ≤ 𝐿 |𝑥 − 𝑥̂| ,󵄨󵄨󵄨󵄨󵄨𝐾2 − 𝐾2󵄨󵄨󵄨󵄨󵄨 = 𝐿 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑥 + ℎ𝐾12 ) − (𝑥̂ + ℎ𝐾12 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝐿 (|𝑥 − 𝑥̂| + ℎ𝐿2 |𝑥 − 𝑥̂|)

≤ 𝐿(1 + ℎ𝐿2 ) |𝑥 − 𝑥̂| ,
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󵄨󵄨󵄨󵄨󵄨𝐾3 − 𝐾3󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿 [1 + ℎ𝐿2 + (ℎ𝐿)24 ] |𝑥 − 𝑥̂| ,󵄨󵄨󵄨󵄨󵄨𝐾4 − 𝐾4󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿 [1 + ℎ𝐿 + (ℎ𝐿)22 + (ℎ𝐿)34 ] |𝑥 − 𝑥̂| .
(20)

From this we obtain󵄨󵄨󵄨󵄨𝜓 (𝑡, 𝑥, ℎ) − 𝜓 (𝑡, 𝑥̂, ℎ)󵄨󵄨󵄨󵄨
≤ 𝐿 [1 + ℎ𝐿2 + (ℎ𝐿)26 + (ℎ𝐿)324 ] |𝑥 − 𝑥̂|
≤ 𝐿[[1 + ℎ̃𝐿2 + (ℎ̃𝐿)

26 + (ℎ̃𝐿)324 ]] |𝑥 − 𝑥̂|= 𝐿̂ |𝑥 − 𝑥̂| ,
(21)

where 𝐿̂ = 𝐿[1 + ℎ̃𝐿/2 + (ℎ̃𝐿)2/6 + (ℎ̃𝐿)3/24]. Since 𝑥 and 𝑥̂
are arbitrary, therefore 𝜓(𝑡, 𝑥, ℎ) satisfies Lipschitz condition
on 𝑥.
Theorem 2. For the initial value problems for systems of
ordinary differential equations𝑑𝑥𝑑𝑡 = 𝑔 (𝑡, 𝑥) , 𝑡0 ≤ 𝑡 ≤ 𝑡̃,𝑥 (0) = 𝑥0. (22)

When the function 𝑔(𝑡, 𝑥) on its domain about 𝑥 satisfies
Lipschitz condition, the fourth-order Runge-Kutta method
convergence.

Proof. Note that 𝜓(𝑡, 𝑥, 0) = 𝑔(𝑡, 𝑥); then Theorem 1 implies
fourth-order Runge-Kutta method convergence.

At this point, we can obtain the Runge-Kutta method for
solving the constraint equations. Specific steps are given in
Algorithm 1, where SolRD and ItMax represent the relative
error and maximum number of iterations, respectively. Let-
ting 𝑥0 = 0, 𝜇, SolRD, and ItMax are determined by the
constraint equations given in Section 4.

According to the previous analysis, the Runge-Kutta
method for numerical conformal mapping based on the
charge simulation method is summarized as follows.

(1) Given the number of charge points 𝑁, charge points𝜁𝑖 (𝑖 = 1, 2, . . . , 𝑁) and constraint points 𝑧𝑗 (𝑗 = 1, 2,. . . , 𝑁).
(2) By Algorithm 1, we calculate charges 𝑄𝑖 (𝑖 = 1, 2, . . . ,𝑁) and the approximation 𝑀 of transformation

radius.
(3) After calculating𝐺(𝑧) and𝐻(𝑧) by (3) and (4) for each

point in the closed region𝐷(𝐷 ∪ 𝐶1 ∪ 𝐶2), including
the boundary𝐶1∪𝐶2, substitute into the approximate
conformal mapping function 𝐹(𝑧) = 𝑧𝑒𝐺(𝑧)+𝑖𝐻(𝑧) to
calculate the corresponding points.

Input: 𝐴, 𝑏, 𝑥0, 𝜇, ℎ, SolRD, ItMax.
Define 𝑔(𝑥) = (𝜇𝐼 + 𝐴𝑇𝐴)−1(𝐴𝑇𝑏 − 𝐴𝑇𝐴𝑥).

for 𝑗 = 1 : ItMax𝐾1 = 𝑔(𝑥𝑘);𝐾𝑖 = 𝑔(𝑥𝑘 + ℎ∑𝑖−1𝑗=1 𝛼𝑖𝑗𝐾𝑗);𝑥𝑘+1 = 𝑥𝑘 + ℎ∑𝑟𝑖=1 𝑐𝑖𝐾𝑖;
RD = norm(𝑥𝑘+1 − 𝑥𝑘)/norm(𝑥𝑘−1);
if RD < SolRD, break; end if

end for
return 𝑥𝑘+1 and 𝑘.

Algorithm 1: Runge-Kutta method for solving the constraint
equations.

4. Numerical Examples

In this section, two numerical experiments are made to show
the effectiveness of Runge-Kutta method in comparison with
Amano’s method [13]. In the first example, we consider a
doubly connected domain with exact solution given by [25].
In the second example, we consider the conformal mapping
of a finite concentration ellipse onto a circular annulus. In
the third example, we consider the conformal mapping of a
finite doubly connected domain boundedby two squares onto
a circular annulus. According to [13], the error formula of
numerical conformal mapping of doubly connected domain
is

max(max
𝑐1
||𝐹 (𝑧)| − 1| ,max

𝑐2
||𝐹 (𝑧)| − 𝑀|) . (23)

The Runge-Kutta method for numerical conformal mapping
of doubly connected domain has been implemented in
MATLAB.

Example 1. Region 𝐷 is the doubly connected domain with
the boundaries 𝐶1 : 10𝑒𝑖𝑡 + 3𝑒𝑖2𝑡 and 𝐶2 : 5𝑒−𝑖𝑡 + 0.75𝑒−𝑖2𝑡,
where 0 ≤ 𝑡 ≤ 2𝜋 (see Figure 2).

In this example, the analytic solution for domain 𝐷 is
known, which is given by

𝑓 (𝑧) = −10 + √102 + 4 × 3𝑧2 × 3 . (24)

The values of parameters 𝜇, SolRD, and ItMax in this
example are taken as 0.00002, 10−5, and 5000, respectively.
Figure 2 shows the distribution of charge points for𝑁 = 240,
half arranged outside the domain bounded by 𝐶1 and half
inside the domain bounded by 𝐶2. A comparison between
the exact values of the conformal mapping 𝑓(𝑧) and the
approximate values, obtained by Amano’s method and by our
methodwith the same number of collection points, at various
points on the boundaries 𝐶1 and 𝐶2, is given in Table 1.
From Figure 3 and Table 1, we can see that our method can
achieve higher numerical conformal mapping accuracy. The
error of numerical conformal mapping is computed by (23).
The approximate conformal mapping function 𝐹(𝑧) maps
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Table 1: A comparison with Amano’s method for Example 1.𝑧 Exact 𝑓(𝑧) Amano’s method Our method13.0000 + 0.00000𝑖 1.00000 + 0.00000𝑖 0.99984 + 0.01806𝑖 1.00000 + 0.00195𝑖9.01722 + 8.73102𝑖 0.80902 + 0.58779𝑖 0.81851 + 0.57450𝑖 0.80891 + 0.58792𝑖0.66312 + 11.2739𝑖 0.30902 + 0.95107𝑖 0.32181 + 0.94680𝑖 0.30435 + 0.95256𝑖−5.51722 + 7.74721𝑖 −0.30902 + 0.95106𝑖 −0.32155 + 0.94689𝑖 −0.30465 + 0.95247𝑖−7.16312 + 3.02468𝑖 −0.80902 + 0.58779𝑖 −0.81426 + 0.58051𝑖 −0.80848 + 0.58853𝑖−7.00000 + 0.00000𝑖 −1.00000 + 0.00000𝑖 −0.99997 + 0.00797𝑖 −1.00000 + 0.00237𝑖5.75000 + 0.00000𝑖 0.50000 + 0.00000𝑖 0.49994 + 0.00762𝑖 0.50000 + 0.00096𝑖4.27685 − 3.65222𝑖 0.40451 − 0.29389𝑖 0.41374 − 0.28075𝑖 0.40398 − 0.29462𝑖0.93832 − 5.19612𝑖 0.15451 − 0.47553𝑖 0.16536 − 0.47186𝑖 0.15353 − 0.47585𝑖−4.25000 − 0.00000𝑖 −0.50000 − 0.00000𝑖 −0.49964 − 0.01902𝑖 −0.50000 − 0.00241𝑖
Table 2: Comparison of CUP time (s) for Example 1.

Charge points 𝑁 = 120 𝑁 = 140 𝑁 = 160 𝑁 = 180 𝑁 = 200 𝑁 = 220 𝑁 = 240
Amano’s method 0.3248 0.3660 0.5155 0.7028 1.0124 1.4303 1.6480
Our method 0.0467 0.0878 0.0882 0.0930 0.1028 0.1359 0.2202
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Figure 2: Charge points for Example 1.

Figures 4 and 5, from which we can see the effectiveness of
our method. FromTable 2, we can observe that the CPU time
of our method is shorter than Amano’s method.

Example 2. Region 𝐷 is the doubly connected domain with
the boundaries 𝐶1 : 𝑥2/82 +𝑦2/42 = 1 and 𝐶2 : 𝑥2/42 +𝑦2/22= 1 (see Figure 6).

For this example, let 𝜇 = 0.000002; the relative error
SolRD and maximum number of iterations ItMax are 10−8
and 5000. Figure 6 shows the distribution of charge points for𝑁 = 200, half arranged outside the domain bounded by 𝐶1
and half inside the domain bounded by 𝐶2. In Figure 3, we
consider the numerical conformal mapping error behavior
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100 110 120 130 140 150 160 170 180 190 200 210 220 230 24090
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Figure 3: Error curves for Example 1.

based on the Runge-Kutta methods when changing the num-
ber of charge points. Looking at Figure 7, we can observe that
numerical conformal mapping error decreases by changing
the number of charge points. The accuracy of numerical
conformal mapping based on the Runge-Kutta is higher than
Amano’s method when the number of charge points is more
than 110. Some numerical results of CPU time are listed in
Table 3; we can see that the CPU time of Amano’s method is
longer than our method. When the number of charge points𝑁 = 170, the accuracy of numerical conformal mapping
based on the Runge-Kutta method is 4.152 × 10−9, whereas
for the Amano’s method the accuracy is 2.036 × 10−8.
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Table 3: Comparison of CUP time (s) for Example 2.

Charge points 𝑁 = 110 𝑁 = 120 𝑁 = 130 𝑁 = 140 𝑁 = 150 𝑁 = 160 𝑁 = 170
Amano’s method 0.2528 0.3625 0.3071 0.3582 0.4211 0.5469 0.6525
Our method 0.0162 0.0131 0.0215 0.0159 0.0171 0.0191 0.0221

−10

−8

−6

−4

−2

0

2

4

6

8

10

−5 0 5 10 15−10

Figure 4: The contour lines for Example 1.
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Figure 5: The image is mapped for Example 1.

By applying the Runge-Kutta method to the constrains
equation, the approximate conformal mapping function is
constructed by using new charge points and conformal map-
ping radius. In Figure 8 thick solid lines represent the contour
boundaries; the thin solid line represents the contour lines.
As can be seen from Figure 9, the approximate conformal
mapping function 𝐹(𝑧) maps the boundaries to concentric
circles, and the inner region still corresponds to the interior
region of concentric circles. This proves the effectiveness of
the proposed method.

Example 3. Region 𝐷 is the doubly connected domain with
the boundaries 𝐶1 : |𝑥| = 2, |𝑦| = 2 and 𝐶2 : |𝑥| = 1, |𝑦| = 1
(see Figure 10).
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Figure 6: Charge points for Example 2.
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Figure 7: Error curves for Example 2.

For this example, the values of parameters 𝜇, SolRD,
and ItMax are taken as 0.00002, 10−3, and 3000, respectively.
Similar to Figure 6, Figure 10 shows the distribution of the
charge points for 𝑁 = 128. For Figure 11, we can find that
the accuracy of numerical conformal mapping based on the
Runge-Kutta method is better than that of Amano’s method.
When the number of charge points is more than 96, the
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Figure 8: The contour lines for Example 2.
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Figure 9: The image is mapped for Example 2.
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Figure 11: Error curves for Example 3.
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Figure 12: The contour lines for Example 3.

error of Amano’s method is obviously higher than that of our
method.The error of numerical conformalmapping based on
the Runge-Kutta method has reached 3.887 × 10−3 when the
number of charge simulation points𝑁 = 144. Figures 12 and
13 represent the contour lines and corresponding mapping,
respectively. Figure 13 shows that the method used in this
paper is effective. As can be seen from Table 4, the CPU time
of our method is shorter than that of Amano’s method.

5. Conclusion

In this paper, a method has been proposed for improving
the accuracy of the charge simulation method for numerical
conformal mapping of doubly connected domain onto a
circular annulus. The method constructs constraint equation
by using the charge simulation method by Amano, and
the constraint equations are solved by Runge-Kutta method.
Numerical experiments showed that the proposed method
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Table 4: Comparison of CUP time (s) for Example 3.

Charge points 𝑁 = 48 𝑁 = 64 𝑁 = 80 𝑁 = 96 𝑁 = 112 𝑁 = 128 𝑁 = 144
Amano’s method 0.0316 0.0758 0.1238 0.1600 0.2389 0.2920 0.3851
Our method 0.0032 0.0111 0.0069 0.0147 0.0045 0.0096 0.0118
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Figure 13: The image is mapped for Example 3.

can obtain higher numerical conformal mapping accuracy
than Amano’s method. The results of numerical conformal
mapping of doubly connected domain are simulated by using
the contour lines. In a forthcoming work, this method is
considered for computing conformal mapping of multiply
connected domains.
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