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In the absence of the upper bound of time-varying target acceleration, the finite-time-convergent guidance (FTCG) problem for
missile is addressed in this paper. Firstly, a novel adaptive finite-time disturbance observer (AFDO) is developed based on adaptive-
gain super twisting (ASTW) algorithm to estimate the unknown target acceleration. Subsequently, a new FTCG law is proposed
by using the output of AFDO. The newly proposed FTCG law has several advantages over existing FTCG laws. First, for time-
varying target acceleration, the proposed method can strictly guarantee the trajectory of the closed-loop system is driven onto
the sliding surface rather than a neighbourhood of sliding surface in the extended-state-observer-based FTCG (ESOFTCG) law.
Second, the proposed method requires no upper bound information on the target acceleration. Third, the chattering problem in
the conventional FTCG (CFTCG) law is completely avoided in this paper. Simulation result demonstrates the effectiveness of the
proposed AFDO and the proposed FTCG law.

1. Introduction

As a classical guidance method, proportional navigation
guidance law (PNGL) [1–6] has the advantage of easy imple-
mentation in engineering. However, a series of theoretical
researches and engineering practices have shown that PNGL
has insufficient effect in the presence of maneuvering target.
To improve the robustness of guidance system in allusion
to maneuvering target, many modern control theories have
been applied to design guidance laws, such as nonlinear𝐻∞
robust guidance law [7], L2 gain guidance law [8], Lyapunov-
theory-based nonlinear guidance law [9], and sliding-mode
guidance law [10]. However, the missile guidance problem
considered in [7–10] is solved by the asymptotic stability
analysis which implies that the system trajectories converge
to the equilibrium with infinite time. Actually, in many
applications, the time of termination is really quite short.
For example, in the space interception where a missile is
intercepting a ballistic target, the whole process of terminal
guidance usually lasts for only a few seconds.Thus, the finite-
time control for the guidance system is necessary in many
practical guidance cases.

Since the 1990s, with the development of finite-time sta-
bility theories [11–14], the study on the finite-time-convergent
(FTC) control method has increasingly became a research
hotspot. Some guidance laws based on FTC control have
been developed.Themost representative one is the FTCG law
proposed in [15]. The authors in [16, 17] adopted terminal-
sliding-mode method to design FTCG laws. However, in
order to guarantee the stability of guidance system under
the condition of maneuvering target, the FTCG laws in
[15–17] contain a discontinuous control term, which brings
undesirable chattering phenomenon.

It is well known that the chattering phenomenon may
reduce the performance of system and cause the instability
of whole system. Thus, research on chatter-free FTCG laws
has the important practical and theoretical significance. In
[15], to alleviate the chattering phenomenon, a saturation
function was utilized to replace the symbolic function of the
guidance input. However, to do this, the disturbance rejection
performance is sacrificed. To alleviate the chattering phe-
nomenon and hold the disturbance rejection performance,
some FTCG laws were designed in [18], by employing a
non-smooth disturbance observer (NSDOB) to estimate the
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target acceleration.The FTCG law in [18] eliminates the effect
of target acceleration without using the saturation function
and the symbolic function. Thus, the chattering problem is
eliminated in [18].

However, for the above-mentioned NSDOB-based FTCG
laws in [18], the upper bound of derivative of target accel-
eration must be known. In reality, the maneuvering charac-
teristic of the target is complex; thus it is difficult to know
the upper bound in advance. So far, fewer FTCG laws have
been developed in the absence of the upper bound. It is well
known that the extended state observer (ESO) is a powerful
DO. Compared with NSDOB used in [18], ESO requires no
information on the target acceleration. In [19], the target
acceleration was estimated by ESO, and then a FTCG law
was designed without using the upper bound of derivative of
target acceleration.

The ESO-based FTCG (ESOFTCG) laws in [19], however,
still have limitation: ESO cannot guarantee the estimation
error fully converges to zero when the target acceleration
is time-varying. Thus, ESOFTCG law only can guarantee
the sliding surface converges to a neighbourhood of zero.
In particular, if the target acceleration is fast varying, the
estimation error is very large. And then the finite-time
convergent feature of ESOFTCG law in [19] may be destroyed
by the large estimation error of ESO. Actually, most of the
target acceleration instances are time-varying in practical
engineering. Thus, the ESOFTCG law in [19] may not work
well in the practical situations.

In this paper, a new adaptive finite-time disturbance
observer (AFDO) based on ASTW is proposed to estimate
the time-varying target acceleration. And then a novel FTCG
law is designed based on the output of AFDO. The main
contributions of this paper lie in the following aspects:

(1) In the absence of the upper bound information of
time-varying target acceleration, the proposedAFDO
can fully estimate the target acceleration. Compared
with NSDOB used in [18], AFDO requires no a priori
information on the target acceleration. Unlike ESO
used in [19], the advantage of AFDO is that the
estimation error of AFDO can fully converge to zero
in finite time when the target acceleration is time-
varying.

(2) The proposed FTCG law is strictly finite-time conver-
gent in the presence of time-varying target acceler-
ation. When the target acceleration is time-varying,
the proposed guidance law can strictly guarantee the
sliding surface converges to zero in finite time rather
than a neighbourhood of zero in [19]. Moreover, with
the help of AFDO, the proposed FTCG law does
not require the a priori information on the target
acceleration which is needed in [18].

The remaining parts of this paper are as follows. In
Section 2, the guidance model, the design objective, and the
design idea of this paper are expounded. The main results
are presented in Section 3. In Section 3, a novel observer
AFDO is developed and the stability proof of the estimation
with AFDO is presented. Then, a AFDO-based FTCG law
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Figure 1: Interception geometry.

is proposed, and the finite-time stability of the law is also
obtained. In Section 4, a simulation verifies the effectiveness
of both AFDO and the proposed FTCG law. In Section 5, the
conclusion of the whole paper is presented.

Notations. The following notations will be used in this paper:𝑡0 denotes the initial time. Let ‖ ⋅ ‖ denote the Euclidean norm
of a vector and its induced norm of a matrix.

2. Problem Formulation

Consider a standard 2D dimensional geometry of intercep-
tion shown in Figure 1. The origin 𝑀 is the missile and 𝑇
the target. The positions of the missile are 𝑥𝑀 and 𝑦𝑀. The
positions of the target are 𝑥𝑇 and 𝑦𝑇. 𝑞 is the LOS angle, 𝑟 is
the range along LOS,𝐴𝑀 and𝐴𝑇 are the normal acceleration
instances of the missile and target, and 𝑉𝑀 and 𝑉𝑇 are the
velocities of missile and target. 𝜑𝑚 and 𝜑𝑇 are the flight path
angles of missile and target. The relative motion between
the missile and its target can be expressed by the following
equations [19]:

̇𝑟 = 𝑉𝑇 cos (𝑞 − 𝜑𝑇) − 𝑉𝑀 cos (𝑞 − 𝜑𝑀) ,
𝑟�̇� = −𝑉𝑇 sin (𝑞 − 𝜑𝑇) + 𝑉𝑀 sin (𝑞 − 𝜑𝑀) ,
�̇�𝑀 = 𝐴𝑀𝑉𝑀 ,

�̇�𝑇 = 𝐴𝑇𝑉𝑇 .

(1)

Let 𝑉𝑟 = 𝑉𝑇 cos(𝑞 − 𝜑𝑇) − 𝑉𝑀 cos(𝑞 − 𝜑𝑀), 𝑉𝜆 = −𝑉𝑇 sin(𝑞 −𝜑𝑇) + 𝑉𝑀 sin(𝑞 − 𝜑𝑀), 𝐴𝑇𝑟 = 𝐴𝑇 sin(𝑞 − 𝜑𝑇), and 𝐴𝑇𝜆 =𝐴𝑇 cos(𝑞 − 𝜑𝑇). Differentiating (1) yields [19]
�̇� = 𝑉𝜆𝑟 ,

�̇�𝜆 = −𝑉𝑟𝑉𝜆𝑟 + 𝐴𝑇𝜆 − 𝐴𝑀 cos (𝑞 − 𝜑𝑀) .
(2)
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To achieve the hit-to-kill interception, a direct intercep-
tion guidance strategy is given as [19]

𝑉𝜆 → 𝑐0√𝑟, (3)

where 𝑐0 is a constant. Thus for the guidance strategy (3), the
guidance error is 𝑉𝜆 − 𝑐0√𝑟. In order to satisfy condition (3),
the sliding surface is chosen as [19]

𝑆 = 𝑉𝜆 − 𝑐0√𝑟. (4)

If 𝑆 = 0 can be satisfied in finite time, the objective of FTCG
will be achieved [19].

Using the method in [16], 𝑆 = 0 can be satisfied in finite
time by the following CFTCG law:

𝐴𝑀 = 1
cos (𝑞 − 𝜑𝑀) (𝜏𝑆 + 𝜎 |𝑆|

𝛾 sign (𝑆) − 𝑉𝑟𝑉𝜆𝑟
− (𝑐0/2)𝑉𝑟√𝑟 + 𝑑 sign (𝑆)) ,

(5)

where 𝜏 > 0, 𝜎 > 0, 0 < 𝛾 < 1. sign(⋅) represents the sign
function, and its expression can be found in [16]. From [16],
it can be known that 𝜎|𝑆|𝛾 sign(𝑆) play a very important role
in the CFTCG law (5). The convergence time of the sliding
surface 𝑆 decreases as the value of 𝜎 is increased and the
value of 𝛾 is decreased. From [16], it also can be known
that the finite-time convergent feature of CFTCG law may be
destroyed if the target acceleration 𝐴𝑇𝜆 is not equal to zero.
Thus 𝑑 sign(𝑆) in (5) is used to eliminate the effect of target
acceleration. And the constant𝑑must be selected as the upper
bound of the target acceleration:

𝐴𝑇𝜆 ≤ 𝑑. (6)

However,𝑑 sign(𝑆) is discontinuous and brings chattering
problem. To avoid the chattering, NSDOB is used to estimate
the target acceleration in [18], a non-smooth-control-based
finite-time convergent guidance (NSCFTCG) law can be
designed by using the method in [18]:

𝐴𝑀 = 1
cos (𝑞 − 𝜑𝑀) (𝜏2𝑆 + 𝜎2 |𝑆|

𝛾2 sgn (𝑆) − 𝑉𝑟𝑉𝜆𝑟
− (𝑐0/2)𝑉𝑟√𝑟 + 𝑝1) ,

(7)

where𝑝1 is the estimation of𝐴𝑇𝜆 and given by following non-
smooth disturbance observer (NSDOB):

�̇�0 = −𝑉𝑟𝑉𝜆𝑟 − 𝐴𝑀 cos (𝑞 − 𝜑𝑀) + V0,
V0 = −𝜆𝑝0 𝑝0 − 𝑉𝜆2/3 sign (𝑝0 − 𝑉𝜆) + 𝑝1,
�̇�1 = V1,
V1 = −𝜆𝑝1 𝑝1 − V0

1/2 sign (𝑝1 − V0) + 𝑝2,
�̇�2 = −𝜆𝑝2 sign (𝑝2 − V1) ,

(8)

where 𝜆𝑝0 = 2𝐿1/3, 𝜆𝑝1 = 1.5𝐿1/2, and 𝜆𝑝2 = 1.1𝐿. 𝐿must be
selected as the upper bound of �̇�𝑇𝜆.

�̇�𝑇𝜆 ≤ 𝐿. (9)

However, the upper bound information 𝑑 and 𝐿 may not be
easily obtained because themaneuvering characteristic of the
target is complex. If 𝑑 and 𝐿 are unknown, the CFTCG law (5)
andNSCFTCG law (7) are no longer available. To avoid using
the upper bound information and eliminate the chattering
problem, ESO is used to estimate the target acceleration
in [19]. The guidance laws (5) and (7) are modified as the
following ESOFTCG [19]:

𝐴𝑀 = 1
cos (𝑞 − 𝜑𝑀) (𝜏𝑆 + 𝜎 |𝑆|

𝛾 sign (𝑆) − 𝑉𝑟𝑉𝜆𝑟
− (𝑐0/2)𝑉𝑟√𝑟 + 𝑍2) ,

(10)

where the estimation of target acceleration 𝑍2 is given by
following ESO:

𝐸1 = 𝑍1 − 𝑉𝜆,
�̇�1 = 𝑍2 − 𝛽01𝐸1 − 𝑉𝑟𝑉𝜆𝑟

− 𝐴𝑀 cos (𝑞 − 𝜑𝑀) ,
�̇�2 = −𝛽02fal (𝐸1, 𝛼1, 𝛿) ,

(11)

fal (𝐸1, 𝛼1, 𝛿) =
{{{{{

𝐸1𝛼1 sign (𝐸1) , 𝐸1 > 𝛿,
𝐸1𝛿1−𝛼1 , otherwise. (12)

From [19], it can be known that the ESOFTCG law (10)
can drive the trajectory of the closed-loop system (2) into a
neighbourhood of the sliding surface in finite time:

lim
𝜃→𝜃0

𝑆 ∈ (𝑆𝛾 ≤ 𝐸2(1 − 𝜃) 𝜎) ,

𝐸2 =
{{{{{{{{{

𝛽01

𝑔 (𝑡)
𝛽02


1/𝛼1 , if 𝐸1 > 𝛿,

𝛽01 𝑔 (𝑡) 𝛿1−𝛼1 𝛽02 , if 𝐸1 ≤ 𝛿,

(13)

where 𝐸2 is the estimation error of ESO (11) and satisfied𝐸2 = 𝑍2 − 𝐴𝑇𝜆. And 𝑔(𝑡) is the varying rate of the target
acceleration; that is, 𝑔(𝑡) = �̇�𝑇𝜆. 𝛽01, 𝛽02, 𝛼1, and 𝛿 are
constant.

Motivation of This Paper. Unlike the CFTCG law (5) and
NSCFTCG law (7), the ESOFTCG law (10) does not need
the upper bounds 𝑑 and 𝐿. However, from (13), it is clear
that ESOFTCG law (10) cannot strictly guarantee the sliding
surface 𝑆 converges to zero in finite time if the varying rate of
the target acceleration 𝑔(𝑡) ̸= 0. Moreover, the upper bound
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of |𝑆|will increase progressively as |𝑔(𝑡)| become bigger.Thus
the requirement of FTCG cannot be guaranteed by the FTCG
law (10) if the varying rate 𝑔(𝑡) is very large (in Section 4
of this paper, the simulation result also demonstrates that
the performance of existing ESOFTCG law is poor when the
target acceleration is fast time-varying). This motivates the
research topic of this paper, that is, for the missile in the
presence of time-varying target acceleration, designing a new
FTCG law to strictly guarantee 𝑆 converge to zero in finite
time without using the upper bounds 𝑑 and 𝐿.

Like [19], the following assumption should be assumed to
be valid throughout this paper.

Assumption 1. The target acceleration 𝐴𝑇𝜆 is unknown
bounded disturbance and satisfied the following condition:

𝐴𝑇𝜆 ≤ 𝐴max
𝑇𝜆 ,�̇�𝑇𝜆 ≤ �̇�max
𝑇𝜆 ,

(14)

where 𝐴max
𝑇𝜆 and �̇�max

𝑇𝜆 are unknown positive constant.

Assumption 1 implies that it is unnecessary to know the
upper bound information 𝑑 of (6) and 𝐿 of (9).

3. Main Result

3.1. Observer Design and Stability Analysis. In this section, a
new adaptive finite-time disturbance observer (AFDO) will
be proposed to estimate the target acceleration based on
ASTW algorithm. The performance of AFDO will not be
affected by the varying rate of target acceleration. AndAFDO
requires no a priori information on the target acceleration.

Before giving the AFDO and guidance law of this paper,
the following Lemmas 2 and 3, which play important role in
the subsequent analysis, are recalled here for convenience.

Lemma 2 (see [14]). Provided that 𝑉(𝑥, 𝑡) is a differentiable
and nonnegative scalar function, and 𝑉(𝑥, 𝑡) satisfies the
differential inequality �̇�(𝑥, 𝑡) ≤ −𝛼𝑉𝛾(𝑥, 𝑡), where 𝛼 > 0 and0 < 𝛾 < 1, 𝛼 and 𝛾 are constants, then we have

𝑉 (𝑥, 𝑡) = 0, ∀𝑡 > 𝑡𝑟, (15)

where 𝑡𝑟 ≤ 𝑡0 + 𝑉1−𝛾(𝑥0, 𝑡0)/𝛼(1 − 𝛾), 𝑉(𝑥0, 𝑡0) is the initial
value and 𝑡0 is the initial time, and 𝑉(𝑥0, 𝑡0) is bounded.

The ASTW algorithm is given by the following lemma.

Lemma 3 (ASTW algorithm [20]). Consider the following
differential inclusion:

̇𝑒 = −𝜆 (𝑡) |𝑒|1/2 sign (𝑒) + 𝜑,
�̇� = −𝑘 (𝑡) sign (𝑒) + V̇, (16)

where 𝜆(𝑡) and 𝑘(𝑡) are given as

𝜆 (𝑡) = 2√𝑙 (𝑡),
𝑘 (𝑡) = 4𝑙 (𝑡) , (17)

where 𝑙(𝑡) is a positive time-varying scalar. The adaptive law of𝑙(𝑡) is given by

̇𝑙 (𝑡) = {{{
𝑞, if 𝑒 ̸= 0,
0, otherwise, (18)

where 𝑞 is a positive constant. If the following condition can be
satisfied,

|V̇| ≤ 𝑐, (19)

where 𝑐 is an unknown constant, then 𝑒 and ̇𝑒 will converge to
zero in finite time.

Other similar ASTW algorithms can be seen in [21–24].
ThenAFDO and the stability analysis are given inTheorem 4.

Theorem4. Taking guidance system (2) into consideration, the
AFDO (20) is constructed.

𝐻1 = 𝑉𝜆 − 𝑉1,
�̇�1 = 𝜆1 𝐻11/2 sign (𝐻1) + 𝐽1 − 𝑉𝑟𝑉𝜆𝑟

− 𝐴𝑀 cos (𝑞 − 𝜑𝑀) ,
�̇�1 = 𝑘1 sign (𝐻1) ,
𝜆1 = 2√𝑙1,
𝑘1 = 4𝑙1.

(20)

The adaptive law of 𝑙1 is given by

̇𝑙1 = {{{
𝑞1, if 𝐻1 ̸= 0,
0, otherwise, (21)

where 𝑙1(𝑡0) and 𝑞1 are positive constants. Assumption 1 is valid.
The estimation error of AFDO is defined as𝐻2 = 𝐽1−𝐴𝑇𝜆.Then
the estimation error𝐻2 will converge to zero in finite time.

Proof. Differentiating𝐻1 gives
�̇�1 = �̇�𝜆 − �̇�1. (22)

Substituting the expression of �̇�1 in (20) and �̇�𝜆 in (2) into
(22) yields

�̇�1 = −𝑉𝑟𝑉𝜆𝑟 + 𝐴𝑇𝜆 − 𝐴𝑀 cos (𝑞 − 𝜑𝑀)
− (𝜆1 𝐻11/2 sign (𝐻1) + 𝐽1 − 𝑉𝑟𝑉𝜆𝑟
− 𝐴𝑀 cos (𝑞 − 𝜑𝑀)) = −𝜆1 𝐻11/2 sign (𝐻1) − 𝐽1
+ 𝐴𝑇𝜆.

(23)

Let 𝜑1 = −𝐽1 + 𝐴𝑇𝜆. Differentiating 𝜑1 gives
�̇�1 = −�̇�1 + �̇�𝑇𝜆. (24)
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Substituting the expression of �̇�1 in (20) into (24) yields

�̇�1 = −𝑘1 sign (𝐻1) + �̇�𝑇𝜆 (25)

Combining (23) and (25), we have

�̇�1 = −𝜆1 𝐻11/2 sign (𝐻1) + 𝜑1,
�̇�1 = −𝑘1 sign (𝐻1) + �̇�𝑇𝜆,

(26)

where

𝜆1 = 2√𝑙1
𝑘1 = 4𝑙1

(27)

̇𝑙1 = {{{
𝑞1, if 𝐻1 ̸= 0
0, otherwise. (28)

It is not difficult to note that (26), (27), and (28) have the
same structure as (16), (17), and (18) in Lemma 3. Moreover,
since Assumption 1 is valid, condition (19) can be satisfied.
Then, according to Lemma 3, the following equations can be
satisfied:

𝐻1 = 0,
�̇�1 = 0,

∀𝑡 ≥ 𝑡1,
(29)

where 𝑡1 is a finite time.
Substituting (29) into (23), we have

𝐴𝑇𝜆 = 𝐽1, ∀𝑡 ≥ 𝑡1. (30)

Then it is clear that the estimation error 𝐻2 = 𝐽1 − 𝐴𝑇𝜆
will converge to zero in finite time 𝑡1. The demonstration of
Theorem 4 is completed.

In order to implement the AFDO (20), the following
assumption is needed.

Assumption 5. 𝑟, 𝑞, ̇𝑟, �̇�, 𝐴𝑀, and 𝜑𝑀 are measurable.

Remark 6. Note that the third formula 𝐽1 in (20) is most
important. Theorem 4 shows that 𝐽1 can estimate the target
acceleration 𝐴𝑇𝜆. Unlike 𝑍2 in ESO (11), which only can
estimate the target acceleration with the estimation error 𝐸2,𝐽1 can fully estimate the target acceleration in finite time. And
like ESO (11), AFDO (20) do not need the upper bound of𝐴𝑇𝜆
and �̇�𝑇𝜆, which only need 𝐴𝑇𝜆 and �̇�𝑇𝜆 to be bounded.
3.2. Guidance Law Design and Stability Analysis. After esti-
mating the target acceleration with AFDO, a novel FTCG law
is designed as follows:

𝐴𝑀 = 1
cos (𝑞 − 𝜑𝑀) (𝜏1𝑆 + 𝜎1 |𝑆|

𝛾1 sign (𝑆) − 𝑉𝑟𝑉𝜆𝑟
− (𝑐0/2)𝑉𝑟√𝑟 + 𝐽1) ,

(31)

where 𝐽1 is given by the AFDO (20). 𝜏1 > 0, 𝜎1 > 0, and 0 <𝛾1 < 1.ThenTheorem 7 will prove the finite-time-convergent
feature of the closed-loop system under the AFDO-based
guidance law (31).

Theorem 7. Consider the guidance system (2) adopts AFDO-
based guidance law (31). If Assumption 1 is valid, then the
trajectory of system (2) can be driven onto the sliding surface
(𝑆 = 0) in finite time.

Proof. From (2) and (4), we have

�̇� = �̇�𝜆 − (𝑐0/2)𝑉𝑟√𝑟
= −𝑉𝑟𝑉𝜆𝑟 + 𝐴𝑇𝜆 − 𝐴𝑀 cos (𝑞 − 𝜑𝑀) − (𝑐0/2)𝑉𝑟√𝑟 .

(32)

Substituting the proposed AFDO-based guidance law (31)
into (32), we have

�̇� = −𝜏1𝑆 − 𝜎1 |𝑆|𝛾1 sign (𝑆) + 𝐴𝑇𝜆 − 𝐽1. (33)

Construct Lyapunov function 𝑉2 as
𝑉2 = 1

2𝑆2. (34)

Then calculating the time derivative of 𝑉2 along the trajecto-
ries of (33), we get

�̇�2 = 𝑆�̇� = 𝑆 (−𝜏1𝑆 − 𝜎1 |𝑆|𝛾1 sign (𝑆) − 𝐽1 + 𝐴𝑇𝜆)
= −𝜏1𝑆2 − 𝜎1 |𝑆|𝛾1+1 − (𝐽1 − 𝐴𝑇𝜆) 𝑆
≤ −2(𝛾1+1)/2𝜎1𝑉(𝛾1+1)/22 − (𝐽1 − 𝐴𝑇𝜆) 𝑆
≤ −2(𝛾1+1)/2𝜎1𝑉(𝛾1+1)/22 + √2 𝐽1 − 𝐴𝑇𝜆 𝑉1/22 .

(35)

From (35), it denotes that𝑉2 is affected by the estimation error𝐻2 = 𝐽1−𝐴𝑇𝜆.Thus, in the following, the proof ofTheorem 7
consists of two steps. In the first step, it will be proved that𝑉2
will not escape to infinity before (𝐽1 −𝐴𝑇𝜆) converges to zero.
In the second step, it will be proved that 𝑉2 will converge to
zero in finite time after (𝐽1 −𝐴𝑇𝜆) converges to zero. And the
total convergence time of 𝑉2 will be calculated.
Step 1. From (25) and Assumption 1, we have

�̇�1 ≤ 𝑘1 + �̇�𝑇𝜆 ≤ 𝑘1 + �̇�max
𝑇𝜆 . (36)

From the expression of 𝑘1 in (20), (36) can be rewritten as

�̇�1 ≤ 4𝑙1 + �̇�max
𝑇𝜆 . (37)

Then considering (21) and (37), it can be deduced that |�̇�1| is
bounded by an unknown positive constant for 𝑡 ≤ 𝑡1:

�̇�1 ≤ 4 (𝑞1 (𝑡1 − 𝑡0) + 𝑙1 (𝑡0)) + �̇�max
𝑇𝜆 , ∀𝑡 ≤ 𝑡1. (38)
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From (38), we have

𝜑1 =
∫
𝑡

𝑡0

�̇�1𝑑𝑡 + 𝜑1 (𝑡0)
 ≤

∫
𝑡

𝑡0

�̇�1𝑑𝑡
 +

𝜑1 (𝑡0)
≤ ∫𝑡
𝑡0

�̇�1 𝑑𝑡 + 𝜑1 (𝑡0)
≤ (4 (𝑞1 (𝑡1 − 𝑡0) + 𝑙1 (𝑡0)) + �̇�max

𝑇𝜆 ) (𝑡 − 𝑡0)
+ 𝜑1 (𝑡0)

≤ (4 (𝑞1 (𝑡1 − 𝑡0) + 𝑙1 (𝑡0)) + �̇�max
𝑇𝜆 ) (𝑡1 − 𝑡0)

+ 𝐽1 (𝑡0) + 𝐴𝑇𝜆 (𝑡0) , ∀𝑡 ≤ 𝑡1.

(39)

From (39), it is clear that 𝜑1 is bounded by unknown positive
constant 𝑐2 in finite time 𝑡1:𝜑1 = −𝐽1 + 𝐴𝑇𝜆 = 𝐽1 − 𝐴𝑇𝜆 ≤ 𝑐2, ∀𝑡 ≤ 𝑡1, (40)

where 𝑐2 = (4(𝑞1(𝑡1 − 𝑡0) + 𝑙1(𝑡0)) + �̇�max
𝑇𝜆 )(𝑡1 − 𝑡0) + |𝐽1(𝑡0)| +|𝐴𝑇𝜆(𝑡0)| and 𝑡1 is the convergence time of AFDO (20) and

given inTheorem 4.
Combining (40) with (35), we have

�̇�2 ≤ −2(𝛾1+1)/2𝜎1𝑉(𝛾1+1)/22 + √2 𝐽1 − 𝐴𝑇𝜆 𝑉1/22
≤ (−2(𝛾1+1)/2𝜎1𝑉𝛾1/22 + √2𝑐2)𝑉1/22 , ∀𝑡 ≤ 𝑡1.

(41)

From (41), it is clear that �̇�2 ≤ 0 if𝑉2 ≥ (𝑐2/𝜎12𝛾1/2)2/𝛾1 . Thus,
it can be known that 𝑉2 is bounded in finite time 𝑡1:

𝑉2 ≤ max{( 𝑐2𝜎12𝛾1/2)
2/𝛾1 , 𝑉2 (𝑡0)} , ∀𝑡 ≤ 𝑡1. (42)

Thus𝑉2 will not escape to infinity before (𝐴𝑇𝜆+𝐽1) converges
to zero; that is, 𝑉2(𝑡1) is bounded.
Step 2. Since Assumption 1 is valid, (30) will be satisfied in
finite time 𝑡1. Then combining (30) with (35), we have

�̇�2 ≤ −2(𝛾1+1)/2𝜎1𝑉(𝛾1+1)/22 , ∀𝑡 ≥ 𝑡1. (43)

𝑉2(𝑡1) is bounded and has been proved in Step 1. As 𝑉2(𝑡1) is
bounded, 𝜎1 > 0 and 0 < 𝛾1 < 1, and 𝑉2 and 𝑆 will converge
to zero in finite time 𝑡2 based on Lemma 2:

𝑆 = 𝑉2 = 0, ∀𝑡 ≥ 𝑡2. (44)

The convergence time 𝑡2 satisfies the following equation:
𝑡2 ≤ 𝑉(1−𝛾1)/22 (𝑡1)2(1−𝛾1)/2𝜎1 (1 − 𝛾1) + 𝑡1. (45)

The demonstration of Theorem 7 is completed.

Remark 8. From the result of Theorem 7, it is clear that the
problem that ESOFTCG law (10) cannot strictly guarantee𝑆 converge to zero is solved by the proposed AFDO-based
FTCG law.

Remark 9. From Remark 4.3 in [19], it can be known that the
boundary layer of the sliding surface in [19] is determined by
the estimation error of the ESO.Thus, the parameter selection
of the ESO is more important since it not only determines the
performance of the ESO but also impacts the behavior of the
sliding surface. However, in this paper, the estimation error
of AFDO will converge to zero in finite time as soon as the
parameters satisfy 𝑙1(𝑡0) > 0 and 𝑞1 > 0. Thus, the parameter
selection in this paper is much simpler.

Remark 10. From [21], if the final miss distance is less than
0.25m, the hit-to-kill interception also can be satisfied.

Remark 11. Condition 𝐻1 = 0 is difficult to be satisfied in
practice due to numerical approximations and measurement
noise. From [25], it can be known that the condition𝐻1 = 0
can be modified by the following dead-zone technique:

̇𝑙1 = {{{
𝑞1, if 𝐻1 ≥ 𝜂,
0, otherwise, (46)

where 𝜂 is a sufficiently small positive value.

4. Simulation Results

This subsection shows the performances of the AFDO and
the proposedAFDO-based guidance law.The initial positions
of the missile are 𝑥𝑀(𝑡0) = 0 and 𝑦𝑀(𝑡0) = 0. The initial
positions of the target are 𝑥𝑇(𝑡0) = 2000m and 𝑦𝑇(𝑡0) =2000m. The initial path angles are 𝜑𝑀(𝑡0) = 𝜋/4 rad and𝜑𝑇(𝑡0) = 𝜋/3.8 rad. Seeker measurement delays for 30ms.
In addition, the maximum limit of the missile acceleration
command is selected as 200m/s2.

For the comparison, the ESOFTCG law (10) given in [19]
are also considered in this section.The parameters of ESO (8)
are chosen as 𝛽01 = 50, 𝛽02 = 100, 𝛼1 = 0.2, and 𝛿 = 0.15.
The parameters of ESOFTCG law (10) are chosen as 𝜏 = 10,𝜎 = 1, and 𝛾 = 0.5. Note that, in this paper, the parameters
of ESOFTCG law and ESO are the same as those in [19] and
used here to ensure the fairness of comparison.

The parameters of AFDO (20) are chosen as 𝜂 = 0.0005,𝑙1(𝑡0) = 5, and 𝑞1 = 1000. The parameters of the proposed
law (31) are chosen as 𝜏1 = 10, 𝜎1 = 1, and 𝛾1 = 0.5.

Like [19], the parameter of the sliding surface 𝑆 in the
ESOTFCG law and the proposed law is selected as 𝑐0 = 0.1.
Case 1 (constant target acceleration). The target acceleration𝐴𝑇𝜆 is given as

𝐴𝑇𝜆 = −35m/s2. (47)

From (47), it can be known that the target acceleration
is constant in Case 1. Figures 2(a)–2(d) and Table 1 show the
simulation results for Case 1. From Figure 2(a), it is clear that
the proposed law and the ESOFTCG law can guarantee the
sliding surface converges to zero in finite time. Figure 2(b)
shows that AFDO and ESO ensure the estimation error
converges to zero. From Figure 2(c) and Table 1, it can be
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Figure 2: Simulation result for Case 1 (constant target acceleration).
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Table 1: Performance of guidance laws in Section 4.

Case Guidance law Final miss distance (m)

1 Proposed law 0.033
ESOFTCG law 0.054

2 Proposed law 0.079
ESOFTCG law 0.237

3 Proposed law 0.087
ESOFTCG law 3.23

known that the proposed law and ESOFTCG law guarantee
the final miss distances are less than 0.1m, which means
that the proposed law and ESOFTCG law can guarantee
the missile accurately attacks the target (see Remark 10).
From Figure 2(d), it is clear that the acceleration commands
of the proposed law and ESOFTCG law are chatter-free.
Thus the proposed method and method in [19] exhibit good
performance in the presence of constant target acceleration.

Case 2 (slowly varying target acceleration). The target accel-
eration 𝐴𝑇𝜆 with a frequency 1/(6𝜋)HZ is given as

𝐴𝑇𝜆 = 175 cos( 𝑡3) m/s2 (48)

From (48), it can be known that the target acceleration
is time-varying in Case 2. But the varying rate in Case 2
is small. Figures 3(a)–3(d) and Table 1 show the simulation
results for Case 2. From Figure 3(a), it is clear that the
proposed law guarantees the sliding surface converges to
zero, but ESOFTCG law only can guarantee the sliding
surface converges to a neighbourhood of zero. The reason
for Figure 3(a) is that ESO cannot guarantee the estimation
error converges to zero when the target acceleration is time-
varying, while AFDO can guarantee the estimation error
of AFDO converges to zero. The reason can be observed
from Figure 3(b). Figure 3(c) and Table 1 show that that
the proposed law and ESOFTCG law guarantee the final
miss distances are less than 0.25m, which means that the
proposed law and ESOFTCG law can accomplish hit-to-kill
interception (see Remark 10). And, fromTable 1, it also can be
known that the proposed guidance law can achieve a smaller
final miss distance.

Case 3 (fast varying target acceleration). The target accelera-
tion 𝐴𝑇𝜆 with a frequency 2/𝜋HZ is given as

𝐴𝑇𝜆 = 175 cos (4𝑡) m/s2. (49)

From (49), it can be known that the varying rate of target
acceleration in Case 3 is much larger than that in Case 2.
It is noted that the method in [19] does not consider the
target acceleration of this type. Figures 4(a)–4(d) and Table 1
show the simulation results for Case 3. From Figure 4(a),
it is clear that the proposed law can guarantee the sliding
surface converges to zero in finite time. But the ESOFTCG
law cannot guarantee the sliding surface converges to zero.
From Figure 4(b), it is clear that the AFDO can fully estimate

the target acceleration, but the estimation error of ESO is
very large. From Figure 4(c) and Table 1, it is clear that
the proposed guidance law still can guarantee the final miss
distance is less than 0.1m.Thus, themissile with the proposed
law can accomplish hit-to-kill interception, while the final
miss distance of ESOFTCG law is 3.2m, which means that
the missile with ESOFTCG law cannot accomplish the hit-
to-kill interception (see Remark 10). The reason for Figures
4(a), 4(b), and 4(c) is that the estimation error of ESO is
large when target acceleration is fast varying. And then the
finite-time convergent feature of ESOFTCG law is destroyed
by the large estimation error (the relationship between sliding
surface, estimation error of ESO, and varying rate of target
acceleration is shown in (13)). And the hit-to-kill guidance
strategy cannot be accomplished by ESOFTCG law. Since
AFDO can fully estimate target acceleration, the proposed
law can still accomplish hit-to-kill interception in the present
of the fast varying target acceleration.

According to the simulation results, the following can be
concluded:

(1) AFDO can achieve a good estimation effect on the
condition of the target acceleration instances with
either low or high varying rate (Figures 2–4). But
ESO can only have a good estimation effect on the
condition of constant acceleration (Figure 2). If the
target acceleration is varying, the estimation error of
ESOwill increase with the increase of the varying rate
of target acceleration (Figures 3 and 4).

(2) The proposed guidance law can strictly guarantee the
sliding surface converges to zero in finite time when
the target acceleration is constant or time-varying
(Figures 2–4). But ESOFTCG law only can guarantee
the sliding surface converges to a neighbourhood of
zero if the target acceleration is time-varying (Figures
3 and 4). In particular, if the target acceleration is
fast varying, the estimation error of ESO is very large
(Figure 4). Then the finite-time convergent feature
of ESOFTCG law will be destroyed by the large
estimation error of ESO (Figure 4).

(3) Unlike the CFTCG law, the proposed law does not
need the upper bound of target acceleration.

(4) Since the target acceleration has been fully estimated
by AFDO, the proposed guidance law has no discon-
tinuous control term. Thus the chattering problem in
CFTCG law is solved (Figures 2(d), 3(d), and 4(d)).

5. Conclusion

(1) In this paper, a novel adaptive finite-time disturbance
observer (AFDO) based on ASTW algorithm was
proposed, which does not need to know the upper
bound of the target acceleration in advance. More-
over, the estimation error of AFDO strictly converges
to zero in finite time even if the target acceleration is
time-varying.
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Figure 3: Simulation result for Case 2 (slowly varying target acceleration).
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(2) Subsequently, a novel FTCG law based on AFDO
was proposed. The newly proposed FTCG law has
several advantages over existing FTCG laws. First,
for the time-varying target acceleration, the proposed
guidance law can strictly drive the trajectory of the
closed-loop system onto the sliding-mode surface
rather than a neighbourhood of sliding-mode surface
in the ESOFTCG law. Second, unlike the CFTCG law,
the proposed method requires no information on the
target acceleration. Third, the chattering problem in
the CFTCG law is completely avoided in this paper.

(3) Finally, mathematical simulation result demonstrated
that the performances of the AFDO and the proposed
guidance law are excellent.
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[9] N. Léchevin and C. A. Rabbath, “Lyapunov-based nonlinear
missile guidance,” Journal of Guidance, Control, and Dynamics,
vol. 27, no. 6, pp. 1096–1102, 2004.

[10] S. D. Brierley and R. Longchamp, “Application of sliding-mode
control to air-air interception problem,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 26, no. 2, pp. 306–325,
1990.

[11] S. P. Bhat and D. S. Bernstein, “Finite-time stability of homo-
geneous systems,” in Proceedings of the American Control
Conference, pp. 2513–2514, Albuquerque, NM, USA, June 1997.

[12] S. P. Bhat and D. S. Bernstein, “Geometric homogeneity with
applications to finite-time stability,” Mathematics of Control,
Signals, and Systems, vol. 17, no. 2, pp. 101–127, 2005.

[13] S. Ding, A. Levant, and S. Li, “Simple homogeneous sliding-
mode controller,” Automatica. A Journal of IFAC, the Interna-
tional Federation of Automatic Control, vol. 67, pp. 22–32, 2016.

[14] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continu-
ous autonomous systems,” SIAM Journal on Control and Opti-
mization, vol. 38, no. 3, pp. 751–766, 2000.

[15] D. Zhou, S. Sun, and K. L. Teo, “Guidance laws with finite time
convergence,” Journal of Guidance, Control, and Dynamics, vol.
32, no. 6, pp. 1838–1846, 2009.

[16] Y. Zhang, M. Sun, and Z. Chen, “Finite-time convergent
guidance law with impact angle constraint based on sliding-
mode control,”Nonlinear Dynamics. An International Journal of
Nonlinear Dynamics and Chaos in Engineering Systems, vol. 70,
no. 1, pp. 619–625, 2012.

[17] S. R. Kumar, S. Rao, and D. Ghose, “Nonsingular terminal slid-
ing mode guidance with impact angle constraints,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 4, pp. 1114–1130,
2014.

[18] S. Ding, Z. Zhang, and X. Chen, “Guidance law design based on
non-smooth control,” Transactions of the Institute of Measure-
ment and Control, vol. 35, no. 8, pp. 1116–1128, 2013.

[19] Z. Zhu, D. Xu, J. Liu, and Y. Xia, “Missile guidance law based
on extended state observer,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 12, pp. 5882–5891, 2013.

[20] J. Liu, S. Laghrouche, and M. Wack, “Adaptive higher order
sliding mode observer based fault reconstruction for a class of
nonlinear uncertain systems,” in Proceedings of the 52nd IEEE
Conference on Decision and Control, pp. 5668–5673, 2013.

[21] H. Alwi and C. Edwards, “Oscillatory failure case detection for
aircraft using an adaptive sliding mode differentiator scheme,”
in Proceedings of the American Control Conference (ACC ’11), pp.
1384–1389, July 2011.

[22] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain
supertwisting sliding mode controller: methodology and appli-
cation,” Automatica. A Journal of IFAC, the International Feder-
ation of Automatic Control, vol. 48, no. 5, pp. 759–769, 2012.

[23] Y. Zheng, J. Liu, X. Liu, D. Fang, and L. Wu, “Adaptive second-
order sliding mode control design for a class of nonlinear
systems with unknown input,”Mathematical Problems in Engi-
neering, vol. 2015, Article ID 319495, 7 pages, 2015.

[24] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman, and A.
S. Poznyak, “Super-twisting adaptive sliding mode control: a
Lyapunov design,” in Proceedings of the 49th IEEE Conference
on Decision and Control (CDC ’10), pp. 5109–5113, Atlanta, Ga,
USA, December 2010.

[25] A. Pisano and E. Usai, “Globally convergent real-time differen-
tiation via second order sliding modes,” International Journal of
Systems Science, vol. 38, no. 10, pp. 833–844, 2007.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


