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Retinex is a theory on simulating and explaining how human visual system perceives colors under different illumination conditions.
The main contribution of this paper is to put forward a new convex optimization model for Retinex. Different from existing
methods, the main idea is to rewrite a multiplicative form such that the illumination variable and the reflection variable are
decoupled in spatial domain. The resulting objective function involves three terms including the Tikhonov regularization of the
illumination component, the total variation regularization of the reciprocal of the reflection component, and the data-fitting term
among the input image, the illumination component, and the reciprocal of the reflection component. We develop an alternating
direction method of multipliers (ADMM) to solve the convex optimization model. Numerical experiments demonstrate the
advantages of the proposed model which can decompose an image into the illumination and the reflection components.

1. Introduction

The idea of Retinex was introduced and pioneered by Land
and McCann [1] to explain how a combination of processes
occurs both in the “retina” and in the “cortex.” Retinex theory
tells us that human visual system can ensure that the per-
ceived colors of objects remain relatively constant under vary-
ing illumination conditions. That is to say our visual system is
robust when it comes to color perception. Retinex theory can
deal with the compensation for illumination effect. Therefore,
we would like to reduce the influence of nonuniform illumi-
nation to enhance an image.

Usually, we consider an input image as a two-dimensional
function S which can be decomposed into the illumination
function L and the reflection function R. Generally speaking,
the input image S is assumed to have the following relation
with these two functions:

S=LoR, 1)

where o represents the element-wise multiplication.
Removing the illumination effect means to decompose
the input image into the illumination component and the
reflection component. This problem is known to be mathe-
matically ill-posed [2], and many methods have been pro-
posed to solve it in the literature [3-5]. Retinex methods

can be classified into random walk methods, recursive meth-
ods, center/surround methods, PDE-based methods, and
variational methods. Firstly, the original method of Land
and McCann was proposed relying on a random walk. The
random walk is a discrete time random-process in which the
next pixel position is chosen randomly from the neighbors of
the current pixel position; see, for example, [6-9]. It needs
to regulate many parameters and has high computational
complexity. In [10-12], the researchers perform recursive
matrix operations to develop recursive methods. The com-
putational efficiency of the recursive methods is improved
significantly than that of the random walk methods. However,
it is difficult to know how many iterations should be executed
in the process. Then Land and McCann put forward the
center/surround methods [1]. Later Jobson et al. proposed the
single scale Retinex (SSR) and the multiscale Retinex (MSR)
[13]. It is easy to implement the SSR and the MSR; both
of them need many parameters. In Poisson equation-based
methods [14-16], they often convert the original formulation
into the logarithmic formulation. Their methods rely on the
Mondrian world model which boils down to the assumption
on the reflection as a piecewise constant image.

Recently, many variational methods were proposed in [17,
18]. The fundamental assumptions are that the illumination
component is spatially smooth and the reflection component
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is piecewise constant. Based on the above assumptions
Kimmel et al. presented a variational Retinex formulation
[4]. In their model the piecewise constant assumption of the
reflection component is not considered. Total Variation (TV)
had been widely used in image processing [19-23]. Ma and
Osher [24] applied TV and nonlocal TV regularization to
Retinex theory. The Bregman iteration was employed to solve
their models. It is difficult to set up existence results for their
models. Ma et al. further proposed a L,-based variational
model to recover the reflection component [25]. In [26],
Zosso et al. proposed a unifying framework for Retinex
theory. In [27], Liang and Zhang proposed a decomposition
model for the Retinex problem via high-order TV.

Ng and Wang proposed a TV model for image enhance-
ment [28]. They consider both the illumination component
and the reflection component in the objective function.
They proposed transforming the multiplicative form (1) into
log S = log L +log R. Different from the Ma and Osher model
[24], they added some constraints and a fidelity term which
ensure that the theoretical analysis can be performed and
established. An energy functional was proposed for Retinex
as follows:

Erl=| [Dri+ | viPdx
Q 2 Jo

B

2

2)

+ J (I-r—s)dx+ EJ Pdx,
Q 2 Ja

where I = logL, r = logR, s = log§, «, 3, and u are
positive regularization parameters, and the term IQ Pdx is
only used for the theoretical proof which has no practical
sense. _[Q |Dr| is the total variation term of r [29] and it is
employed to characterize the reflection function which makes
the model more reasonable. The motivation behind is that
we have noticed that once the input image is converted to
the logarithmic domain, the small differences between image
pixels tend to be ignored. For example, in Figure 1 there is a
signal with quite different values in two parts; if we convert
the signal to the logarithmic domain, the difference between
the two parts is significantly reduced. So we rewrite (1) in
spatial domain to avoid the loss of these small textures and
details, and at the same time we can also ensure the convexity
of the model.

The main contribution of this paper is that we develop and
study a new convex optimization model for Retinex. A new
energy functional is built by considering spatial smoothness
of the illumination component and piecewise constant of
the reflection component in the decomposition framework.
The main idea is to rewrite (1) to a new equation S o Q =
L in spatial domain, where Q is the matrix with [Q];, =
1/[R];. According to the formula after the change, we study
this formula in spatial domain which not only makes the
illumination variable and the reciprocal of reflection variable
decoupled but also can ensure the convexity of the proposed
Retinex model, and a convex optimization model can be put
forward for Retinex.

The rest of this paper is organized as follows. In Section 2,
we develop a new convex model and employ the numerical
method to solve it. In Section 3, we report the experimental
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results to show the effectiveness of the proposed model and
the efliciency of the proposed numerical algorithm. Finally,
concluding remarks are given in Section 4.

2. The Proposed Model

In this section, we propose a new convex optimization model
for Retinex and develop an efficient numerical computational
method to solve it. For input RGB color images, we use the
HSV color space. The approach is to decompose the color
images into three layers: Hue (H), Saturation (S), and Value
(V). The V layer corresponds to the brightness of the pixel.
Therefore it makes sense to deal with the V layer only since
we are trying to extract the illumination image. We denote
the V layer of an input image S by s. s represents the intensity
of the light at the pixel. It depends on two main factors. One
is the amount of light intensity onto the objects in the image
scene, the other is the amount of light source reflected based
on the nature of the objects in the image scene. Since s is
proportional to the energy radiated by the source, it must be
nonzero and finite: 0 < s < co. We consider two functions:
the illumination function / and the reflection function . The
V layer of an image s is formed from the two functions:

s=lor, (3)

where we impose the assumptions that 0 < [ < co (illumi-
nation effect) and 0 < r < 1 (reflectivity). The last inequality
tells us the reflection image is bounded by 0 (total absorption)
and 1 (total reflection). Furthermore, this inequality implies
that I > s > 0. Based on previous motivation, we
rewrite (3) to a new equation (4) in the spatial domain
to avoid the loss of these small textures and details

soeqg=1, (4)

where ¢ is the matrix with [g]; = 1/[r];. Most of existing
variational based methods are using the logarithms, which
will lose the contrast in both the illumination component
I and the reflection component r. Though in the proposed
model 1/r will also lose contrast as similar to using the loga-
rithms. However, [ and s are both in [0, co] and keep a good
contrast in the proposed model. In addition, the rationality of
the proposed model is confirmed by extensive experimental
results.

Inspired by the convex optimization model for multi-
plicative noise and blur removal proposed by Zhao et al. [30],
a convex optimization model can be put forward for Retinex
based on (4).

Like all other Retinex algorithms, our Retinex algorithm
is based on some basic assumptions as follows:

(i) The illumination component [ is spatially smooth.
Therefore the Tikhonov regularization term is showed by
IDII2, D £ (D™;D?) is the first-order finite difference
operator, and the norm |DI||, is defined as |DI|, :=

i \/(D(l)l)ij + (D(z)l)ij.

(ii) Since the reflection component r is piecewise con-
stant, the reciprocal of the reflection component g is also
piecewise constant. Therefore we use the TV to express the
regularization term || Dg,.
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FIGURE 1: (a) a signal; (b) the signal in logarithmic domain.

(iii) Based on the reflectivity, here we change the con-
straints into 1 < g < coand s < < co.

A new energy functional is built by considering spatial
smoothness of the illumination component and piecewise
constant of the reciprocal of the reflection component. In this
paper, we propose the following convex optimization energy
functional for Retinex to explain how human vision system
perceives color. From now on, we will restrict our attention
to the discrete setting

04 04
E(g,1) = [Dal, + Z- IDI; + Z soq ~1J} + 84, (a)
+0q, (D),

where «, and «, are two positive regularization parameters to
control the balance among these terms in the object function,
Q : {x | x € R, x; 2 LVijh Qo {x | x €
R™", x;; > s;, Vi, j}. Given a nonempty matrix set Q, the
indicator function &, (X) is defined by

0, ifXeQ,

0 (X) = (6)

00, otherwise.

The data fidelity term measured in the €, norm forces the
proximity between s o g and . It is reasonable to choose dif-
ferent measures of the fidelity term under different scenarios.
For example, the ¢, norm can effectively suppress the effect
of outliers that may contaminate a given image. This will be
considered in our further work.

Compared with (2), the new energy functional (5) does
not have the last term of (2). The new Retinex algorithm
can make the illumination variable and the reciprocal of
the reflection variable decoupled, and at the same time it
also ensures the convexity of the model. Model (5) is jointly
convex for (q,1). Nonconvex models are sensitive to initial
values and it is difficult to design and analyze the algorithm.
By comparison, our convex model shows the robustness

with different initial values and a large number of convex
optimization algorithms are available. In addition, all local
minimizers are global minimizers and they constitute a
closed convex set. For the uniqueness of model (5), although
we can not guarantee the uniqueness of the solution, all
solutions are corresponding to a global minimum functional
value. The associated optimization problem is given by

min  E (¢.1). )

Then we show the existence result for the solution of the
proposed model. We first give the following lemma.

Lemma 1. Let {a'} be a sequence of R" having a bounded
gradient; that is, the sequences {|Da'l,} and {IIDa’II%} are
bounded. If there exists an entry a; that {Ia}l} is bounded, then

we have that {||a'||,} is bounded.

Proof. For any entry a, there exists a set of entries
{aj,a;,,...,a; } forming a connected road from a; to a;; that
is, the entry pairs (a;,a; ), (a]:f,ajm) for1 <t <h-1,and
(a;,» @) are adjacent. Since {a'} has a bounded gradient, then
the sequence {E'}, where

. . L \2 h1 . 2 . N2
1 _ 1 _ 1 1 _ 1 1 _ 1
E=(d-d) + 2 (@, -d.) +(d@,-a). ®
is also bounded. Note that there exists a positive constant C
satisfying

E>C(d-d), ©)
and then we have that {(aj- - a,i)z} is bounded, and then {Ia,il}

is also bounded, which completes the proof. O

Theorem 2. Assuming that s ¢ Null(D); that is, the null space
of D. Model (5) has at least one minimizer.



Proof. Itisclear that E(g, 1) is proper and continuous. Accord-
ing to Weierstrass’ theorem [31], it remains only to show the
coercivity of E(g,1); that is, for every sequence {(¢’,I')} such
that

4, + ], — o (10)
we have
lim E (4,1') = co. (1)

We prove it by contradiction. Suppose that there exists
a subsequence of {(qi, I} (also denoted as {(qi, I}) that
{E(4',1')} is bounded. According to our assumption that s ¢
Null(D), there exists two adjacent pixels s; and s, satisfying
s; # $j;. We consider the following function:

2

E, (g.]) :Z(quj—lj)2+2(sj+1qj+1 —lj+1) ) (12)

Since} {E(qi, li)} is bounded, it is easy to see that the sequences
{IDG'll,}, {IDI |3}, and {E, (¢, ')} are bounded. We have that

2
E, (q, l) = (quj - lj —Sindjn T lj+1)

2
= ((Sj - Sj+1)‘1j + S (‘L‘ - Qj+1) - (lj - ljﬂ)) .
Since {IDq'll,} and {|DF'|13} are bounded, we have that {|q’ -

q; 411} and {Il; - lj. .11} are bounded. From the assumption

(13)

s; # s;,, we then deduce that {qu [} is bounded. Moreover, the
boundedness of {E, (qi, I} implies that {Il;l} is also bounded.

From Lemma 1 we have {Ilqi ,} and (I I,} are bounded, which
is a contradiction. O

2.1. The Numerical Method. Many numerical methods are
applicable to solve the proposed convex optimization prob-
lem including the Bregman method [32], proximal splitting
methods [33], primal-dual methods [34-36], and Douglas-
Rachford methods [37]. Owing to the convexity of the
proposed model, here we just apply and implement the
alternating direction method of multipliers (ADMM) by
introducing variables w, u, p, and v as follows:

. ! 2
min  [w|, + Y | Dull; +

% . )2
Lw,q,u, p,v 2 ”P l"z + 601 )

(14)
+8q, ()

subjecttow = Dq,l =u,sev=p,andv =gq.

We rewrite (7) to (14), which is the constrained optimiza-
tion problem. Because all the variables are separated into two
groups, (I, w, v) and (u, p, q), we can give the matrix form of
the linear constraints:

100 -1 0 O
I u
00 s 0 -I O 15)
w =0, (15
010 0 0 -D P
001 0o 0 -I 1
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and this form completely accords with the ADMM frame-
work. Here two linear operators both have full column rank,
which ensure the convergence of ADMM iteration. We give
the resulting augmented Lagrangian function as follows:

o o
& (vow,u, p..3) = Jwll, + S 1Dull + 2 | p

1|3 + 80, (v) +8q, ()

A 100 l
A, 00 s
R w
As 010
v
Ay 001
0
0 -I 0
p
-D g (16)
-1
100
00 l
S
B w
20l o1 0
001
10 0 2
0 -1 0
0 0 -D Pl
0 0 -I 1

2

where A, A,, A5, and A, are Lagrange multipliers and f is
the penalty parameter [38]. The joint minimization problem
can be decomposed into two easier and smaller subproblems
such that two groups of variables can be minimized in
an alternating order, followed by the update of Lagrange
multipliers.

In Step 1, we update the variables /, w, and v. The optimal
solution of the variables can be computed separately since
the variables are decoupled. For convenience we omit the
superscripts.

The I-subproblem is given by

o 2P Bl us Ml
mlln 5 ||p l||2+2Hl u+‘8 2+8Qz(l)' (17)

We can get the solution as follows:

1 { [t + B (= 25/B)], S}

1

a+p (18)
i=1,2...,m

where [l]k+1 R%;
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The w-subproblem is given by

2

. B ” As
~|w-Dg+ — 19
min ||w||2+2 w q+ﬁ i (19)
We can get the solution as follows:
Ak
ot 2]] 3
/3 ill2 ﬁ
- (20)
(Dq —A3//3)i .
'k—k’ 121,2,...,1’}’1,
I(Dq _’\3//3)1‘”2
where [w]**! € R? and 0 - (0/0) = 0 is assumed;
The v-subproblem is given by
2 2
min Es:»v—p+& +E v—q+E
vo2 B, 2 Bl, ()
+8g, (V).
We can get the solution as follows:
[V]]FH
k_ qk k_ qk
So -A5/B) + - A /B) |
~ max [ (P 2 ﬁ) (q 4 ﬁ)]’,l @)

[I+5sT05]

ii
i=1,2,...,m,

where s” denotes the transpose of s and the superscript k
denotes the kth iteration of the ADMM.

In Step 2, we update the variables u, p, and g. On the same
condition, as the variables are decoupled, we can calculate
their optimal solutions separately.

The u-subproblem is given by
AP

B

We can obtain the corresponding solution with respect to u
by solving the normal equation as follows:

min ak ||Du||§ + E IIZ —u+ (23)
u 2 2

2

(DD + B)u=pl+A}, (24)

where D'D can be diagonalized by 2D discrete Fourier
transforms with periodic boundary conditions. We solve
(24) in three steps. First, we compute the right-hand side
vector and apply a forward Fast Fourier Transformation
(FET). Second, we get Zu**! by dividing the eigenvalues of
a,D"D + f3, where & denotes the two-dimensional discrete
Fourier transform. Third, in order to get the new iterate
uk+1, we use the two-dimensional inverse discrete Fourier
transform to Fu*™!. At each iteration, there are two FFTs
(including one inverse FFT). In this work, we only consider
periodic boundary condition by taking advantage of fast
Fourier transform (FFT). Figure 2 displays the estimated

illumination components with periodic and reflective BCs.
We observed that the results are almost the same with
periodic and reflective BCs, despite some slight artifacts
near boundary with periodic BCs. We believe that more
reasonable boundary conditions (BCs) [39, 40] can improve
the results.

We can get the solution as follows:

F (Bl + A%
[u]k“ =g ! M . (25)
F (;DTD + B)
The p-subproblem is given by
) 2 B A, ?
2 0pH- Cllsoy— —= 26
min 2||p l||2+25v p+/32 (26)

We can get the solution as follows:

[oczlk +Bsovi+ /\Ié]i

, i=12,....m (27)
o+

[pl"

where [ p]f.chl € R? is assumed;
The g-subproblem is given by

2
LB
, 2

2

Ay Ay
B B

As we describe above, we can also obtain the corresponding
solution with respect to g by solving the normal equation as
follows:

(D'D+1)g=D" el AN
q=D w+ﬁ+v+ﬁ, (29)

here we also use two FFTs to solve this normal equation.
We can get the solution as follows:

[q]k+1

v-q+ (28)

min [—; ”w - Dg +
q 2 5

=F

» <9~‘ (D" (w" + A5/B) + (v* + A5/B)) ) (30)

F (D™D +1))

Finally, we summarize the implementation of ADMM
in Algorithm 1. The convergence of ADMM is theoretically
guaranteed [41, 42]. We use the relative change of the succes-
sive iterates as the stopping criterion. The relative change can
reflect the convergence behavior and is easy to calculate. In
Figure 3 we show the numerical convergence curve to verify
the convergence of the proposed ADMM scheme. In the next
section, we will show the results of numerical experiments to
demonstrate the advantages of the proposed model.

3. Numerical Experiments

In this section, we present the experiments of Algorithm 1 to
demonstrate the effectiveness of the proposed Retinex model.
For simplicity, we apply our model for color images in HSV
color space. We only consider the V channel of HSV color
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FIGURE 2: From (a) to (c), the input image, the estimated illumination component with periodic BCs, and the estimated illumination
component with reflective BCs.

0.08 T T T T T T

0.07

0.06

0.05 H

0.04 H

Relative error

0.03

0.02 |

0.01 |

0 1 1 1 1 I
0 20 40 60 80 100 120 140

Number of iterations

FIGURE 3: Relative error versus iterations.

Input.k > 0,a; >0,, >0and [ >s.
Output. .
while stopping criterion [|[I*"* — I¥]|/|lI*"|| < ¢, is not satisfied do
Step 1. Computing I*"', w**!, and +*! by solving
Ilrllvl? Z1,v,w, uk,pk,qk,)tk).
Step 2. Computing u**!, p**!, and ¢**' by solving

ll}lpf; g(lkﬂ’ vk+1’ wk+1’ u, p,qs Ak)

Step 3. Update A¥*', A5*1, 1%*1 and AX*! by the following:
AII+1 - /\Ii +ﬁ(lk+1 —le+1),

Al;+l - Al; +B(S° Vk+1 _Pk+l)>
A1§+1 - /\l; + ﬁ(wk“ _ Dqk+l),

)LI;+1 - AIZ +ﬁ(Vk+1 _qk+1).
end while

ALGORITHM 1: ADMM procedure for solving (16).
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(d)

()

FIGURE 4: (a) and (d) are the input images; (b) and (e) are the resulting images only using Gamma correction; (c) and (f) are the resulting
enhanced images using both the proposed Retinex model and Gamma correction.

space and then combine the resulting V channel and the
original H and S channels back to the resulting color image.

As pointed out by [4], we usually get an over-enhanced
image by the Retinex process. We can explain the phe-
nomenon by two facts. The first one is that human visual
system usually prefers some illumination in the image. The
other one is that if we remove all the illumination, some
noise may expose in the image from the darker regions of
the input image. Therefore, we consider adding a Gamma
correction operation on the reconstructed illumination back
to the reconstructed reflectance image. From Algorithm 1
we obtain the illumination function / and the initial image
s. As discussed in previous sections, the reflectance image
r = s/l. The Gamma correction of / with an a parameter y
is performed by ' = w(l/ w)l/ Y where w refers to the white
value which is equal to 255 in 8 bit images. Therefore, the
resulting result s’ is given by

4 aw'r s

r = 75 =w l = (l/w)l_l/y)

! !
s =1o

(31)

(i) y = 1, the whole illumination is added back, and
therefore s’ = s.

(ii) y = 00, no illumination is returned, and we get s =r-
w, which is equal to the same reflectance image r, as obtained
by the original Retinex. This case is that we add a maximum
constant illumination w to the reflectance image r.

All experiments are performed in MATLAB R2013a on
a PC with a 32-bit operating system and the following
configuration: Iter(R) Core(TM) i3-2130 CPU 3.40 GHz and

4GB RAM. In Figures 4(a) and 4(d), we show two input
underexposed images for enhancement. In Figures 4(b) and
4(e), the pictures use Gamma correction; we can see the
resulting image can not be enhanced. However, in Figures
4(c) and 4(f), we see the pictures using both the proposed
Retinex model and Gamma correction can be enhanced to
be more natural.

In terms of the human visual system of cognitive function
for the image, we give several subjective visual evaluation
standards in this paper. At first, the enhanced image should
have the appropriate illumination. Then it must have the
appropriate color information. Further the appropriate color
information should have appropriate spatial distribution
which is called the contrast. Finally under the circumstances
of undistorted images, we want to have a noise level as lower
as possible. In conclusion, we will combine the four visual
quality evaluation standard and then make the comprehen-
sive evaluation of the quality for an image.

3.1. Experimental Results on Natural Images. In the previous
test, the effect of the Gamma correction has been proved.
In this subsection, we compare the results by the proposed
Retinex model and those by the TV model in [28]. We show
five input underexposed images for enhancement. In the
tests, we choose the best set of parameters (&, ®,,3,y) =
(1,0.1,107°,2.2) for the TV model in [28]. For Figure 5, we
use (e, o, 3,9) = (30,1,200,2.2) for the proposed Retinex
model. We set ¢, = 1 x 107> for the stopping criteria. The
input image is too dark, but the improvement by the proposed
Retinex model is clearly visible. The green color of Rubik’s
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(a) (®) (©)
(d) (e) (¢

FIGURE 5: The first row from left to right: the input image, enhanced images by the TV model with the best set of parameters (e, «,, 3,y) =
(1,0.1, 1075,2.2), and the proposed Retinex model with the parameters («,a,, 8,y) = (30, 1,200,2.2); the second row: zoom into the

enhanced images.

TABLE 1: The iteration number and CPU time (s) of the TV model
and the proposed Retinex model.

The TV model  The proposed Retinex model
Iteration number 39 97
Time (s) 4.92 3.13

cube puzzle is more uniform and natural. It is consistent
with the existence of the normal law of things. We repeat the
experiments for 20 times and average the results. We find the
speeds of the proposed Retinex model are faster than the TV
model. Then we show the average results of 20 tests for the
iteration number and CPU time (s) in Table 1.

In Figure 6, the influence of illumination is removed by
the TV model and the proposed Retinex model as can be seen
in the first row. However, zooming into the images we can
see that more shadows are removed by the proposed Retinex
model with the parameters («;,,, 5,y) = (10,1,200,2.2).
The letters hidden in the shadows are clearly visible. The
zoom results show that the color channels are recovered
very well in the whole image. Figure 7 shows another
image enhancement example; the proposed Retinex model
with parameters («;,,,3,9) = (20,1,200,2.2) provides a
smoother image without destroying important image details.
Zooming into the images, the lamps in the wall are brighter
without the shadows on the top of the image.

Figure 8 shows an example where the illumination is
corrected. The proposed Retinex model with the parameters
(@, a5, 5,y) = (10,2,200,2.2) is used to separate the
illumination and the reflection. The output enhanced images
are sharper and clearer than those by the TV method.

Zooming into the images, we can see the colors of the maple
leaves are better than those using the TV model. Finally,
in Figure 9 our experimental results are performed by the
proposed Retinex model very well. The visual effects of the
enhanced images by the proposed Retinex model with the
parameters (&, a,, 3,7) = (20,3,200,2.2) are better than
those by the TV method. The zoom results also make this
point clear; the windows are clearer and brighter. We also
show the comparisons of CPU time (s) in Table 2.

3.2. The Effect of Parameters. In the previous test, we compare
the results by the proposed Retinex model and those by the
TV model. The enhanced images have good visual effects
using the proposed Retinex model. In Figure 10, we test the
proposed Retinex model using different values of y: 2.2, 10,
100 to get the enhanced images. We use the best parameters of
TV model with («;, a,, 3,7) = (1,0.1, 107°,2.2). In the pro-
posed Retinex model, we use the parameters («,, «,, 3,y) =
(10, 10, 10, 2.2). We find that the enhanced images using the
TV model are not enough sharp and pleasant. Particularly
when y is large, some details such as the side of the street are
lost. By comparison, the enhanced images using the proposed
Retinex model are visually appealing, and the proposed
Retinex method is more robust for different values of y.

In the next test, we discuss how to choose the parameters
for the proposed Retinex model. Then we study the effect
of parameters «; and «, of the proposed Retinex model on
the results of the experiments. At first, we set o, = 10
and «; = 0.1,1,10, 100, respectively. In the first row of
Figure 11, when the parameter «; increased, the reflection
component becomes sharper, and the second row shows that
the illumination component becomes smoother. Then we set
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FIGURE 6: The first row from left to right: the input image, enhanced images by the TV model with the best set of parameters («;, «,, 8, y) =
(1,0.1, 1075,2.2), and the proposed Retinex model with the parameters («,a,, 8,y) = (10, 1,200,2.2); the second row: zoom into the
enhanced images.

)

FIGURE 7: The first row from left to right: the input image, enhanced images by the TV model with the best set of parameters («;, «,, 3, y) =
(1,0.1,107°,2.2), and the proposed Retinex model with the parameters (a;, «,, 5,7) = (20,1,200,2.2); the second row: zoom into the
enhanced images.

TaBLE 2: The CPU time (s) of the TV model and the proposed Retinex model.

The TV model The proposed Retinex model
Image Book 11.37 2.63
Image Room 17.16 10.28
Image God 3.05 1.65

Image House 41.51 30.67
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(d)

FIGURE 8: The first row from left to right: the input image, enhanced images by the TV model with the best set of parameters («;, «,, 3, y) =
(1,0.1,107°,2.2), and the proposed Retinex model with the parameters (a, «,, 5,7) = (10,2,200,2.2); the second row: zoom into the
enhanced images.

(e)

FIGURE 9: The first row from left to right: the input image, enhanced images by the TV model with the best set of parameters («,, «,, 5,y) =
(1,0.1,107°,2.2), and the proposed Retinex model with the parameters («;,«,,3,y) = (20,3,200,2.2); the second row: zoom into the
enhanced images.
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1

(8 (h)

FIGURE 10: The first row: the input image and the enhanced images by the TV model with the best set of parameters (o, ,, 5,y) =
(1,0.1,107,2.2), respectively; the second row: the input image and the enhanced images by the proposed Retinex model with (e, &,, 3, y) =

(10, 10, 10, 2.2), respectively.

(e) (f)

(& ()

FIGURE 11: The first row: the reflection component by the proposed Retinex model with &, = 10 and «; = 0.1, 1, 10, 100, respectively; the
second row: the illumination component by the proposed Retinex model with «, = 10 and &; = 0.1, 1, 10, 100, respectively.

«, = 10and a, = 1, 10, 100, 1000, respectively. In the first row
of Figure 12, when the parameter «, increased, the reflection
component becomes flatter, and the second row shows that
the illumination component becomes more rough.

3.3. Experimental Results on Medical Images. In the same
way, we test some medical images as well in Figure 13 and
compare the proposed Retinex model with the TV model

in [28]. In particular, we can see more details in the brain
from the results by the proposed Retinex model than those
by the TV model. Both gray and white matter are clear.
Skeletal outline is clearly visible. Therefore, the proposed
Retinex model can generate better enhanced images with
high contrast and preserve more features in the enhancement.
Numerical experiments demonstrate the effectiveness of the
proposed model and the efficiency of the proposed numerical
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(e) ® ® (h)

FIGURE 12: The first row: the reflection component by the proposed Retinex model with &, = 10 and «, = 1, 10, 100, 1000, respectively; the
second row: the illumination component by the proposed Retinex model with «; = 10 and &, = 1, 10, 100, 1000, respectively.

FIGURE 13: (a) and (d) are the input images; (b) and (e) are the resulting images by the TV model; (c) and (f) are the resulting images by the
proposed Retinex model.
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TaBLE 3: The CPU time (s) of the TV model and the proposed
Retinex model.

The TV model The proposed Retinex model
Image Brain 419 2.09
Image Bones 24.75 5.67

algorithm. We show the comparisons of CPU time (s) in
Table 3 as well.

4. Conclusion

In this paper, we presented a new convex optimization
model for Retinex. Different from the existing methods, we
developed a new framework so as to make the illumination
variable and the reflection variable decoupled. We showed the
existence of the solution of the proposed Retinex model. In
particular, we employed a computation method ADMM to
solve the proposed Retinex model. Numerical experimental
results were given to illustrate that the proposed model and
the computation method are effective and efficient to improve
the quality of the enhanced images.
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