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In conventional stochastic computation, all the input streams are Bernoulli sequences (BSs), which may result in large random
error. To reduce random error and improve computational accuracy, some other sequences have been reported as alternatives to
BSs. However, these sequences only apply to the specific stochastic circuits, have difficulties in hardware generation, or have length
constraints. To this end, new sequences without these disadvantages should be considered. This paper proposes the random error
analysis method for stochastic computation based on autocorrelation sequence (AS), which is more general than the conventional
one based on BS. The analysis results show that we can use the proper ASs as input streams of stochastic circuits to reduce
random error. On the basis of that conclusion, we propose the random error reduction scheme based on maximal concentrated
autocorrelation sequence (MCAS) and BS, both of which are ASs. MCAS and BS are applicable to any combinational stochastic
circuit, are easily generated by hardware, and have no length constraints, which avoid the disadvantages of sequences in the previous
work. Moreover, we apply the proposed random error reduction scheme into several typical stochastic circuits as case studies. The
simulation results confirm the effectiveness of the proposed scheme.

1. Introduction

Stochastic computation, first introduced in 1960s [1], has
been widely used in many fields: neural network [2, 3],
digital image processing [4–7], channel decoding [8–10],
MIMO detection [11, 12], reliability evaluation [13], and so
on. The main idea of stochastic computation is to represent
continuous values with stochastic bit streams, which makes
it possible to perform complex arithmetic computations with
simple bitwise operations. One obvious advantage of stochas-
tic computation is that the hardware implementation of the
stochastic arithmetic is much simpler than the traditional
arithmetic. For example, as shown in Figure 1, multiplication
and scaling addition can be performedwith an AND gate and
a multiplexer, respectively. The simplicity of hardware also
brings short critical path andhigh clock rate.Moreover, all the
bits in a stochastic bit stream have the same significance.That
means the stochastic arithmetic is unary coding arithmetic
which has better fault tolerance than the traditional binary
arithmetic. Recently, skew tolerance has also been introduced
as another inherent advantage of stochastic computation.

Despite the above advantages, a disadvantage of stochas-
tic computation is that the random fluctuations of stochastic
bit streams introduce the random error, which causes the
computation result to be a random variable. In [4], it is
suggested that, inmost cases, the random error will dominate
the other errors such as quantization error and approximate
error.Thus, the random error should be carefully investigated
and addressed in stochastic computation area.

Thus far, many statistical models for random error anal-
ysis have been proposed. They are all based on variance
evaluations. In the early work, it is assumed that all the input
streams of stochastic circuits are BSs. Qian et al. [4] propose
the variance evaluation model base on BSs. However, in real
application, the random error for stochastic arithmetic based
on BSs is often too large. Therefore, people have made effects
to reduce random error by using other sequences as input
streams of stochastic circuits.

Braendler et al. [3] employ two deterministic bit streams
(DBSs) as input streams for the stochastic circuit AND gate.
The output stream is also deterministic, which means there
are no random fluctuations. Although it eliminates random
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Figure 1: Stochastic circuit of arithmetic. (a) Multiplication; (b) scaling addition.

fluctuations and improves computational accuracy, the use
of these DBSs is narrowly restricted to the single AND gate.
They can not apply to more complex stochastic circuits.

Alaghi and Hayes [14] propose a general framework for
analyzing stochastic circuits with correlated inputs. They
demonstrate that using correlated inputs can significantly
reduce the random error for some stochastic circuits. How-
ever, the use of correlated inputs has its limitation. For
example, as illustrated in [15], if the two input streams applied
to an AND gate are correlated, say, each has the same bit-
pattern of value 𝑥, then the output will also have value𝑥 instead of 𝑥2. Hence, the AND gate will not perform
multiplication if its inputs are correlated. Similarly, many
other commonly used stochastic computational elements
can not perform the expected arithmetic with correlated
inputs, which largely restricts their applications in stochastic
computation systems.

Han et al. [13] use fixed-ones random-permutation
sequences (FRSs) as input streams for stochastic circuits.
They present the variance evaluation model for the basic
stochastic computational elements, including AND gate and
invert. Furthermore, they prove that the use of FRSs as input
streams reduces random error for stochastic computation
compared to the conventional use of BSs. FRSs can be
wildly used in stochastic arithmetic. They apply to any
combinational stochastic circuit. In [13], FRSs are generated
by software and used as input streams of the stochastic circuit
for reliability evaluation. However, the low cost hardware
generation of FRS is difficult to implement.Thus, FRSs are not
suitable for stochastic circuits with input streams generated
by hardware.

Najafi et al. [16] use pulse-width modulation (PWM) to
time-encode values for more efficient stochastic computing.
They represent values by periodic PWM signals. If two PWM
signals are not harmonically related, stochasticmultiplication
of numbers represented by them obtains the best accuracy
when running the operation for the least common multiple
(LCM) or multiples of the LCM of the period of the inputs.
For instance, 𝑋 = 3/5 is represented by a PWM signal with
period of 5, namely, 1, 1, 0, 0, 0, and 𝑌 = 1/3 is represented
by a PWM signal with period of 3, namely, 1, 0, 0. The LCM
of the period of 𝑋 and 𝑌 is 15. Thus, when multiplying 𝑋 and𝑌 with an AND gate, let both of the two bit streams run for
15 clock cycles; that is, 𝑋 = 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
and 𝑌 = 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0. Taking the bitwise
AND of 𝑋 and 𝑌, the output stream is 𝑍 = 1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, which represents 2/15 = 2/5×1/3. How-
ever, if the operation runs for only 10 clocks, that is, 𝑋 = 1, 1,0, 0, 0, 1, 1, 0, 0, 0, and 𝑌 = 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, the output
stream is 𝑍 = 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, which represents 2/10,
not the expected value. Similarly, some other stochastic
arithmetic, using PWM signals as input streams, can get the
expected results only if the operations run for the required
time. Hence, we can see that there are length constrains on
stochastic computation based on PWM signals.The length of
input streams is not flexible but determined by the period of
input streams.

From above, we can see that the main issues of stochastic
arithmetic based on different input streams are as follows:

(i) BSs: large random error;
(ii) DBSs or correlated inputs: only applicable for the

specific stochastic circuits;
(iii) FRSs: difficulties in hardware generation;
(iv) PWM signals: length constraints.

To avoid these disadvantages, we need to use other proper
sequences as input streams. Considering the autocorrelation
between different bits of a sequence, we propose the notion
of AS. And then we analyze the random error of stochastic
arithmetic on the assumption that input streams are ASs. By
definition, BS can be seen as a special AS with equivalent
autocorrelation coefficients. Thus, the proposed random
error analysis method based on AS is more general than the
conventional one based on BS.

According to our analysis results, if proper ASs are
used as input streams, the random error can be reduced.
Based on that conclusion, we investigate how to reduce
random error for any combinational stochastic circuit by
employing MCASs and BSs, both of which are ASs, as input
streams. Then, We adopt several typical stochastic circuits as
case studies and find that the use of MCASs and BSs can
significantly improve the calculation performance. MCAS
has no difficulties in hardware generation and the hardware
cost of the MCAS generator is merely the same as that of the
conventional BS generator. Moreover, from the simulation
results, the random error reduction scheme based on MCAS
and BS is valid for any input stream length and has no
length constraints. Hence, by using MCASs and BSs as input
streams, we avoid the disadvantages in the previous work and
achieve the following goals:
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(i) Random error reduction: the random error is reduced
compared to using only BSs as input streams;

(ii) Wide applications: the random error reduction
scheme based on MCAS and BS is applicable to any
combinational stochastic circuit;

(iii) Easy hardware generation: the MCAS and BS genera-
tor are easily implemented by hardware;

(iv) Flexible length: the MCAS and BS have no length
constraints.

Parts of this paper are based on our prior work enti-
tled “Random Error Analysis and Reduction for Stochastic
Computation Based on Autocorrelation Sequence,” which
has been presented at the IEEE International Symposium on
Circuits and Systems (ISCAS), 2014. In the conference paper,
we briefly present a general random error analysismethod for
stochastic computation and illustrate how to reduce random
error for a typical stochastic circuit. Compared with the
conference version, this journal manuscript has more new
contents updated and more insightful discussion, which are
stated as follows:

(i) Detailed illustration of the general random error
analysis method is provided.

(ii) The random error reduction scheme for any combi-
nation stochastic circuit is proposed.

(iii) The completemathematical proof for the effectiveness
of the proposed random error reduction scheme is
given.

(iv) More typical stochastic circuits are presented as case
studies.

The rest of the paper is structured as follows: Section 2
analyzes the random error based on AS. Section 3 illustrates
the random error reduction scheme based on MCAS and BS
for any combinational stochastic circuit. Section 4 presents
several typical case studies. Section 5 gives simulation results.
Finally, we give conclusions and future directions of research.

2. Random Error Analysis Method

2.1. Expectation and Variance. In stochastic computation, a
stochastic bit stream 𝑋 with length of 𝑛 can be written as

𝑋 = [𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝑛)] ,
𝑋 (𝑖) ∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝑛. (1)

The expectation of 𝑋 is defined by

𝐸𝑋 = 𝐸 (1𝑛
𝑛∑
𝑖=1

𝑋 (𝑖)) = 1𝑛
𝑛∑
𝑖=1

𝐸 (𝑋 (𝑖)) , (2)

and the variance of 𝑋 is defined by

Var𝑋 = Var(1𝑛
𝑛∑
𝑖=1

𝑋 (𝑖)) = 1𝑛2Var( 𝑛∑
𝑖=1

𝑋 (𝑖)) . (3)

Consider an arithmetic operation 𝐹 with 𝑘 normalized
input numbers 𝑥1, 𝑥2, . . . , 𝑥𝑘 and a result 𝑧, which can be
expressed by 𝑧 = 𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑘). In the stochastic imple-
menting of𝐹, each input number 𝑥𝑟, 1 ⩽ 𝑟 ⩽ 𝑘, is represented
by the corresponding stochastic bit stream, denoted by 𝑋𝑟,
where 𝐸𝑋𝑟 = 𝑥𝑟. We employ these stochastic bit streams
as input streams of stochastic circuit. Then, the stochastic
computational result, denoted by 𝑧󸀠, can be obtained from the
output stream 𝑍 as follows:

𝑧󸀠 = 1𝑛
𝑛∑
𝑖=1

𝑍 (𝑖) . (4)

There are two important statistics for stochastic arith-
metic.The first one is the expectation of output stream. Since𝑧󸀠 should be an unbiased estimator of the actual result 𝑧, we
have

𝐸 (𝑧󸀠) = 𝑧 = 𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑘) . (5)

From (2) and (4), (5) can be rewritten as 𝐸𝑍 = 𝑧 =𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑘). Thus, the expectation of output stream
indicates the arithmetic operation performed by stochastic
circuit.

Another important statistic is the variance of output
stream. Considering that 𝑧󸀠 is an unbiased estimator of the
actual result 𝑧, random error can be calculated in the form of
mean square error (MSE) as

MSE = 𝐸 ((𝑧󸀠 − 𝑧)2) = 𝐸 ((𝑧󸀠 − 𝐸 (𝑧󸀠))2)
= Var (𝑧󸀠) . (6)

By (3) and (6), MSE = Var𝑍. Therefore, the random error for
stochastic computation can be measured by the variance of
output stream.

2.2. Autocorrelation Sequence. For a bit stream 𝑋 with length
of 𝑛, the correlation between two different bits can be
measured by autocorrelation coefficient, which is defined by𝑅𝑋𝑖𝑗 = 𝐸(𝑋(𝑖)𝑋(𝑗)), 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. For example, if 𝑋 is a BS,
its autocorrelation coefficients are 𝑅𝑋𝑖𝑗 = (𝐸𝑋)2, 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛;
that is, all the autocorrelation coefficients of BS are equivalent
to the square of its expectation.

In the practical applications, input streams may have
a variety of autocorrelation coefficients. Considering that,
we propose AS, whose autocorrelation coefficients are not
necessarily equivalent to each other.

Definition 1. A bit stream𝑋, which represents the probability𝑥, is called an AS on the following condition: 𝐸𝑋 = 𝑥.
FromDefinition 1, AS ismore general compared toBS and

BS can be seen as special case of AS whose autocorrelation
coefficients are equivalent to the square of its expectation.

2.3. Random Error Analysis Based on AS. For clarity, we
define the following notations: let BI denote the case that
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all the input streams are BSs; let AI denote the case that all
the input streams are ASs; let 𝐸(BI) denote the expectation
of output stream 𝑍 in the case of BI; let 𝐸(AI) denote the
expectation of output stream 𝑍 in the case of AI; let Var(BI)
denote the variance of output stream 𝑍 in the case of BI; let
Var(AI) denote the variance of output stream 𝑍 in the case of
AI.

For any stochastic circuit, we expect that the arithmetic
computed in the case of AI is the same as that in the case of BI.
As illustrated in Section 2.1, the expectation of output stream
indicates the arithmetic operation performed by stochastic
circuit. Hence, the expectations of output stream should be
equivalent to each other in the two cases and we have

𝐸(AI) = 𝐸(BI). (7)

Equation (7) is the essential condition for the random error
analysis in the case of AI. On the premise of (7), the random
error base on AS can be measured by the variance of the
output stream 𝑍 as follows:

Var (AI) = 1𝑛2Var( 𝑛∑
𝑖=1

𝑍 (𝑖))
= 1𝑛2

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

(𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) − 𝐸 (𝑍 (𝑖)) 𝐸 (𝑍 (𝑗)))
+ 1𝑛2

𝑛∑
𝑖=1

Var (𝑍 (𝑖))
= 1𝑛𝐸 (BI) − 𝐸2 (BI) + 1𝑛2

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) .

(8)

Example 2. As shown in Figure 1, two stochastic bit streams𝑋1 and 𝑋2 are employed as the input streams for an AND
gate. When 𝑋1 and 𝑋2 are BSs, 𝐸(𝑋1(𝑖)) = 𝐸𝑋1 , 𝐸(𝑋2(𝑖)) =𝐸𝑋2 , 𝑖 = 1, 2, 3, . . . , 𝑛. The expectation of output streams can
be calculated as

𝐸 (BI) = 1𝑛
𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖) 𝑋2 (𝑖)) = 1𝑛
𝑛∑
𝑖=1

𝐸𝑋1𝐸𝑋2
= 𝐸𝑋1𝐸𝑋2 .

(9)

Now, consider that the input streams 𝑋1 and 𝑋2 are ASs with
the following properties: 𝐸(𝑋1(𝑖)) = 𝐸𝑋1 or 𝐸(𝑋2(𝑖)) = 𝐸𝑋2 ,𝑖 = 1, 2, 3, . . . , 𝑛. Without losing generality, we suppose that𝐸(𝑋1(𝑖)) = 𝐸𝑋1 . The expectation of output stream can be
calculated as

𝐸 (AI) = 1𝑛
𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖) 𝑋2 (𝑖)) = 1𝑛𝐸𝑋1 𝑛∑
𝑖=1

𝐸 (𝑋2 (𝑖))
= 𝐸𝑋1𝐸𝑋2 .

(10)

By (9) and (10), (7) is satisfied.Thus, the random error can be
calculated by (8) as follows:

Var (AI) = 1𝑛𝐸𝑋1𝐸𝑋2 − 𝐸2𝑋1𝐸2𝑋2 + 1𝑛2
𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝑅𝑋1𝑖𝑗 𝑅𝑋2𝑖𝑗 . (11)

Hence, the variance of output stream in the case of AI is deter-
mined by the expectations and autocorrelation coefficients of
input streams.

2.4. AI Affection Evaluation. In order to evaluate how much
AI affects the random error, we propose differential variance,
denoted by DV, where DV = Var(AI)−Var(BI).As suggested
in [4], the variance of output stream in the case of BI can be
calculated by

Var (BI) = 𝐸 (BI) (1 − 𝐸 (BI))𝑛 . (12)

Then we have the following theorem.

Theorem 3. The range of DV is as follows:

𝐸2 (𝐵𝐼) − 𝐸 (𝐵𝐼)𝑛 ⩽ 𝐷𝑉 ⩽ 𝑛 − 1𝑛 (𝐸 (𝐵𝐼) − 𝐸2 (𝐵𝐼)) . (13)

Proof. See our prior work [17].

According to Theorem 3, the upper bound of DV is
nonnegative and the lower bound of DV is nonpositive.Thus,
DV can be positive, which indicates that the improper use of
AS will result in the increase of random error. On the other
hand, DV can be negative, which indicates that the proper
use of AS will reduce random error. Therefore, we get the
following conclusions.

(i) Since the random error in the case of AI can be less
than that in the case of BI, the random error reduction
scheme based on AS is feasible.

(ii) Since the random error in the case of AI can be greater
than that in the case of BI, it is important to select
proper AS to avoid this situation.

3. Random Error Reduction Scheme

In the last section, we find that the proper use of AS is able
to reduce the random error for stochastic computation. On
the basis of that conclusion, we will discuss how to employ
ASs as input streams for the combinational stochastic circuit
to reduce the random error.

3.1. Combinational Stochastic Circuit. For any combinational
stochastic circuit, the relationship between input streams and
output stream can be expressed by

𝑍 (𝑖) = ∑
𝑙1𝑙2 ⋅⋅⋅𝑙𝑘

𝐴 𝑙1𝑙2 ⋅⋅⋅𝑙𝑘𝑋1 (𝑖)𝑙1 𝑋2 (𝑖)𝑙2 ⋅ ⋅ ⋅ 𝑋𝑘 (𝑖)𝑙𝑘 , (14)

where 𝐴 𝑙1,𝑘 is a constant integer and 𝑙𝑟 ∈ {0, 1}, 1 ⩽ 𝑟 ⩽ 𝑘.
For convenience of illustration, we denote 𝑙1,𝑘 by the subscript𝑙1𝑙2 ⋅ ⋅ ⋅ 𝑙𝑘.The formulation𝐴 𝑙1,𝑘𝑋1(𝑖)𝑙1𝑋2(𝑖)𝑙2 ⋅ ⋅ ⋅ 𝑋𝑘(𝑖)𝑙𝑘 , where𝐴 𝑙1,𝑘 ̸= 0, is called a product term and denoted by 𝑃𝑖𝑙1,𝑘 . Then,
(14) can be rewritten as 𝑍(𝑖) = ∑𝑙1,𝑘∈𝑆𝑝 𝑃𝑖𝑙1,𝑘 , where 𝑆𝑝 = {𝑙1,𝑘 :𝐴 𝑙1,𝑘 ̸= 0}. For the product term 𝑃𝑖𝑙1,𝑘 , if 𝑙𝑟 = 1, 𝑋𝑟 is called a
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factor of 𝑃𝑖𝑙1,𝑘 . Let𝑀(𝑟) denote the set of subscripts of product
terms that have 𝑋𝑟 as a factor; that is, 𝑀(𝑟) = {𝑙1,𝑘 : 𝑙𝑟 =1, 𝑙1,𝑘 ∈ 𝑆𝑝}. Similarly, let 𝑁(𝑙1,𝑘) denote the set of subscripts
of input streams that are factors of 𝑃𝑖𝑙1,𝑘 ; that is, 𝑁(𝑙1,𝑘) = {𝑟 :𝑙𝑟 = 1, 1 ⩽ 𝑟 ⩽ 𝑘}.
Definition 4. An input stream 𝑋𝑟 is called a positive input
stream (PIS), if it satisfies

∑𝑙1,𝑘∈𝑀(𝑟) 𝑃𝑖𝑙1,𝑘𝑋𝑟 (𝑖) ⩾ 0,
∀𝑋1 (𝑖) , 𝑋2 (𝑖) , . . . , 𝑋𝑟−1 (𝑖) , 𝑋𝑟+1 (𝑖) , . . . , 𝑋𝑘 (𝑖) .

(15)

The set of subscripts of PISs in stochastic circuit is denoted by𝑆pis.
Example 5. Consider the stochastic circuit with Boolean
function as follows: 𝑍(𝑖) = 𝑋1(𝑖) ∧ 𝑋2(𝑖) ∨ 𝑋3(𝑖), and we have𝑍 (𝑖) = 𝑋1 (𝑖) 𝑋2 (𝑖) (1 − 𝑋3 (𝑖)) + 𝑋1 (𝑖) 𝑋2 (𝑖) 𝑋3 (𝑖)+ 𝑋1 (𝑖) (1 − 𝑋2 (𝑖)) 𝑋3 (𝑖)+ (1 − 𝑋1 (𝑖)) 𝑋2 (𝑖) 𝑋3 (𝑖)

+ (1 − 𝑋1 (𝑖)) (1 − 𝑋2 (𝑖)) 𝑋3 (𝑖) ,
(16)

which can be rewritten in the form of (14) as
𝑍 (𝑖) = 𝑋1 (𝑖) 𝑋2 (𝑖) + 𝑋3 (𝑖) − 𝑋1 (𝑖) 𝑋2 (𝑖) 𝑋3 (𝑖) . (17)

There are three product terms and𝑍(𝑖) = 𝑃𝑖110+𝑃𝑖001−𝑃𝑖111.𝑋1
is a factor of 𝑃𝑖110 and 𝑃𝑖111, 𝑋2 is a factor of 𝑃𝑖110 and 𝑃𝑖111, and𝑋3 is a factor of 𝑃𝑖001 and 𝑃𝑖111. Therefore, 𝑀(1) = {110, 111},𝑀(2) = {110, 111}, and 𝑀(3) = {001, 111}. Meanwhile, 𝑃𝑖110
has 𝑋1 and 𝑋2 as factors, 𝑃𝑖001 has 𝑋3 as a factor, and 𝑃𝑖111 has𝑋1, 𝑋2, and 𝑋3 as factors. Hence, 𝑁(110) = {1, 2}, 𝑁(001) ={3}, and 𝑁(111) = {1, 2, 3}.

In order to see whether 𝑋1 is a PIS, by (17), we have∑𝑙1,3∈𝑀(1) 𝑃𝑖𝑙1,3𝑋1 (𝑖) = 𝑋2 (𝑖) − 𝑋2 (𝑖) 𝑋3 (𝑖)

=
{{{{{{{{{{{{{{{

0, 𝑋2 (𝑖) = 0, 𝑋3 (𝑖) = 0,
1, 𝑋2 (𝑖) = 1, 𝑋3 (𝑖) = 0,
0, 𝑋2 (𝑖) = 0, 𝑋3 (𝑖) = 1,
0, 𝑋2 (𝑖) = 1, 𝑋3 (𝑖) = 1.

(18)

∀𝑋2(𝑖), 𝑋3(𝑖), (∑𝑙1,3∈𝑀(1) 𝑃𝑖𝑙1,3)/𝑋1(𝑖) ⩾ 0. Thus, (15) is
satisfied, and 𝑋1 is a PIS. Similarly, 𝑋2 and 𝑋3 are also PISs.𝑆pis for the stochastic circuit in Example 5 is {1, 2, 3}.
3.2. Mathematical Model Based on MCAS and BS
Definition 6. If a bit stream 𝑋 has the following properties:

𝑋 (𝑖) = {{{
1, 1 ⩽ 𝑖 ⩽ 𝑛𝐸𝑋,
0, else,

(19)

where 𝑛 is the length of 𝑋, it is called an MCAS.

For instance, an MCAS with 𝑛 = 8 and 𝐸𝑋 = 3/8 is as
follows: 1, 1, 1, 0, 0, 0, 0, 0.

Consider the combinational stochastic circuit with the𝑘 input streams 𝑋1, 𝑋2, . . . , 𝑋𝑘 and an output stream 𝑍. In
order to indicate the sequence type for each input stream, we
introduce the state vector V = (𝑉1, 𝑉2, . . . , 𝑉𝑘), where

𝑉𝑟 = {{{
MCAS, if 𝑋𝑟 is an MCAS,
BS, if 𝑋𝑟 is a BS. (20)

There are totally 2𝑘 possible states forV. For instance, if 𝑘 = 2,
the four possible states are follows: (MCAS, MCAS), (MCAS,
BS), (BS, BS), and (BS, MCAS).The expectation and variance
of output stream 𝑍, when state vector is V, are denoted by𝐸(V) and Var(V), respectively.

As discussed in Section 2.3, in order to guarantee that the
arithmetic computed by the combinational stochastic circuit,
when state vector isV, is the same as that in the case of BI,V
should satisfy

𝐸 (V) = 𝐸 (BI) . (21)

On the premise of (21), if the state vector V satisfies

Var (V) ⩽ Var (BI) , (22)

then the random error is not greater than that in the case of
BI.Thus, the state vectorV satisfying (21) and (22) represents
a random error reduction scheme for the combinational
stochastic circuit.

In order to describe the properties of state vector V,
we define the following notations. Let 𝑆𝑚 denote the set of
subscripts of input streams that are MCASs; that is, 𝑆𝑚 ={𝑟 : 𝑉𝑟 = MCAS}. Let 𝑆𝑙1,𝑘 denote the set of subscripts of
input streams that are MCASs and factors of 𝑃𝑖𝑙1,𝑘 ; that is,𝑆𝑙1,𝑘 = {𝑟 : 𝑉𝑟 = MCAS, 𝑟 ∈ 𝑁(𝑙1,𝑘)}. Let 𝑆𝑝𝑚 denote the set of
subscripts of product terms, of which at least one factor is an
MCAS; that is, 𝑆𝑝𝑚 = {𝑙1,𝑘 : 𝑁(𝑙1,𝑘)∩𝑆𝑚 ̸= 0, 𝑙1,𝑘 ∈ 𝑆𝑝}. Let 𝑆𝑝𝑏
denote the set of subscripts of product terms whose factors
are all BSs; that is, 𝑆𝑝𝑏 = {𝑙1,𝑘 : 𝑁(𝑙1,𝑘) ∩ 𝑆𝑚 = 0, 𝑙1,𝑘 ∈ 𝑆𝑝}.
For instance, in Example 5, assuming that the state vector
V = (MCAS,BS,BS), then 𝑆𝑚 = {1}, 𝑆110 = {1}, 𝑆001 = 0,𝑆111 = {1}, 𝑆𝑝𝑚 = {110, 111}, and 𝑆𝑝𝑏 = {001}. We also denote
by |𝑆| the cardinal of the set 𝑆. Using the above notations, we
have the following lemmas and theorems.

Lemma 7. For any combinational stochastic circuit, if the state
vector V satisfies

󵄨󵄨󵄨󵄨󵄨 𝑆𝑙1,𝑘 󵄨󵄨󵄨󵄨󵄨 ⩽ 1, ∀𝑙1,𝑘 ∈ 𝑆𝑝, (23)

then one has that 𝐸(V) = 𝐸(𝐵𝐼).
Proof. See Appendix A.
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Figure 2: Hardware structure of the input stream generators: (a) MCAS generator; (b) BS generator.

Lemma 8. Two input streams 𝑋1 and 𝑋2, which are both
MCASs, have the following properties:

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋1 (𝑖)) = 𝑛 (𝑛 − 1) 𝐸𝑋1 , (24)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋2 (𝑗)) = 𝑛 (𝑛 − 1) 𝐸𝑋2 , (25)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗)) ⩽ 𝑛 (𝑛 − 1) 𝐸𝑋1𝐸𝑋2 . (26)

Proof. See Appendix B.

Theorem 9. For any combinational stochastic circuit, if the
state vector V satisfies

󵄨󵄨󵄨󵄨𝑆𝑚󵄨󵄨󵄨󵄨 = 1, (27)

then one has 𝐸(V) = 𝐸(𝐵𝐼), and Var(V) ⩽ Var(𝐵𝐼).
Proof. See Appendix C. Lemmas 7 and 8 will be used in the
proof.

Theorem 10. For any combinational stochastic circuit, if the
state vector V satisfies

𝑆𝑚 ⊆ 𝑆pis, (28)󵄨󵄨󵄨󵄨󵄨 𝑆𝑙1,𝑘 󵄨󵄨󵄨󵄨󵄨 ⩽ 1, ∀𝑙1,𝑘 ∈ 𝑆𝑝, (29)

then one has 𝐸(V) = 𝐸(BI), and Var(V) ⩽ Var(BI).
Proof. See Appendix D. Lemmas 7 and 8 will be used in the
proof.

Theorems 9 and 10 give two different sufficient conditions
for the state vector satisfying (21) and (22), respectively. On
the basis of the two theorems, we will propose the random
error reduction scheme for any combinational stochastic
circuit in the next subsection.

3.3. Random Error Reduction Scheme Based onMCAS and BS.
In this subsection, we illustrate how to get the state vector V
which represents the random error reduction scheme based
on MCAS and BS for any combinational stochastic circuit.
Specific steps are stated in Algorithm 1.

Now, we prove that the state vector V obtained from
Algorithm 1 satisfies (21) and (22). Consider the following

two cases: (I) 𝑆pis is a null set; (II) otherwise. In case (I), the
valid steps are (1), (2), (3), and (5). From criterion (a) in step
(3), (27) is satisfied. According toTheorem 9, the state vector
V obtained from these steps satisfies (21) and (22). In case
(II), the valid steps are (1), (2), (4), and (5). From criterion
(a) and (b) in step (4), (28) and (29) are satisfied. According
to Theorem 10, the state vector V obtained from these steps
also satisfies (21) and (22). Therefore, in both cases, the state
vector V obtained from the corresponding steps satisfies (21)
and (22).

3.4. Hardware Cost and Power Consumption. In conventional
stochastic computation, the input streams for stochastic
circuits are all BSs. However, in the proposed random
error reduction scheme, some input streams are specified as
MCASs. Different input streams are generated by different
generators. The hardware structures of the MCAS generator
and the BS generator are shown in Figure 2.TheMCAS gener-
ator consists of an 𝑛-bit comparator and an 𝑛-bit upcounter,
while the BS generator consists of an 𝑛-bit comparator and
an 𝑛-bit Liner Feedback Shift Register (LFSR), where 2𝑛 is
the length of the input stream to be generated. In stochastic
computation system, all the MCAS generators can share the
same 𝑛-bit upcounter. By contrast, each BS generator requires
a different 𝑛-bit LFSR.Thus, the total hardware cost ofMCAS
generators is usually lower than that of BS generators. That is
to say, the proposed random error reduction scheme does not
require any additional hardware cost.

Moreover, due to a lower switching activity, MCAS
generator will have less dynamic power consumption than
BS generator, which is another inherent advantage of our
random error reduction scheme.

4. Case Study

For better understanding of the random error reduction
scheme based on MCAS and BS, we take several typical
stochastic circuits as case studies.We assume that all the input
streams are uncorrelated.

4.1. Case Study 1: AND Gate. In this case study, we illustrate
how to get the random error reduction scheme when 𝑆pis is
not a null set. An AND gate in stochastic logic implements
a binary operator multiplication as 𝑧 = 𝑥1𝑥2. We obtain the
state vector V satisfying (21) and (22) from the steps given in
Algorithm 1.

(1) The relationship between input streams and output
stream can be written as 𝑍(𝑖) = 𝑋1(𝑖)𝑋2(𝑖).
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Requrie: The combinational stochastic circuit implementing arithmetic;
Ensure: The state vector V representing the random error reduction scheme;
(1) Express the relationship between input streams and output stream in the form of (14).
(2) Obtain 𝑆pis. If 𝑆pis is a null set, go to step (3), otherwise, skip step (3) and go to step (4).
(3) If 𝑆pis is a null set, we determine which input streams are specified as MCASs and obtain𝑆𝑚 by the following criteria: (a) Eq. (27) should be satisfied, i.e., only one input stream is

specified as MCAS; (b) on the premise of (a), let |𝑆𝑝𝑚| be maximal. Then, we skip step (4) and
go to step (5).

(4) If 𝑆pis is not a null set, we determine which input streams are specified as MCASs and
obtain 𝑆𝑚 by the following criteria: (a) Eq. (28) should be satisfied, i.e., only PISs are likely
to be specified as MCASs; (b) Eq. (29) should be satisfied, i.e., for each product term, at most
one factor is specified as MCAS; (c) on the premise of (a) and (b), let |𝑆𝑝𝑚| be maximal.
Then, we go to step (5).

(5) The input streams not belonging to 𝑆𝑚 are specified as BSs. From above, we determine
each input stream should be specified as MCAS or BS and obtain the state vector V.

Algorithm 1: Random error reduction scheme based on MCAS and BS.

Table 1: Candidates information in case study 1.

𝑆𝑚 𝑆11 Valid 𝑆𝑝𝑚 |𝑆𝑝𝑚|
{1} {1} Yes {11} 1{2} {2} Yes {11} 1{1, 2} {1, 2} No Not concerned Not concerned

(2) ∀𝑋2(𝑖), (∑𝑙1,2∈𝑀(1) 𝑃𝑖𝑙1,2)/𝑋1(𝑖) = 𝑋2(𝑖) ⩾ 0, and,∀𝑋1(𝑖), (∑𝑙1,2∈𝑀(1) 𝑃𝑖𝑙1,2)/𝑋2(𝑖) = 𝑋1(𝑖) ⩾ 0. Thus, by
Definition 4, 𝑋1 and 𝑋2 are PISs, and 𝑆pis = {1, 2}.
Since 𝑆pis is not a null set, skip step (3) and go to step
(4).

(3) Since 𝑆pis is not a null set, this step is skipped.
(4) Since 𝑋1 and 𝑋2 are PISs, by criterion (a), both of

them are likely to be specified as MCASs. Hence, as
shown in the first column of Table 1, 𝑆𝑚 is chosen
from the following candidates: {1}, {2}, and {1, 2}. For
each candidate of 𝑆𝑚, we get all the corresponding 𝑆𝑙1,2
and see whether criterion (b) is satisfied. If it is, the
candidate is valid. For example, if 𝑆𝑚 = {1}, 𝑆11 = {1}.
Moreover, there is only one product term 𝑃𝑖11, and𝑆𝑝 = {11}. Then, ∀𝑙1,2 ∈ 𝑆𝑝, |𝑆𝑙1,2 | ⩽ 1, which is
equivalent to (29). Criterion (b) is satisfied and the set{1} is a valid candidate. Similarly, the set {2} is also a
valid candidate. However, if 𝑆𝑚 = {1, 2}, 𝑆11 = {1, 2},
which is opposed to (29). Thus, criterion (b) is not
satisfied and the set {1, 2} is not a valid candidate. For
each valid candidate, we get the corresponding |𝑆𝑝𝑚|.
As shown in the last column of Table 1, when 𝑆𝑚 = {1}
or {2}, |𝑆𝑝𝑚| is maximal, and criterion (c) is satisfied.
From above, the set 𝑆𝑚 satisfying all the criteria in step
(4) can be written as 𝑆𝑚 = {1} or {2}. Without loss
of generality, we set 𝑆𝑚 = {1}, and 𝑋1 is specified as
an MCAS. Then, go to step (5).

(5) 𝑋2 is specified as a BS. Thus, the state vector V =(MCAS,BS).

4.2. Case Study 2: XOR Gate. In this case study, we illustrate
how to get random error reduction scheme when 𝑆pis is a
null set. An XOR gate in stochastic logic implements the
arithmetic as follows: 𝑧 = 𝑥1 + 𝑥2 − 2𝑥1𝑥2. We obtain the
state vector V satisfying (21) and (22) from the steps given in
Algorithm 1.

(1) The relationship between input streams and output
stream can be written in the form of (14) as 𝑍(𝑖) =𝑋1(𝑖) + 𝑋2(𝑖) − 2𝑋1(𝑖)𝑋2(𝑖).

(2) If 𝑋2(𝑖) = 1, (∑𝑙1,2∈𝑀(1) 𝑃𝑖𝑙1,2)/𝑋1(𝑖) = −1, and if𝑋1(𝑖) = 1, (∑𝑙1,2∈𝑀(1) 𝑃𝑖𝑙1,2)/𝑋2(𝑖) = −1. Thus, by
Definition 4, 𝑋1 and 𝑋2 are not PISs, and 𝑆pis is a null
set. Then, go to step (3).

(3) By criterion (a), only one of 𝑋1 and 𝑋2 can be
specified as an MCAS. Hence, as shown in the first
column of Table 2, 𝑆𝑚 is chosen from the following
candidates: {1} and {2}. For each candidate, we get
the corresponding |𝑆𝑝𝑚|. As shown in the last column
of Table 2, when 𝑆𝑚 = {1} or {2}, |𝑆𝑝𝑚| is maximal,
and criterion (b) is satisfied. From above, the set 𝑆𝑚
satisfying all the criteria in step (4) can be written as𝑆𝑚 = {1} or {2}. Without loss of generality, we set𝑆𝑚 = {1}, and 𝑋1 is specified as an MCAS. Then, skip
step (4) and go to step (5).

(4) Since 𝑆pis is a null set, this step is skipped.

(5) 𝑋2 is specified as a BS. Thus, the state vector V =(MCAS,BS).
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Table 2: Candidates information in case study 2.

𝑆𝑚 𝑆10 𝑆01 𝑆11 𝑆𝑝𝑚 |𝑆𝑝𝑚|
{1} {1} Null {1} {10, 11} 2{2} Null {2} {2} {01, 11} 2

Table 3: Candidates information in case study 3.

𝑆𝑚 𝑆10000 𝑆10010 𝑆10001 𝑆10011 𝑆01010 𝑆01001 𝑆01011 𝑆00111 Valid |𝑆𝑝𝑚|
{1} {1} {1} {1} {1} Null Null Null Null Yes 4{2} Null Null Null Null {2} {2} {2} Null Yes 3{3} Null Null Null Null Null Null Null {3} Yes 1{2, 3} Null Null Null Null {2} {2} {2} {3} Yes 4{1, 2} {1} {1} {1} {1} {2} {2} {2} Null Yes 7{1, 3} {1} {1} {1} {1} Null Null Null {3} Yes 5{1, 2, 3} {1} {1} {1} {1} {2} {2} {2} {3} Yes 8

4.3. Case Study 3: Stochastic Logic Implementing Bernstein
Polynomial. In this case study, we illustrate how to get the
random error reduction scheme for the stochastic logic
implementing Bernstein polynomial with coefficients in the
unit interval. A Bernstein polynomial of degree 𝑘, denoted
by 𝐵𝑘(𝑥), is defined by 𝐵𝑘(𝑥) = ∑𝑘𝑖=0 𝑏𝑖 ( 𝑘𝑖 ) 𝑥𝑖(1 − 𝑥)𝑘−𝑖,
where each 𝑏𝑖 is a constant coefficient. In [4], Qian et al.
propose the stochastic circuit for the Bernstein polynomial
with coefficients in the unit interval, which is shown in
Figure 3. For a Bernstein polynomial of degree 𝑘, there are2𝑘 + 1 input streams: 𝑋1, 𝑋2, . . . , 𝑋2𝑘+1, with the following
properties: 𝐸𝑋1 = 𝑏0, 𝐸𝑋2 = 𝑏1, . . . , 𝐸𝑋𝑘+1 = 𝑏𝑘, and 𝐸𝑋𝑘+2 =𝐸𝑋𝑘+3 = ⋅ ⋅ ⋅ = 𝐸𝑋2𝑘+1 = 𝑥. For simplicity, we will take the
Bernstein polynomial of degree 2 as an example, where

𝑍 (𝑖) = 𝑋1 (𝑖) (1 − 𝑋4 (𝑖)) (1 − 𝑋5 (𝑖))
+ 𝑋2 (𝑖) 𝑋4 (𝑖) (1 − 𝑋5 (𝑖))
+ 𝑋2 (𝑖) (1 − 𝑋4 (𝑖)) 𝑋5 (𝑖)
+ 𝑋3 (𝑖) 𝑋4 (𝑖) 𝑋5 (𝑖) .

(30)

We obtain the state vectorV satisfying (21) and (22) from the
steps given in Algorithm 1.

(1) The relationship between input streams and output
stream can be rewritten in the form of (14) as

𝑍 (𝑖) = 𝑋1 (𝑖) − 𝑋1 (𝑖) 𝑋4 (𝑖) − 𝑋1 (𝑖) 𝑋5 (𝑖)
+ 𝑋1 (𝑖) 𝑋4 (𝑖) 𝑋5 (𝑖) + 𝑋2 (𝑖) 𝑋4 (𝑖)
+ 𝑋2 (𝑖) 𝑋5 (𝑖) − 2𝑋2 (𝑖) 𝑋4 (𝑖) 𝑋5 (𝑖)
+ 𝑋3 (𝑖) 𝑋4 (𝑖) 𝑋5 (𝑖) .

(31)

(2) ∀𝑋2(𝑖), 𝑋3(𝑖), 𝑋4(𝑖), 𝑋5(𝑖), (∑𝑙1,5∈𝑀(1) 𝑃𝑖𝑙1,5)/𝑋1(𝑖) =1 − 𝑋4(𝑖) − 𝑋5(𝑖) + 𝑋4(𝑖)𝑋5(𝑖) ⩾ 0. Thus, by
Definition 4,𝑋1 is a PIS. Similarly, 𝑋2 and𝑋3 are also
PISs, and 𝑆pis = {1, 2, 3}. Since 𝑆pis is not a null set,
skip step (3) and go to step (4).

Xk+2

Xk+3

X2k+1

X1

X2

Xk+1

·
·
·

·
·
·

MUX
Z

+

Figure 3: Stochastic logic implementing Bernstein polynomial.

(3) Since 𝑆pis is not a null set, this step is skipped.

(4) Since 𝑋1, 𝑋2, and 𝑋3 are PISs, by criterion (a), all of
them are likely to be specified as MCASs. Hence, as
shown in the first column of Table 3, 𝑆𝑚 is chosen
from the following candidates: {1}, {2}, {3}, {1, 2},{1, 3}, {2, 3}, and {1, 2, 3}. For each candidate of 𝑆𝑚,
we get all the corresponding 𝑆𝑙1,5 and see whether
criterion (b) is satisfied. If it is, the candidate is
valid. For example, if 𝑆𝑚 = {1}, then 𝑆10000 = {1},𝑆10010 = {1}, 𝑆10001 = {1}, 𝑆10011 = {1}, 𝑆01010 = 0,𝑆01001 = 0, 𝑆01011 = 0, and 𝑆00111 = 0. Moreover, there
are eight product terms, and 𝑆𝑝 = {10000, 10010,10001, 10011, 01010, 01001, 01011, 00111}. Hence,∀𝑙1,5 ∈ 𝑆𝑝, |𝑆𝑙1,5 | ⩽ 1, which is equivalent to (29).
Criterion (b) is satisfied and the set {1} is a valid
candidate. Similarly, the other sets in the first column
of Table 3 are also valid candidates. For each valid
candidate, we get the corresponding |𝑆𝑝𝑚|. As shown
in the last column of Table 3, when 𝑆𝑚 = {1, 2, 3},|𝑆𝑝𝑚| is maximal, and criterion (c) is satisfied. From
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Figure 4: Simulation platform for evaluating random error.

above, the set 𝑆𝑚 satisfying all the criteria in step (4)
can be written as 𝑆𝑚 = {1, 2, 3}. Then, go to step (5).

(5) 𝑋4 and 𝑋5 are specified as BSs. Thus, the state vector
V = (MCAS,MCAS,MCAS,BS,BS).

Similarly, we can get the state vector V satisfying (21)
and (22) for the stochastic circuit implementing Bernstein
polynomial of degree 𝑛, which can be written as V =(MCAS,MCAS⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

,BS,BS).
5. Simulation Results and Comparison

The simulation platform for evaluating the random error
in stochastic circuits is shown in Figure 4. Assume that
the stochastic circuit is with 𝑘 input streams 𝑋1, 𝑋2, . . . , 𝑋𝑘,
which represent 𝑘 variables for the corresponding arithmetic.
We randomly select 5000 sample points of 𝐸𝑋1 , 𝐸𝑋2 , . . . , 𝐸𝑋𝑘
from [0, 1]. These sample points are used in both stochastic
computation and float-point computation.The random error
can be measured by the average of the absolute difference
between the stochastic computation results (SCR) and the
floating-point computation results (FCR) on these sample
points. In order to simulate the generic and common cir-
cumstance, we used the same LFSR for all the input stream
generators and just change the seed value. The size of LFSR
equals the square root of length of input streams. For the sake
of illustrating that the randomerror reduction scheme is valid
for any input stream length, the length of input streams is
chosen to be 2𝑚, where 𝑚 = 5, 6, . . . , 12. We compare the
random error based on MCAS and BS with that based on
other sequences on the following benchmarks.

(1) AND gate: the random error reduction scheme based
on MCAS and BS for the stochastic logic AND
gate is as follows: 𝑋1 is specified as an MCAS, and𝑋2 is specified as a BS. For comparison, as shown
in Figure 5, we give the simulation results in the
following cases: (a) 𝑋1 is an MCAS, and 𝑋2 is a BS;
(b) 𝑋1 and 𝑋2 are both BSs [4]; (c) 𝑋1 and 𝑋2 are
both FRSs [14]; (d) 𝑋1 and 𝑋2 are DBSs as illustrated
in [3].

(2) XOR gate: the random error reduction scheme based
on MCAS and BS for the stochastic logic XOR gate
is as follows: 𝑋1 is specified as an MCAS, and𝑋2 is specified as a BS. For comparison, as shown
in Figure 6, we give the simulation results in the
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Figure 5: Simulation results for AND gate.

Random error based on BS and MCAS
Random error based on BS
Random error based on FRS

Sequence length
450040003500300025002000150010005000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Ra

nd
om

 er
ro

r

Figure 6: Simulation results for XOR gate.

following cases: (a) 𝑋1 is an MCAS, and 𝑋2 is a BS;
(b) 𝑋1 and 𝑋2 are both BSs [4]; (c) 𝑋1 and 𝑋2 are
both FRSs [14].

(3) Stochastic logic implementing Bernstein polynomial:
two Bernstein polynomials are referred to in [4]. The
one used for approximating gamma correction func-
tion is of degree 6 and with the following coefficients:𝑏0 = 0.0955, 𝑏1 = 0.7207, 𝑏2 = 0.3476, 𝑏3 = 0.9988,𝑏4 = 0.7017, 𝑏5 = 0.9695, and 𝑏6 = 0.9939. The
other used for synthesizing polynomials is of degree
3 and with the coefficients as follows: 𝑏0 = 0.2500,𝑏1 = 0.6250, 𝑏2 = 0.3750, and 𝑏3 = 0.7500.
We denote the stochastic circuit implementing the
former Bernstein polynomial by 𝐵1 and the later by𝐵2. As illustrated in case study 3, the random error
reduction scheme based onMCAS and BS for 𝐵1 is as
follows: 𝑋1, 𝑋2, . . . , 𝑋7 are specified as MCASs, and𝑋8, 𝑋9, . . . , 𝑋13 are specified as BSs. Meanwhile, that
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Figure 7: Simulation results for 𝐵1.
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Figure 8: Simulation results for 𝐵2.

for 𝐵2 is as follows: 𝑋1, 𝑋2, . . . , 𝑋5 are specified as
MCASs, and 𝑋6, 𝑋7, . . . , 𝑋9 are specified as BSs. As
shown in Figure 7, we give the simulation results for𝐵1 in three cases: (a) 𝑋1, 𝑋2, . . . , 𝑋7 are MCASs, and𝑋8, 𝑋9, . . . , 𝑋13 are BSs; (b) all the input streams are
BSs; (c) all the input streams are FRSs. Similarly, as
shown in Figure 8, we also give out the simulation
results for 𝐵2 in three cases: (a) 𝑋1, 𝑋2, . . . , 𝑋5 are
MCASs, and 𝑋6, 𝑋7, . . . , 𝑋9 are BSs; (b) all the input
streams are BSs [4]; (c) all the input streams are FRSs
[14].

From the simulation results for the above benchmarks, we
have the following conclusions.

(i) For all the benchmarks, the random error based
on MCAS and BS is smaller than that based on
BS with any sequence length. Hence, the proposed

random error reduction scheme is effective for those
stochastic circuits.

(ii) In benchmark 1, DBSs have the best performance.
However, they are only suitable for this specific
stochastic circuit. By comparison, the proposed
MCASs and BSs can be used in any combination
stochastic circuit.

(iii) FRSs have better performance than MCASs and BSs
in benchmarks 1 and 2, and vice versa in benchmark
3. Considering the difficulties in hardware generation
for FRSs, the proposed MCASs and BSs, easily gener-
ated by hardware, have much wider applications.

(iv) For all the benchmarks, the random error reduction
scheme based on MCAS and BS is valid for any input
stream length. Hence, the proposed random error
reduction scheme has no length constraints.

6. Conclusion

In this paper, we propose a general random error analysis
method based on AS. According to the analysis results,
we find it feasible to reduce random error for stochastic
computation by using proper ASs as input streams. Then,
we present the random error reduction scheme based on
MCAS andBS, which has the advantages of wide applications,
easy hardware implementation, and flexible length. Both
the theoretical analysis and simulation results confirm the
effectiveness of the proposed scheme. In the future work, we
will further study the features of ASs and apply them into
more complex stochastic circuits.

Appendix

A. Proof of Lemma 7

Proof. By (23), for any product term, at most one factor is an
MCAS. Let𝑋𝑙1,𝑘 denote the input stream that is anMCAS and
a factor of 𝑃𝑖𝑙1,𝑘 . Then, we have

𝐸 (𝑃𝑖𝑙1,𝑘) = 𝐴 𝑙1,𝑘 ∏
V∈𝑁(𝑙1,𝑘)

𝐸 (𝑋V (𝑖))

= {{{{{{{
𝐶𝑙1,𝑘 , 𝑙1,𝑘 ∈ 𝑆𝑝𝑏,
𝐶𝑙1,𝑘𝐸 (𝑋𝑙1,𝑘 (𝑖))

𝐸𝑋𝑙1,𝑘 , 𝑙1,𝑘 ∈ 𝑆𝑝𝑚,
(A.1)

where 𝐶𝑙1,𝑘 = 𝐴 𝑙1,𝑘∏V∈𝑁(𝑙1,𝑘)𝐸𝑋V . The expectation of output
stream can be written as

𝐸𝑍 = 1𝑛
𝑛∑
𝑖=1

𝐸 (𝑍 (𝑖)) = 1𝑛
𝑛∑
𝑖=1

∑
𝑙1,𝑘∈𝑆𝑝

𝐸 (𝑃𝑖𝑙1,𝑘) . (A.2)

If all the input streams are BSs, 𝑆𝑝 = 𝑆𝑝𝑏. Substituting (A.1)
into (A.2) we have

𝐸 (BI) = 1𝑛
𝑛∑
𝑖=1

∑
𝑙1,𝑘∈𝑆𝑝𝑏

𝐸 (𝑃𝑖𝑙1,𝑘) = ∑
𝑙1,𝑘∈𝑆𝑝

𝐶𝑙1,𝑘 . (A.3)
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If the state vector 𝑉 satisfies (23), 𝑆𝑝 = 𝑆𝑝𝑚 ∪𝑆𝑝𝑏. Substituting
(A.1) into (A.2) we have

𝐸 (V) = 1𝑛
𝑛∑
𝑖=1

∑
𝑙1,𝑘∈𝑆𝑝𝑏

𝐸 (𝑃𝑖𝑙1,𝑘) + 1𝑛
𝑛∑
𝑖=1

∑
𝑙1,𝑘∈𝑆𝑝𝑚

𝐸 (𝑃𝑖𝑙1,𝑘)
= ∑
𝑙1,𝑘∈𝑆𝑝𝑏

𝐶𝑙1,𝑘
+ ∑
𝑙1,𝑘∈𝑆𝑝𝑚

𝐶𝑙1,𝑘 (1𝑛
∑𝑛𝑖=1 𝐸 (𝑋𝑙1,𝑘 (𝑖))

𝐸𝑋𝑙1,𝑘 )
= ∑
𝑙1,𝑘∈𝑆𝑝𝑏

𝐶𝑙1,𝑘 + ∑
𝑙1,𝑘∈𝑆𝑝𝑚

𝐶𝑙1,𝑘 = ∑
𝑙1,𝑘∈𝑆𝑝

𝐶𝑙1,𝑘 .

(A.4)

Combining (A.3) and (A.4), 𝐸(V) = 𝐸(BI), and Lemma 7 is
proved.

B. Proof of Lemma 8

Proof.

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐸 (𝑋1 (𝑖)) = 𝑛∑
𝑗=1

( 𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖))) = 𝑛2𝐸𝑋1 . (B.1)

𝑛∑
𝑖=1

∑
𝑗=𝑖

𝐸 (𝑋1 (𝑖)) = ∑
𝑗=𝑖

( 𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖))) = 𝑛𝐸𝑋1 . (B.2)

Combining (B.1) and (B.2), we have

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋1 (𝑖)) = 𝑛 (𝑛 − 1) 𝐸𝑋1 . (B.3)

Similarly,

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋2 (𝑗)) = 𝑛 (𝑛 − 1) 𝐸𝑋2 . (B.4)

Since 𝑋1 and 𝑋2 are MCASs,

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑖)) = {{{
1, 𝑖 ⩽ min (𝑛𝐸𝑋1 , 𝑛𝐸𝑋2) ,
0, otherwise. (B.5)

Meanwhile,
𝑛∑
𝑖=1

∑
𝑗=𝑖

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗))
= 𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑖)) .
(B.6)

Substituting (B.5) into (B.6), we have

𝑛∑
𝑖=1

∑
𝑗=𝑖

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗)) = 𝑛min (𝐸𝑋1 , 𝐸𝑋2) . (B.7)

Moreover,

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗))
= 𝑛∑
𝑖=1

𝐸 (𝑋1 (𝑖)) 𝑛∑
𝑗=1

𝐸 (𝑋2 (𝑗)) = 𝑛2𝐸𝑋1𝐸𝑋2 .
(B.8)

By (B.7) and (B.8), we have

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗))
= 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗))
− 𝑛∑
𝑖=1

∑
𝑗=𝑖

𝐸 (𝑋1 (𝑖)) 𝐸 (𝑋2 (𝑗))
= 𝑛2𝐸𝑋1𝐸𝑋2 − 𝑛min (𝐸𝑋1 , 𝐸𝑋2)
⩽ (𝑛2 − 𝑛) 𝐸𝑋1𝐸𝑋2 .

(B.9)

Combining (B.3), (B.4), and (B.9), Lemma 8 is proved.

C. Proof of Theorem 9

Proof. From (27), only one input stream is specified as an
MCAS when the state vector is V. Thus, (23) is obviously
satisfied. According to Lemma 7, we have that 𝐸(V) = 𝐸(BI).
Then we will prove that V also satisfies (22).

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘)
= 𝐴 𝑙1,𝑘𝐴ℎ1,𝑘 ∏

V∈𝑁(𝑙1,𝑘)
𝐸 (𝑋V (𝑖)) ∏

V∈𝑁(ℎ1,𝑘)
𝐸 (𝑋𝑢 (𝑖)) . (C.1)

Let 𝑋𝑓 denote the input streams that are an MCAS. Then,
(C.1) can be rewritten as

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐶ℎ1,𝑘
𝑙1,𝑘

, 𝑙1,𝑘 ∉ 𝑀 (𝑓) , ℎ1,𝑘 ∉ 𝑀 (𝑓) ,
𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋𝑓 (𝑖))
𝐸𝑋𝑓 , 𝑙1,𝑘 ∈ 𝑀 (𝑓) , ℎ1,𝑘 ∉ 𝑀 (𝑓) ,

𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋𝑓 (𝑖))
𝐸𝑋𝑓 , 𝑙1,𝑘 ∉ 𝑀 (𝑓) , ℎ1,𝑘 ∈ 𝑀 (𝑓) ,

𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋𝑓 (𝑖)) 𝐸 (𝑋𝑓 (𝑗))
(𝐸𝑋𝑓)2

, 𝑙1,𝑘 ∈ 𝑀 (𝑓) , ℎ1,𝑘 ∈ 𝑀 (𝑓) ,

(C.2)
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where 𝐶ℎ1,𝑘
𝑙1,𝑘

= 𝐴 𝑙1,𝑘𝐴ℎ1,𝑘∏V∈𝑁(𝑙1,𝑘)𝐸𝑋V∏𝑢∈𝑁(ℎ1,𝑘)𝐸𝑋𝑢 =𝐶𝑙1,𝑘𝐶ℎ1,𝑘 . From (27), we have

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗))
= ∑
𝑙1,𝑘∈𝑆𝑝

∑
ℎ1,𝑘∈𝑆𝑝

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) .
(C.3)

For illustration purposes, we make the following notations:

𝐹1 = ∑
𝑙1,𝑘∉𝑀(𝑓)

∑
ℎ1,𝑘∉𝑀(𝑓)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,

𝐹2 = ∑
𝑙1,𝑘∈𝑀(𝑓)

∑
ℎ1,𝑘∉𝑀(𝑓)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,

𝐹3 = ∑
𝑙1,𝑘∉𝑀(𝑓)

∑
ℎ1,𝑘∈𝑀(𝑓)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,

𝐹4 = ∑
𝑙1,𝑘∈𝑀(𝑓)

∑
ℎ1,𝑘∈𝑀(𝑓)

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) .

(C.4)

Substituting (C.2) into 𝐹1, we have
𝐹1 = 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∉𝑀(𝑓)

∑
ℎ1,𝑘∉𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

. (C.5)

Substituting (24) and (C.2) into 𝐹2,
𝐹2 = ∑𝑙1,𝑘∈𝑀(𝑓)∑ℎ1,𝑘∉𝑀(𝑓) 𝐶ℎ1,𝑘𝑙1,𝑘 ∑𝑛𝑖=1∑𝑗 ̸=𝑖 𝐸 (𝑋𝑓 (𝑖))

𝐸𝑋𝑓
= 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∈𝑀(𝑓)

∑
ℎ1,𝑘∉𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

.
(C.6)

Similarly, substituting (25) and (C.2) into 𝐹3,
𝐹3 = 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∉𝑀(𝑓)

∑
ℎ1,𝑘∈𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

. (C.7)

Moreover, substituting (C.2) into 𝐹4,
𝐹4
= ∑𝑙1,𝑘∈𝑀(𝑓) ∑ℎ1,𝑘∈𝑀(𝑓) 𝐶ℎ1,𝑘𝑙1,𝑘 ∑𝑛𝑖=1 ∑𝑗 ̸=𝑖 𝐸 (𝑋𝑓 (𝑖)) 𝐸 (𝑋𝑓 (𝑗))

(𝐸𝑋𝑓)2 , (C.8)

where ∑𝑙1,𝑘∈𝑀(𝑓)∑ℎ1,𝑘∈𝑀(𝑓) 𝐶ℎ1,𝑘𝑙1,𝑘 = (∑𝑙1,𝑘∈𝑀(𝑓) 𝐶𝑙1,𝑘)2 ⩾ 0. By
(26) and (C.8),

𝐹4 ⩽ 𝑛 (𝑛 − 1) ∑
𝑙1,𝑘∈𝑀(𝑓)

∑
ℎ1,𝑘∈𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

. (C.9)

Combining (C.5), (C.6), (C.7), and (C.9),
𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) ⩽ 𝑛 (𝑛 − 1) ∑
𝑙1,𝑘∈𝑆𝑝

∑
ℎ1,𝑘∈𝑆𝑝

𝐶ℎ1,𝑘
𝑙1,𝑘

= 𝑛 (𝑛 − 1) ( ∑
𝑙1,𝑘∈𝑆𝑝

𝐶𝑙1,𝑘)
2

.
(C.10)

By (A.3) and (C.10),

1𝑛2
𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) ⩽ 𝑛 − 1𝑛 𝐸2 (BI) . (C.11)

By (12) and (C.11), we have

Var (V) ⩽ 𝐸 (BI) (1 − 𝐸 (BI))𝑛 = Var (BI) . (C.12)

From above, Theorem 9 is proved.

D. Proof of Theorem 10

Proof. We can see that (29) is the same as (23). Thus, by
Lemma 7, we have 𝐸(V) = 𝐸(BI). Then we will prove that
V also satisfies (22). Let 𝑋𝑙1,𝑘 denote the input stream that
is an MCAS and a factor of 𝑃𝑖𝑙1,𝑘 . Let 𝑋ℎ1,𝑘 denote the input
stream that is an MCAS and a factor of 𝑃𝑗

ℎ1,𝑘
. Then, (C.1) can

be rewritten as

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝐶ℎ1,𝑘
𝑙1,𝑘

, 𝑙1,𝑘 ∉ 𝑆𝑝𝑚, ℎ1,𝑘 ∉ 𝑆𝑝𝑚,
𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋𝑙1,𝑘 (𝑖))
𝐸𝑋𝑙1,𝑘 , 𝑙1,𝑘 ∈ 𝑆𝑝𝑚, ℎ1,𝑘 ∉ 𝑆𝑝𝑚,

𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋ℎ1,𝑘 (𝑗))
𝐸𝑋ℎ1,𝑘 , 𝑙1,𝑘 ∉ 𝑆𝑝𝑚, ℎ1,𝑘 ∈ 𝑆𝑝𝑚,

𝐶ℎ1,𝑘
𝑙1,𝑘

𝐸 (𝑋𝑙1,𝑘 (𝑖)) 𝐸 (𝑋ℎ1,𝑘 (𝑗))
(𝐸𝑋𝑙1,𝑘𝐸𝑋ℎ1,𝑘 ) , 𝑙1,𝑘 ∈ 𝑆𝑝𝑚, ℎ1,𝑘 ∈ 𝑆𝑝𝑚.

(D.1)

For illustration purposes, we make the following nota-
tions:

𝐺1 = ∑
𝑙1,𝑘∉𝑆𝑝𝑚

∑
ℎ1,𝑘∉𝑆𝑝𝑚

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,
𝐺2 = ∑
𝑙1,𝑘∈𝑆𝑝𝑚

∑
ℎ1,𝑘∉𝑆𝑝𝑚

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,
𝐺3 = ∑
𝑙1,𝑘∉𝑆𝑝𝑚

∑
ℎ1,𝑘∈𝑆𝑝𝑚

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) ,
𝐺4 = ∑
𝑙1,𝑘∈𝑆𝑝𝑚

∑
ℎ1,𝑘∈𝑆𝑝𝑚

𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑃𝑖𝑙1,𝑘𝑃𝑗ℎ1,𝑘) .

(D.2)

Substituting (D.1) into 𝐺1,
𝐺1 = 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∉𝑆𝑝𝑚

∑
ℎ1,𝑘∉𝑆𝑝𝑚

𝐶ℎ1,𝑘
𝑙1,𝑘

. (D.3)
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Substituting (24) and (D.1) into 𝐺2,
𝐺2 = ∑𝑙1,𝑘∈𝑆𝑝𝑚 ∑ℎ1,𝑘∉𝑆𝑝𝑚 𝐶ℎ1,𝑘

𝑙1,𝑘
∑𝑛𝑖=1 ∑𝑗 ̸=𝑖 𝐸 (𝑋𝑙1,𝑘 (𝑖))

𝐸𝑋𝑙1,𝑘
= 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∈𝑆𝑝𝑚

∑
ℎ1,𝑘∉𝑆𝑝𝑚

𝐶ℎ1,𝑘
𝑙1,𝑘

. (D.4)

Similarly, substituting (25) and (D.1) into 𝐺3,
𝐺3 = 𝑛 (𝑛 − 1) ∑

𝑙1,𝑘∉𝑆𝑝𝑚

∑
ℎ1,𝑘∈𝑆𝑝𝑚

𝐶ℎ1,𝑘
𝑙1,𝑘

. (D.5)

Moreover, substituting (D.1) into 𝐺4,

𝐺4 = ∑𝑙1,𝑘∈𝑆𝑝𝑚 ∑ℎl,𝑘∈𝑆𝑝𝑚 𝐶ℎ1,𝑘
𝑙1,𝑘

∑𝑛𝑖=1 ∑𝑗 ̸=𝑖 𝐸 (𝑋𝑙1,𝑘 (𝑖)) 𝐸 (𝑋ℎ1,𝑘 (𝑗))
(𝐸𝑋𝑙1,𝑘𝐸𝑋ℎ1,𝑘 )

= ∑𝑒∈𝑆𝑚 ∑𝑙1,𝑘∈𝑀(𝑒)∑𝑓∈𝑆𝑚 ∑ℎ1,𝑘∈𝑀(𝑓) 𝐶ℎ1,𝑘𝑙1,𝑘 ∑𝑛𝑖=1 ∑𝑗 ̸=𝑖 𝐸 (𝑋𝑒 (𝑖)) 𝐸 (𝑋𝑓 (𝑗))
(𝐸𝑋𝑒𝐸𝑋𝑓) .

(D.6)

According to (28), all the input streams that are
MCASs should be PISs. Thus, 𝑋𝑒 and 𝑋𝑓 are both PISs.
By Definition 6, ∀𝑋1(𝑖), 𝑋2(𝑖), . . . , 𝑋𝑒−1(𝑖), 𝑋𝑒+1(𝑖), . . . , 𝑋𝑘(𝑖),(∑𝑙1,k∈𝑀(𝑒) 𝑃𝑖𝑙1,k )/𝑋𝑒(𝑖) ⩾ 0. Thus, we have

𝐸 (∑𝑙1,𝑘∈𝑀(𝑒) 𝑃𝑖𝑙1,𝑘𝑋𝑒 (𝑖) ) = ∑𝑙1,𝑘∈𝑀(𝑒) 𝐶𝑙1,𝑘𝐸𝑋𝑒 ⩾ 0. (D.7)

Similarly,

∑ℎ1,𝑘∈𝑀(𝑓) 𝐶ℎ1,𝑘𝐸𝑋𝑓 ⩾ 0. (D.8)

Combining (D.7) and (D.8),

∑
𝑙1,𝑘∈𝑀(𝑒)

∑
ℎ1,𝑘∈𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

⩾ 0. (D.9)

By (26), (D.6), and (D.9),

𝐺4 ⩽ 𝑛 (𝑛 − 1) ∑
𝑒∈𝑆𝑚

∑
𝑙1,𝑘∈𝑀(𝑒)

∑
𝑓∈𝑆𝑚

∑
ℎ1,𝑘∈𝑀(𝑓)

𝐶ℎ1,𝑘
𝑙1,𝑘

= 𝑛 (𝑛 − 1) ∑
𝑙1,𝑘∈𝑆𝑝𝑚

∑
ℎ1,𝑘∈𝑆𝑝𝑚

𝐶ℎ1,𝑘
𝑙1,𝑘

. (D.10)

Combining (D.3), (D.4), (D.5), and (D.10),
𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) ⩽ 𝑛 (𝑛 − 1) ∑
𝑙1,𝑘∈𝑆𝑝

∑
ℎ1,𝑘∈𝑆𝑝

𝐶ℎ1,𝑘
𝑙1,𝑘

= 𝑛 (𝑛 − 1) ( ∑
𝑙1,𝑘∈𝑆𝑝

𝐶𝑙1,𝑘)
2

.
(D.11)

By (A.3) and (D.11),

1𝑛2
𝑛∑
𝑖=1

∑
𝑗 ̸=𝑖

𝐸 (𝑍 (𝑖) 𝑍 (𝑗)) ⩽ 𝑛 − 1𝑛 𝐸2 (BI) (D.12)

By (12) and (D.12), we have

Var (V) ⩽ 𝐸 (BI) (1 − 𝐸 (BI))𝑛 = Var (BI) . (D.13)

From above, Theorem 10 is proved.
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