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For a quarter car with nonlinear active suspension in rough road, the problem of random modeling and control is considered.
According to the relative motion principle, the influence of rough road can be seen as that force is disturbed by the noise and a
random model is constructed. By an appropriate transform, the model is transformed into a lower triangular system, which can
be used as backstepping method. Then a controller is designed such that the mean square of the state converges to an arbitrarily
small neighborhood of zero by tuning design parameters.The simulation results illustrate the effectiveness of the proposed scheme.
Therefore, the active suspension system offers better riding comfort and vehicle handing to the passengers.

1. Introduction

The active suspension is the key technology for vehicles to
achieve both ride comfort and control performance. Com-
pared with the passive and semiactive suspension system, the
active suspension can supply energy from an external source
and generate force to achieve the desired performance.There-
fore, the performance of active suspension system is better.
In recent decades, the control of active suspension systems
has been enthusiastically studied by many researchers. Great
efforts have been made in modeling and developing control
techniques to obtain the ride comfort.Many controlmethods,
for instance, adaptive control [1], PD control [2], robust
control [3], fuzzy logic control [4, 5], intelligent control [6],
and sliding mode control [7, 8], have been recently proposed.
However, all of these studies are based on deterministic
systems.

In the actual life, the car often runs on rough roads and
the influence of the rough road is not negligible. Therefore, it
is expected that the passenger still feels comfortable in rough
road. For increasing the passenger’s comfort, the vertical
acceleration of the vehicle caused by road vibrations must be
limited whichmeans that the suspension systemmust absorb
the road vibrations and prevent it from transferring to the
vehicle body and passengers. It is very necessary to study the
random model and control of nonlinear active suspension
system in rough road.

In [9–12], the design methods of the controller with dif-
ferent stochastic mechanical systems were studied. However,
the stochastic disturbance was described as white noise in
these literatures. Because of absorbers, it is more reasonable
to describe the final effect of road irregularities as stationary
processes. To overcome the conservation, [13] constructed
a theoretical framework on stability of random differential
equation systems (RDEs) where stochastic disturbance is
stationary processes. For a class of Lagrange systems with
colored noise, [14] designed a tracking controller such that
the mean square of the tracking error converges to an
arbitrarily small neighborhood of zero.

Inspired by these, the model and control problem of
nonlinear active suspension in rough road are considered in
this paper. The main work consists of the following aspects.(1) Different from the linear deterministic system in [2–
5], the active suspension with nonlinear damper in rough
road is considered in this paper, which increases the difficulty
of modeling and design.(2)The main difficulty for dynamics modeling is how to
transform the effect of the road irregularities to the suspen-
sion. In this paper, regardless of the rough road, dynamics
model of the system is firstly constructed. According to the
dynamic-static method and the relative motion, the road
irregularities are transformed to the force disturbed by the
stationary processes. Then the random dynamic model is
established.
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(3) Because the system is an underactuated system which
is not the quasi lower triangular structure, one cannot use
the design method of vector controller in [9–12]. In this
paper, according to special form of the model, the system is
transformed into a lower triangular system by a transform.
Then using backstepping design method, a state feedback
controller is designed such that the state can be made
arbitrarily small by tuning design parameters.The simulation
results illustrate the effectiveness of the proposed scheme.

This paper is organized as follows. In Section 2, the
mathematical preparation is given and the problem is for-
mulated. The random model is constructed in Section 3. In
Section 4, the tracking controller design and stability analysis
are addressed. A simulation result is given in Section 5.
Section 6 concludes the paper.

Notations. The following notations are used throughout the
paper: For a vector 𝑥, 𝑥𝑇 denotes its transpose; | ⋅ | denotes
the usual Euclidean norm of “⋅”; 𝐸 denotes the mathematical
expectation; R+ denotes the set of all nonnegative real
numbers; R𝑛 denotes the real 𝑛-dimensional space; R𝑛×𝑚
denotes the real 𝑛 × 𝑚 matrix space; 𝐶𝑖 denotes the set of all
functions with continuous 𝑖th partial derivative; K denotes
the set of all functions: R+ → R+, which are continuous,
strictly increase, and vanish at zero;K∞ denotes the set of all
functions which are of classK and unbounded.KL denotes
the set of all functions 𝛽(𝑠, 𝑡) : R+ × R+ → R+, which is
of class-K for each fixed 𝑡 and decreases to zero as 𝑡 → ∞
for each fixed 𝑠. For simplicity, sometimes the arguments of
functions are dropped.

2. Mathematical Preliminaries and
Problem Formulation

2.1. Mathematical Preliminaries. Consider the following ran-
dom nonlinear affine system:

𝑥̇ = 𝑓 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) 𝜉 (𝑡) , 𝑥 (𝑡0) = 𝑥0, (1)

where 𝑥 ∈ R𝑛 is the state of system, 𝜉(𝑡) ∈ R𝑚 is a stochastic
process, and the underlying complete probability space is
taken to be the quartet (Ω,F,F𝑡, 𝑃) with a filtration F𝑡
satisfying the usual condition (i.e., it is increasing and right
continuous whileF0 contains all𝑃-null sets). Both functions𝑓 : R𝑛 × R+ → R𝑛 and 𝑔 : R𝑛 × R+ → R𝑛×𝑚 are locally
Lipschitz in 𝑥 piecewise continuous in 𝑡; that is, for each𝑅 > 0, there exists a constant 𝐿𝑅 > 0 such that󵄨󵄨󵄨󵄨𝑓 (𝑥1, 𝑡) − 𝑓 (𝑥2, 𝑡)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑔 (𝑥1, 𝑡) − 𝑔 (𝑥2, 𝑡)󵄨󵄨󵄨󵄨≤ 𝐿𝑅 󵄨󵄨󵄨󵄨𝑥2 − 𝑥1󵄨󵄨󵄨󵄨 (2)

for any 𝑡 ∈ R+ and 𝑥1, 𝑥2 ∈ 𝑈𝑅 = {𝑥 : |𝑥| ≤ 𝑅}, 𝑥1 ̸= 𝑥2.
Moreover, 𝑓(0, 𝑡) and 𝑔(0, 𝑡) are bounded a.s.

In order to obtain the stability, process 𝜉(𝑡) satisfies the
following assumption.

Assumption 1. Process 𝜉 is a F𝑡-adapted process and piece-
wise continuous, and there exist positive constants 𝑐0, 𝑑0 such
that

sup
𝑡0≤𝑠≤𝑡

𝐸 󵄨󵄨󵄨󵄨𝜉 (𝑠)󵄨󵄨󵄨󵄨2 ≤ 𝑑0𝑒𝑐0𝑡, ∀𝑡 ≥ 𝑡0. (3)

The following definition, criterion, and inequality are
represented now for the stability analysis.

Definition 2 (see [13]). System (1) with Assumption 1 is said
to be noise-to-state stable in probability (NSS-P) if there exist
a function 𝛽(⋅, ⋅) ∈ KL and a function 𝛾(⋅) ∈ K∞ such that,
for any 𝜖 > 0, 𝑥0 ∈ R𝑛, 𝑡 ≥ 𝑡0,

𝑃{|𝑥 (𝑡)| ≤ 𝛽 (󵄨󵄨󵄨󵄨𝑥0󵄨󵄨󵄨󵄨 , 𝑡 − 𝑡0) + 𝛾( sup
𝑡0≤𝑠≤𝑡

𝐸 󵄨󵄨󵄨󵄨𝜉 (𝑠)󵄨󵄨󵄨󵄨2)}≥ 1 − 𝜖. (4)

Lemma 3 (see [13]). Suppose that for system (1) with condi-
tions (3), there exist parameters 𝑐 > 0 and 𝑑 > 0 and a function𝑉 ∈ 𝐶1 such that𝛼1 (|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼2 (|𝑥|) ,𝑉̇ (𝑥 (𝑡)) ≤ −𝑐𝑉 (𝑥 (𝑡)) + 𝑑 󵄨󵄨󵄨󵄨𝜉 (𝑡)󵄨󵄨󵄨󵄨2 , (5)

where 𝛼1, 𝛼2 are functions of classK∞. Then system (1) has a
unique solution, and the system is NSS-P.

Definition 4 (see [15]). A stochastic process 𝑥(𝑡) is said to
be bounded in probability if the random variables |𝑥(𝑡)| are
bounded in probability uniformly in 𝑡; that is,

lim
𝑅→∞

sup
𝑡>0

𝑃 {|𝑥 (𝑡)| > 𝑅} = 0. (6)

Lemma 5 (see [13]). Under Assumption 1, if there exist a
positive-definite function 𝑉(𝑥, 𝑡) ∈ 𝐶 and a constant 𝑑𝑐 > 0
such that

lim
𝑟→∞

inf
|𝑥|>𝑟

𝑉 (𝑥, 𝑡) = ∞,
𝐸𝑉 (𝑥, 𝑡) ≤ 𝑑𝑐, (7)

then system (1) has a unique solution, and the solution is
bounded in probability.

Lemma 6 (see [16]). Consider the continuous functions 𝑘(𝑡),ℎ(𝑡), and they are integrable over every finite interval. If a
continuous function 𝑦(𝑡) satisfies the inequalitẏ𝑦 (𝑡) ≤ 𝑘 (𝑡) 𝑦 (𝑡) + ℎ (𝑡) , ∀𝑡 ≥ 𝑡0, (8)

then

𝑦 (𝑡) ≤ 𝑦 (𝑡0) 𝑒∫𝑡𝑡0 𝑘(𝑠)𝑑𝑠 + ∫𝑡
𝑡0
𝑒∫𝑡𝑠 𝑘(𝑢)𝑑𝑢ℎ (𝑠) 𝑑𝑠, ∀𝑡 ≥ 𝑡0. (9)
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Figure 1: The quarter-car model for active suspension design with
parallel connection of actuator with spring and damper.

2.2. Problem Formulation. The simplified quarter-car active
suspensionmodel is shown in Figure 1 (see [17]).The car runs
at a constant speed on a rough road. The road irregularity
is described as white noise 𝜉0, which is the acceleration of
vertical oscillation.𝑀𝑏 is the mass of car body. The wheel is
modeled as an unsprung mass 𝑀us with a linear spring 𝐾𝑡.
The actuator is connected in parallel with a linear spring 𝐾𝑎
and a nonlinear damper 𝐶𝑎. 𝑢𝑎 is the control force from the
actuator such as hydraulic actuator. When the components
are stationary, the system is in equilibrium. 𝑠1 and 𝑠2 denote
the barycenter displacements of wheel and vehicle body
relative to the equilibrium position, respectively.

The objective of this paper is to design a controller to get
more comfortable riding. To this end, two efforts will be taken
in the following sections.(1) Considering the road roughness and the nonlinear
damper, construct an appropriate random model to describe
the suspension motion of the car.(2) Design a controller 𝑢𝑎 such that the states 𝑠1 and 𝑠2
can be small as much as possible.

3. Modeling of Nonlinear Active
Suspension System

Consider the system of particles consisting of the wheel and
the car body which are regarded as themass points, and select(𝑠1, 𝑠2) as the generalized coordinate.

3.1. Modeling under the Assumption That the Road Is Smooth.
The total kinetic energy of the system is 𝐾 = (1/2)𝑀us ̇𝑠21 +(1/2)𝑀𝑏 ̇𝑠22. The total potential energy of the system equals𝑃 = (1/2)𝐾𝑎(𝑠2−𝑠1)2+(1/2)𝐾𝑡𝑠21.Then the Lagrange function𝐿 = 𝐾 − 𝑃= 12𝑀𝑏 ̇𝑠22 + 12𝑀us ̇𝑠21 − 12𝐾𝑎 (𝑠2 − 𝑠1)2 − 12𝐾𝑡𝑠21. (10)

According to the Lagrangian mechanics [18], the system
model is 𝑀us ̈𝑠1 − 𝐾𝑎 (𝑠2 − 𝑠1) + 𝐾𝑡𝑠1 = 𝜏1,𝑀𝑏 ̈𝑠2 + 𝐾𝑎 (𝑠2 − 𝑠1) = 𝜏2, (11)

where 𝜏1 and 𝜏2 are the generalized forces.

Considering the damper nonlinearity, the Rayleigh dissi-
pation function is

𝑅 = 𝐶𝑎𝑝 + 1 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝+1 , (12)

where 𝑝 > 0 is an index, which represent the nonlinear form
of damping force. Then the dissipative force is

𝜏𝑑 = (𝜏𝑑1𝜏𝑑2) = −𝜕𝑅𝜕 ̇𝑠 = −(𝜕𝑅𝜕 ̇𝑠1𝜕𝑅𝜕 ̇𝑠2)
= ( 𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝−𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝) ,

(13)

where sign(⋅) is the sign function. The control force 𝑢 =[𝑢1, 𝑢2]𝑇, where 𝑢1 and 𝑢2 are the control force acting wheel
and car body, respectively. Then by replacing 𝜏𝑖 with 𝜏𝑑𝑖 + 𝑢𝑖,
the control system can be modeled as𝑀us ̈𝑠1 − 𝐾𝑎 (𝑠2 − 𝑠1) + 𝐾𝑡𝑠1= 𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 + 𝑢1,𝑀𝑏 ̈𝑠2 + 𝐾𝑎 (𝑠2 − 𝑠1)= −𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 + 𝑢2.

(14)

Remark 7. In this paper, the suspension uses the nonlinear
damper. In the dissipative force (13), 𝑝 > 0 is an index, which
represents the nonlinear form of damping force (see [19]).
When 𝑝 = 1, it is the common linear damping force.

3.2. Modeling under the Assumption That the Road Is Rough.
Road irregularities are often described as white noises.
Because of the spring, the final influence of rough road to
the wheel and the car body is stationary processes 𝜉1 and 𝜉2,
respectively. Therefore, there exists positive constant 𝐾 such
that

sup
𝑡0≤𝑠≤𝑡

𝐸 󵄨󵄨󵄨󵄨𝜉𝑖 (𝑠)󵄨󵄨󵄨󵄨2 ≤ 𝐾, ∀𝑡 ≥ 𝑡0, 𝑖 = 1, 2. (15)

According to dynamic-static method and relative motion
[20], the effect of rough road can be seen as the force is
disturbed by the noise. Replacing 𝑢1 and 𝑢2 with 𝑢1 − 𝑀us𝜉1
and 𝑢2 −𝑀𝑏𝜉2 in (14) results in𝑀us ̈𝑠1 − 𝐾𝑎 (𝑠2 − 𝑠1) + 𝐾𝑡𝑠1= 𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 + 𝑢1 −𝑀us𝜉1,𝑀𝑏 ̈𝑠2 + 𝐾𝑎 (𝑠2 − 𝑠1)= −𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 + 𝑢2 −𝑀𝑏𝜉2.

(16)
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Considering the control force from the actuator, 𝑢1 = −𝑢𝑎
and 𝑢2 = 𝑢𝑎. Thus, (16) can be rewritten as𝑀us ̈𝑠1 − 𝐾𝑎 (𝑠2 − 𝑠1) + 𝐾𝑡𝑠1= 𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 − 𝑢𝑎 −𝑀us𝜉1,𝑀𝑏 ̈𝑠2 + 𝐾𝑎 (𝑠2 − 𝑠1)= −𝐶𝑎sign ( ̇𝑠2 − ̇𝑠1) 󵄨󵄨󵄨󵄨 ̇𝑠2 − ̇𝑠1󵄨󵄨󵄨󵄨𝑝 + 𝑢𝑎 −𝑀𝑏𝜉2.

(17)

Remark 8. In order tomodel, the control force 𝑢𝑎 provided by
the actuator can be seen as two independent forces 𝑢1 and 𝑢2,
which act on the car body and the wheel, respectively. Then
according to the Lagrangian mechanics and the dynamic-
static method, the randommodel (16) is constructed. Finally,
considering the constraint 𝑢1 = −𝑢𝑎 and 𝑢2 = 𝑢𝑎, the final
random model (17) is established.

4. Control of Nonlinear Active
Suspension System

4.1. Control Design. In order to design controller, choose𝑥1 = 𝑀us𝑠1 +𝑀𝑏𝑠2,𝑥2 = 𝑥̇1,𝑥3 = 𝑠2 − 𝑠1,𝑥4 = 𝑥̇3.
(18)

𝑥̇1 = 𝑥2,𝑥̇2 = − 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑥3 −𝑀us𝜉1 −𝑀𝑏𝜉2,𝑥̇3 = 𝑥4,𝑥̇4 = −𝐾𝑎 ( 1𝑀us
+ 1𝑀𝑏)𝑥3 + 𝐾𝑡𝑀us (𝑀𝑏 +𝑀us)𝑥1− 𝐾𝑡𝑀𝑏𝑀us (𝑀𝑏 +𝑀us)𝑥3− 𝐶𝑎 ( 1𝑀us
+ 1𝑀𝑏) sign (𝑥4) 󵄨󵄨󵄨󵄨𝑥4󵄨󵄨󵄨󵄨𝑝

+ ( 1𝑀us
+ 1𝑀𝑏)𝑢𝑎 − 𝜉2 + 𝜉1.

(19)

Remark 9. Because system (17) is underactuated system
which is not transformed into the quasi lower triangular
structure, the design methods of vector controller in [9–
12] are not applicable to this system. In order to design the
controller with backstepping design method [17], the system
is transformed into a lower triangular system by transform
(18).

Then the backstepping controller can be given step by
step.

Step 1. Introduce the first two error variables𝑧1 = 𝑥1,𝑧2 = 𝑥2 − 𝛼1, (20)

where 𝛼1 is a function to be designed. For the Lyapunov
function 𝑉1 = (1/2)𝑧21 , by choosing 𝛼1 = −𝑐1𝑧1 with design
parameter 𝑐1 > 0, the derivative of 𝑉1 is𝑉̇1 = −𝑐1𝑧21 + 𝑧1𝑧2. (21)

Step 2. Introducing 𝑧3 = 𝑥3 − 𝛼2, (22)

then𝑧̇2 = − 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 (𝑧3 + 𝛼2) + 𝑐1𝑥2−𝑀us𝜉1 −𝑀𝑏𝜉2. (23)

For the Lyapunov function 𝑉2 = 𝑉1 + (1/2)𝑧22 , the derivative
of 𝑉2 is𝑉̇2= −𝑐1𝑧21 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2𝑧3+ 𝑧2 (𝑧1 − 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏𝛼2 + 𝑐1𝑥2)− 𝑧2𝑀us𝜉1 − 𝑧2𝑀𝑏𝜉2.

(24)

Applying Young’s inequality (for any vectors 𝑥, 𝑦 ∈ R𝑛 and
any scalars 𝜖 > 0, 𝑝 > 1, there holds 𝑥𝑇𝑦 ≤ (𝜖𝑝/𝑝)|𝑥|𝑝 +(1/𝑞𝜖𝑞)|𝑦|𝑞, where 𝑞 = 𝑝/(𝑝 − 1)) to the last two terms in
(24), one has −𝑧2𝑀us𝜉1 ≤ 𝑑1𝑀2us𝑧22 + 14𝑑1 𝜉21 ,−𝑧2𝑀𝑏𝜉2 ≤ 𝑑2𝑀2𝑏𝑧22 + 14𝑑2 𝜉22 , (25)

where 𝑑1 > 0 and 𝑑2 > 0 are design parameters. Substituting
(25) into (24), the resulting 𝑉̇2 is𝑉̇2 ≤ −𝑐1𝑧21 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2𝑧3 + 𝑧2 (𝑧1− 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏𝛼2 + 𝑐1𝑥2 + 𝑑1𝑀2us𝑧2+ 𝑑2𝑀2𝑏𝑧2) + 14𝑑1 𝜉21 + 14𝑑2 𝜉22 .

(26)

Choose𝛼2 = 𝑀us +𝑀𝑏𝐾𝑡𝑀𝑏 (−𝑧1 − 𝑐2𝑧2 + 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 − 𝑐1𝑥2− 𝑑1𝑀2us𝑧2 − 𝑑2𝑀2𝑏𝑧2) , (27)
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where 𝑐2 > 0 is a design parameter.Then (26) can be rewritten
as

𝑉̇2 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2𝑧3 + 14𝑑1 𝜉21+ 14𝑑2 𝜉22 . (28)

Step 3. Introducing 𝑧4 = 𝑥4 − 𝛼3, (29)

then

𝑧̇3 = 𝑧4 + 𝛼3 − 𝜕𝛼2𝜕𝑥1 𝑥2 − 𝜕𝛼2𝜕𝑥2 (− 𝐾𝑡𝑀us +𝑀𝑏 𝑥1+ 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑥3 −𝑀us𝜉1 −𝑀𝑏𝜉2) . (30)

For the Lyapunov function 𝑉3 = 𝑉2 + (1/2)𝑧23 , the derivative
of 𝑉3 is

𝑉̇3 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 + 𝑧3𝑧4 + 14𝑑1 𝜉21 + 14𝑑2 𝜉22+ 𝑧3 ( 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2 + 𝛼3 − 𝜕𝛼2𝜕𝑥1 𝑥2− 𝜕𝛼2𝜕𝑥2 (− 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑥3))− 𝑧3 𝜕𝛼2𝜕𝑥2𝑀us𝜉1 − 𝑧3 𝜕𝛼2𝜕𝑥2𝑀𝑏𝜉2.
(31)

Applying Young’s inequality to the last two terms in (31), one
has

−𝑧3 𝜕𝛼2𝜕𝑥2𝑀us𝜉1 ≤ 𝑑3 (𝜕𝛼2𝜕𝑥2)2𝑀2us𝑧23 + 14𝑑3 𝜉21 ,−𝑧3 𝜕𝛼2𝜕𝑥2𝑀𝑏𝜉2 ≤ 𝑑4 (𝜕𝛼2𝜕𝑥2)2𝑀2𝑏𝑧23 + 14𝑑4 𝜉22 ,
(32)

where 𝑑3 > 0 and 𝑑4 > 0 are design parameters. Then (31)
can be rewritten as

𝑉̇3 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 + 𝑧3𝑧4 + 𝑧3 ( 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2 + 𝛼3− 𝜕𝛼2𝜕𝑥1 𝑥2 − 𝜕𝛼2𝜕𝑥2 (− 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑥3)+ 𝑑3 (𝜕𝛼2𝜕𝑥2)2𝑀2us𝑧3 + 𝑑4 (𝜕𝛼2𝜕𝑥2)2𝑀2𝑏𝑧3) + ( 14𝑑1+ 14𝑑3) 𝜉21 + ( 14𝑑2 + 14𝑑4) 𝜉22 .
(33)

Choose

𝛼3 = − 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2 − 𝑐3𝑧3 + 𝜕𝛼2𝜕𝑥1 𝑥2+ 𝜕𝛼2𝜕𝑥2 (− 𝐾𝑡𝑀us +𝑀𝑏 𝑥1 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑥3)− 𝑑3 (𝜕𝛼2𝜕𝑥2)2𝑀2us𝑧3 − 𝑑4 (𝜕𝛼2𝜕𝑥2)2𝑀2𝑏𝑧3,
(34)

where 𝑐3 > 0 is a design parameter. Then

𝑉̇3 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 − 𝑐3𝑧23 + 𝑧3𝑧4 + ( 14𝑑1 + 14𝑑3) 𝜉21+ ( 14𝑑2 + 14𝑑4) 𝜉22 . (35)

Step 4. From (29), one has

𝑧̇4 = 𝜓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) + ( 1𝑀us
+ 1𝑀𝑏)𝑢𝑎+ (𝜕𝛼3𝜕𝑥2𝑀us + 1) 𝜉1 + (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1) 𝜉2, (36)

where 𝜓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = −𝐾𝑎(1/𝑀us + 1/𝑀𝑏)𝑥3 + (𝐾𝑡/𝑀us(𝑀𝑏+𝑀us))𝑥1−(𝐾𝑡𝑀𝑏/𝑀us(𝑀𝑏+𝑀us))𝑥3−𝐶𝑎(1/𝑀us+1/𝑀𝑏)sign(𝑥4)|𝑥4|𝑝 − (𝜕𝛼3/𝜕𝑥1)𝑥2 − (𝜕𝛼3/𝜕𝑥2)(−(𝐾𝑡/(𝑀us +𝑀𝑏))𝑥1 + (𝐾𝑡𝑀𝑏/(𝑀us + 𝑀𝑏))𝑥3) − (𝜕𝛼3/𝜕𝑥3)𝑥4. For the
Lyapunov function 𝑉4 = 𝑉3 + (1/2)𝑧24 , the derivative of 𝑉4
is

𝑉̇4 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 − 𝑐3𝑧23 + ( 14𝑑1 + 14𝑑3) 𝜉21+ ( 14𝑑2 + 14𝑑4) 𝜉22+ 𝑧4 (𝑧3 + 𝜓 + ( 1𝑀us
+ 1𝑀𝑏)𝑢𝑎)+ 𝑧4 (𝜕𝛼3𝜕𝑥2𝑀us − 1) 𝜉1 + 𝑧4 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1) 𝜉2.

(37)

Applying Young’s inequality, one has

𝑧4 (𝜕𝛼3𝜕𝑥2𝑀us + 1) 𝜉1 ≤ 𝑑5 (𝜕𝛼3𝜕𝑥2𝑀us + 1)2 𝑧24
+ 14𝑑5 𝜉21 ,𝑧4 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1) 𝜉2 ≤ 𝑑6 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1)2 𝑧24+ 14𝑑6 𝜉22 ,

(38)
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where 𝑑5 > 0 and 𝑑6 > 0 are design parameters. Substituting
(38) into (37) leads to

𝑉̇4 ≤ −𝑐1𝑧21 − 𝑐2𝑧22 − 𝑐3𝑧23 + 𝑧4 (𝑧3 + 𝜓
+ ( 1𝑀us

+ 1𝑀𝑏)𝑢𝑎 + 𝑑5 (𝜕𝛼3𝜕𝑥2𝑀us + 1)2 𝑧4
+ 𝑑6 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1)2 𝑧4) + ( 14𝑑1 + 14𝑑3 + 14𝑑5)⋅ 𝜉21 + ( 14𝑑2 + 14𝑑4 + 14𝑑6) 𝜉22 .

(39)

Choose

𝑢𝑎 = 𝑀us𝑀𝑏𝑀us +𝑀𝑏 (−𝑧3 − 𝑐4𝑧4 − 𝜓− 𝑑5 (𝜕𝛼3𝜕𝑥2𝑀us + 1)2 𝑧4 − 𝑑6 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1)2 𝑧4) ,
(40)

where 𝑐4 > 0 is a design parameter. Then

𝑉̇4 ≤ − 4∑
𝑖=1
𝑐𝑖𝑧2𝑖 + ( 14𝑑1 + 14𝑑3 + 14𝑑5) 𝜉21+ ( 14𝑑2 + 14𝑑4 + 14𝑑6) 𝜉22 .

(41)

Up to now, the closed-loop system is obtained𝑧̇1 = −𝑐1𝑧1 + 𝑧2,𝑧̇2 = −𝑧1 − 𝑐2𝑧2 + 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧3 − 𝑀us +𝑀𝑏𝐾𝑡𝑀𝑏 (𝑑1𝑀2us+ 𝑑2𝑀2𝑏) 𝑧2 −𝑀us𝜉1 −𝑀𝑏𝜉2,
𝑧̇3 = − 𝐾𝑡𝑀𝑏𝑀us +𝑀𝑏 𝑧2 − 𝑐3𝑧3 + 𝑧4 − 𝑑3 (𝜕𝛼2𝜕𝑥2)2𝑀2us𝑧3− 𝑑4 (𝜕𝛼2𝜕𝑥2)2𝑀2𝑏𝑧3 + 𝜕𝛼2𝜕𝑥2 (𝑀us𝜉1 +𝑀𝑏𝜉2) ,
𝑧̇4 = −𝑧3 − 𝑐4𝑧4 − 𝑀us𝑀𝑏𝑀us +𝑀𝑏 (𝑑5 (𝜕𝛼3𝜕𝑥2𝑀us + 1)2

+ 𝑑6 (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1)2)𝑧4 + (𝜕𝛼3𝜕𝑥2𝑀us + 1) 𝜉1
+ (𝜕𝛼3𝜕𝑥2𝑀𝑏 − 1) 𝜉2.

(42)

4.2. Stability Analysis

Theorem 10. Consider the random model (17) of quarter-car
active suspension. Under assumption (15), choose controller
(40).

(i) The closed-loop system (42) is NSS-p and all the signals
of the closed-loop system are bounded in probability.

(ii) The state 𝑧 = [𝑧1, 𝑧2, 𝑧3, 𝑧4]𝑇 of the closed-loop system
satisfies

lim
𝑡→∞

𝐸 |𝑧|2 ≤ 2𝑑𝐾𝑐 , (43)

where the right-hand can be made small enough by tuning
parameters.

Proof. Obviously, the functions of the closed-loop system
satisfy the local Lipschitz condition. The Lyapunov function
for the whole system is

𝑉 = 𝑉4 = 4∑
𝑖=1

12𝑧2𝑖 . (44)

From (41), one has 𝑉̇ ≤ −𝑐𝑉 + 𝑑 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 , (45)

where 𝑐 = 2min{𝑐1, 𝑐2, 𝑐3, 𝑐4}, 𝑑 = max{1/4𝑑1 + 1/4𝑑3 +1/4𝑑5, 1/4𝑑2 + 1/4𝑑4 + 1/4𝑑6}, and 𝜉 = [𝜉1, 𝜉2]2. From
Lemma 3, the closed-loop system is NSS-P.

Furthermore, by defining V(𝑡) = 𝐸𝑉(𝑧(𝑡)), from (45), one
has

V̇ (𝑡) = 𝐸𝑉̇ (𝑥 (𝑡)) ≤ −𝑐V (𝑡) + 𝑑𝐸 󵄨󵄨󵄨󵄨𝜉 (𝑡)󵄨󵄨󵄨󵄨2 . (46)

From Lemma 6, one has

V (𝑡) ≤ |V (0)| 𝑒−𝑐(𝑡−𝑡0) + 𝑑 sup
𝑡0≤𝑠≤𝑡

𝐸 󵄨󵄨󵄨󵄨𝜉 (𝑠)󵄨󵄨󵄨󵄨2 , (47)

which together with (15) implies

𝐸𝑉 (𝑡) ≤ 𝑉 (𝑥0) 𝑒−𝑐(𝑡−𝑡0) + 𝑑𝐾𝑐 ≤ 𝑉 (𝑥0) + 𝑑𝐾𝑐 . (48)

According to Lemma 5, (48) and the definition of 𝑉, 𝑧 is
bounded in probability. By 𝑧1 = 𝑥1, 𝑥1 is bounded in prob-
ability. Since 𝑧2 = 𝑥2 − 𝑐1𝑧1, 𝑥2 is bounded in probability,
too. Similarly, 𝑥3 and 𝑥4 are bounded in probability.Then the
control 𝑢 is also bounded in probability by (40).

From (15), (44), and (47), one has𝐸 |𝑧|2 ≤ 2𝐸𝑉 (𝑡) ≤ 2𝑉 (𝑥0) 𝑒−𝑐(𝑡−𝑡0) + 2𝑑𝐾𝑐 , (49)

which leads to (43). Noting 𝑐 = 2min{𝑐1, 𝑐2, 𝑐3, 𝑐4}, 𝑑 =
max{1/4𝑑1 +1/4𝑑3 +1/4𝑑5, 1/4𝑑2 +1/4𝑑4 +1/4𝑑6}, it is clear
that the right-hand sides of (43) can be made small enough
by choosing 𝑐𝑖 (𝑖 = 1, . . . , 4) and 𝑑𝑗 (𝑗 = 1, . . . , 6) large
enough.

Remark 11. Since 𝑧1 = 𝑀us𝑠1 + 𝑀𝑏𝑠2, 𝑧3 = 𝑠2 − 𝑠1 − 𝛼2 =𝑠2−𝑠1−((𝑀us+𝑀𝑏)/𝐾𝑡𝑀𝑏)(−𝑧1−𝑐2𝑧2+(𝐾𝑡/(𝑀us+𝑀𝑏))𝑧1−𝑐1(𝑧2 − 𝑐1𝑧1) − 𝑑1𝑀2us𝑧2 − 𝑑2𝑀2𝑏𝑧2), then 𝑠1, 𝑠2 can be small
enough by choosing parameters appropriately. As a result, the
passenger feels comfortable. From Figure 2, the simulation
results also demonstrate the comfortableness.
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Figure 2: The system simulation results.

5. Simulation Result

In the simulation, the disturbances 𝜉1, 𝜉2 are produced bẏ𝜉 (𝑡) = −𝜉 (𝑡) + 𝑤 (𝑡) , 𝜉 (0) = 0, (50)

where 𝑤(𝑡) ∈ R is a zero-mean white noise. 𝜉 = (𝜉1, 𝜉2) is a
zero-mean widely stationary process, and 𝐸𝜉21 = 𝐸𝜉22 = 0.05;
thus, 𝐾 = 0.05. The initial value is 𝑥10 = 0.5, 𝑥20 = 0, 𝑥30 =−0.5, and 𝑥40 = 0, the parameters of the system are𝑀us = 0.5,𝑀𝑏 = 1, 𝐾𝑡 = 0.8, 𝐾𝑎 = 0.5, 𝐶𝑎 = 0.1, and 𝑝 = 3, and design
parameters are 𝑐1 = 0.5, 𝑐2 = 1, 𝑐3 = 0.8, 𝑐4 = 1.5, 𝑑1 = 0.2,𝑑2 = 0.1, 𝑑3 = 0.2, 𝑑4 = 0.2, 𝑑5 = 0.2, and 𝑑6 = 0.1.

The simulation result demonstrates the effectiveness of
the control scheme.

6. Conclusion

The stochastic modeling and control of a quarter car with
active suspension in rough road are considered in the paper.

According to the relative motion principle, the influence of
rough road is regarded as the force, which is disturbed by
the noise. Then a stochastic model is constructed. Based
on the model, using backstepping method, a controller is
designed such that the mean square of the state converges to
an arbitrarily small neighborhood of zero by tuning design
parameters. The simulation results illustrate the effectiveness
of the proposed scheme.
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