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In this paper, we consider the consensus control problem for a multiagent system (MAS) consisting of integrator dynamics with
input and output time delays. First, we investigate a consensus condition for theMAS with a linear controller and without any delay
compensation. We then propose a consensus controller with a state predictor to compensate the effect of time delay.The consensus
condition for this controller is derived and investigated. Finally, we present an example of solving the consensus control problem for
two-wheel mobile robots with feedback loops that pass through a computer network with time delays. To demonstrate the validity
of the predictor-based controller, we conduct experiments with two-wheel mobile robots and present the results.

1. Introduction

Achieving cooperative control of robotic systems is of
increasing interest andhas attracted a great attention in recent
years. There are many potential applications for multirobot
systems, including unmanned aerial vehicles, satellite clus-
ters, automated highways, and search and rescue operations.
Control tasks for robotic systems include consensus [1, 2],
flocking [3–5], formation control [6, 7], and tracking [8–
10]. Of these, consensus constitutes a fundamental prob-
lem for the coordination control of distributed systems.
Since cooperativemultirobot systems rely on communication
between robots in order to collaborate, time delays due to
communication through networks and computations are a
problem that cannot be neglected. Time delays in general
can degrade system performance or even destroy stability.
When each robot is considered to be an individual agent,
multirobot systems can be considered multiagent systems
(MASs). Here, we consider the consensus problem of MASs
with time delay.

For nonlinear systems with input delay, Oguchi and
Nijmeijer [11] proposed a delay compensation method with a
state predictor based on anticipating synchronization. Several
studies [1, 12–16] have focused on the consensus problem
in a MAS with time delay. The papers [12, 13] showed the

upper bound of allowable input time delay under which
consensus could be achieved. We attempt to consider both
input and output time delay due to both communication
and computation. In this study, we first introduce a linear
time-delay control protocol with a corresponding consensus
condition, similar to that in [12]. The consensus condition is
used to give the consensus region of the allowable time delay
corresponding to coupling strength. To compensate the time-
delay effect, we focus on using a prediction control scheme for
MASs with input and output time delays to allow the system
to achieve consensus. A previously proposed state predictor-
based controller for nonlinear systems with time delay is
based on anticipating synchronization [11]. Kojima et al. used
it for a tracking-control problem with time delay [17], as did
Alvarez-Aguirre et al. [18]. In our previous work [2], we used
a controller based on this predictor [11] to solve the consensus
problem of MASs in undirected graph networks with time
delay and derived the corresponding consensus condition. In
this paper, by extending the results, we show that the system
achieves the average consensus, and the MASs with directed
communication graph can also achieve consensus under the
consensus condition. To show the validity of the obtained
results, wemake the experiments in amultirobot systemwith
the proposed controllers to solve the consensus problem of
the coordinates of mobile robots.
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This article is organized as follows. In Section 2, we
introduce consensus problems for networks of dynamic
agents with input and output time delays and show the
necessary and sufficient conditions with linear coupling
without the predictor to achieve consensus. We then propose
a predictor-based consensus controller, for which we derive
the necessary and sufficient conditions. Simulation results are
presented in Section 3. Section 4 shows experimental results
of nonholonomic mobile robots with input and output time
delays to show the effectiveness of the proposed control
scheme. Finally, Section 5 contains our conclusions.

2. Problem Formulation

Consider a network that consists of 𝑁 identical integrator
agents with invariant input and output time delays given as
the following dynamics:

ẋ𝑖 (𝑡) = u𝑖 (𝑡 − 𝜏in𝑖 )
y𝑖 (𝑡) = x𝑖 (𝑡 − 𝜏out𝑖 )

for 𝑖 = 1, 2, . . . , 𝑁.
(1)

Here x𝑖 = [𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑛𝑖]𝑇 ∈ R𝑛, y𝑖 = [𝑦1𝑖, 𝑦2𝑖, . . . , 𝑦𝑛𝑖]𝑇 ∈
R𝑛, and u𝑖 = [𝑢1𝑖, 𝑢2𝑖, . . . , 𝑢𝑛𝑖]𝑇 ∈ R𝑛 denote the state,
output, and input vectors of the 𝑖th agent, respectively. 𝜏in𝑖
and 𝜏out𝑖 ∈ R+ separately denote the input and output delays
corresponding to agent 𝑖.

For this system, the consensus problem is formulated as
follows.

Definition 1 (consensus problem). For multiagent system (1)
with input and output time delays, the consensus problem is
to find a control protocol tomake the states of all agents reach
agreement such that x𝑖(𝑡) = x𝑗(𝑡) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑁} as𝑡 → ∞.

Following the consensus control protocol proposed by
[12], we assume that these agents are interconnected by the
following controller:

u𝑖 (𝑡) = − ∑
𝑗∈N𝑖

𝑘𝑖𝑗 (y𝑖 (𝑡) − y𝑗 (𝑡)) (2)

for 𝑖 = 1, . . . , 𝑁, where 𝑘𝑖𝑗 ∈ R+ denotes the coupling
strength between agents 𝑖 and 𝑗.N𝑖 denotes the set of agents
adjacent to agent 𝑖, which means these agents are connected
to agent 𝑖 in the network topology. We now introduce some
definitions about a graphG. 𝐿(G) is the Laplacian matrix of a
graphG corresponding to the network topology constructed
by the interconnection of the agents. If the information
communication between agent 𝑖 and 𝑗 is bidirectional, the
graphG is undirected, and the corresponding Laplacian 𝐿(G)
has the following entries:

ℓ𝑖𝑗 =
{{{{{{{{{

−1 if 𝑗 ∈ N𝑖

0 if 𝑗 ∉ N𝑖, 𝑗 ̸= 𝑖󵄨󵄨󵄨󵄨N𝑖󵄨󵄨󵄨󵄨 if 𝑗 = 𝑖.
(3)

It is well known that the bidirectional graph Laplacian 𝐿(G) is
diagonalized and has a zero eigenvalue, and𝑁−1 positive real
eigenvalues such as 0 = 𝜆0 < 𝜆1 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑁−1 corresponding
to the 𝑁 agents system.

Assuming that 𝜏in𝑖 = 𝜏out𝑖 = 𝜏, each round-trip time delay
is given by 2𝜏 for 𝑖 = 1, . . . , 𝑁. All coupling strengths are
identical and denoted as 𝑘. Controller (2) is simplified as

u (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) y (𝑡) , (4)

where ⊗ denotes the Kronecker product of two matrices and
y = [y𝑇1 , y𝑇2 , . . . , y𝑇𝑁]𝑇 ∈ R𝑛𝑁 and u = [u𝑇1 , u𝑇2 , . . . , u𝑇𝑁]𝑇 ∈
R𝑛𝑁 denote the output vector and the input vector, respec-
tively.

The dynamics of the total system can then be derived as

ẋ (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) x (𝑡 − 2𝜏) , (5)

where x = [x𝑇1 , . . . , x𝑇𝑁]𝑇 ∈ R𝑛𝑁 denotes the state vector. The
initial condition of the states is given as x(𝜃) = 𝜑(𝜃) (−2𝜏 ≤𝜃 ≤ 0), where 𝜑(𝜃) ∈ 𝐶([−2𝜏, 0],R𝑛𝑁).

Therefore, from the stability of system (5), the following
consensus condition is proven following the results of Olfati-
Saber and Murray [12].

Theorem 2. Assume that each system (1) is interconnected
by (2) with a coupling strength 𝑘 and constant input and
output time delay 𝜏. The constructed network topology is fixed,
undirected, and connected. If the pair (𝑘, 𝜏) satisfies

0 < 𝑘𝜏 < 𝜋4𝜆𝑁−1 , (6)

the delayed system achieves consensus. Here 𝜆𝑁−1 is the
maximum eigenvalue of 𝐿(G) for an 𝑁-agents system.

Rewriting 𝑘𝜆𝑁−1 as 𝑘, pairs of (𝑘, 𝜏) satisfying 0 < 𝜏 <𝜋/4𝑘 can stabilise the delayed system.Thus, 𝜏 has amaximum
value boundary corresponding to each value of 𝑘. In general,
if the number of agents increases, 𝜆𝑁−1 corresponding to
the network structure also tends to increase. Based on 𝑘 =𝑘/𝜆𝑁−1, for a fixed time delay 𝜏, 𝑘 decreases as 𝜆𝑁−1 increases,
and this slows the convergence rate.Therefore, this condition
means that the convergence rate gets slower as the number
of agents and the allowable delay increases. To overcome this
problem, in the next section, we propose a state predictor-
based controller that can counteract the effect of 𝜆𝑁−1.

Moreover, if the graph is undirected and connected, [12]
shows that MAS without time delays achieve the consensus,
and the consensus solution is given as the average of the states
of all agents; that is, Ave(𝑥(𝑡)) = (1/𝑁)∑𝑁𝑖=1 x𝑖(𝑡). In [19], the
necessary and sufficient condition for an average consensus
problem for MAS with nonuniform and asymmetric time
delay is given. From these results, we know that the MAS
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in Theorem 2 achieves the average consensus and that the
consensus value is given as

𝛼 fl
1𝑇𝑁 ⊗ I𝑛𝑁 {𝜑 (0) + ∫0

−2𝜏
(𝐿 (G) ⊗ I𝑛) 𝜑 (𝑠) 𝑑𝑠}

= 1𝑇𝑁 ⊗ I𝑛𝑁 𝜑 (0) ,
(7)

where 1𝑁 = [1, . . . , 1]𝑇 ∈ R𝑁.

3. Main Results

Based on the MAS (1) with controller (2), we propose a
controller with a state predictor based on anticipating syn-
chronization for the consensus control of agents. We present
the consensus controller and discuss its stability problem in
this section.

3.1. State Predictor-Based Controller. Anticipating synchro-
nization is a kind of master-slave synchronization. The
predictor is constituted by the given system dynamics and
coupling of the difference of the system output and delayed
predictor states. The dynamics of this predictor can be stated
as follows:

̇̂y (𝑡) = u (𝑡) − 𝑘𝑝 (ŷ (𝑡 − 2𝜏) − y (𝑡)) , (8)

where 𝑘𝑝 ∈ R+ is the prediction gain. Meanwhile, ŷ = [ŷ𝑇1 ,. . . , ŷ𝑇𝑁]𝑇 ∈ R𝑛𝑁, where ŷ𝑖(𝑡) = [𝑦1𝑖(𝑡), . . . , 𝑦𝑛𝑖(𝑡)]𝑇 ∈ R𝑛, 𝑖 ∈{1, . . . , 𝑁} denotes the predicted outputs. The initial condi-
tion of the predicted states is given as ŷ(𝜃) = 𝜙(𝜃) (−2𝜏 ≤ 𝜃 ≤0), where 𝜙(𝜃) ∈ 𝐶([−2𝜏, 0],R𝑛𝑁). Then, using the output of
the predictor instead of the output of the actual system, the
main controller is given as

u (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑡) . (9)

Controller (9) with state predictor (8) compensates the
effect of time delays at input and output. If the predictor
has prior knowledge of the initial states of the system, the
prediction error always remains 0, and the predictor can
predict the exact future value of the states of the system.
Thereafter, the total system is shown as

ẋ (𝑡) = u (𝑡 − 𝜏) ,
y (𝑡) = x (𝑡 − 𝜏) ,
u (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑡) ,
̇̂y (𝑡) = u (𝑡) − 𝑘𝑝 (ŷ (𝑡 − 2𝜏) − y (𝑡)) .

(10)

3.2. Consensus Condition. As we use a predictor to predict
the states, it is important to prove that the prediction error
converges to 0. The prediction error is defined as

ê (𝑡) = ŷ (𝑡 − 𝜏) − x (𝑡) . (11)

When the prediction error ŷ(𝑡−𝜏)−x(𝑡) converges to zero,
this means that ŷ(𝑡) estimates the exact future value of x(𝑡),

which is x(𝑡 + 𝜏). The time-delay 2𝜏 is totally compensated at
this time.

With the use of (8) and (9), the dynamics of prediction
error can be obtained as

̇̂e (𝑡) = −𝑘𝑝ê (𝑡 − 2𝜏) . (12)

To derive the necessary and sufficient conditions such
that the whole system converges to consensus, we consider
the coordinate transformation as follows:

e𝑠 (𝑡) = [[
[
𝑁∑
𝑖=1

x𝑖 (𝑡)
e (𝑡)

]]
]

=
[[[[[[
[

x1 (𝑡) + ⋅ ⋅ ⋅ + x𝑁 (𝑡)
x1 (𝑡) − x2 (𝑡)...
x1 (𝑡) − x𝑁 (𝑡)

]]]]]]
]

= (M0 ⊗ I𝑛) x (𝑡) ,

(13)

where

M0 =
[[[[[[
[

1 1 ⋅ ⋅ ⋅ 1
1 −1 0
... d

1 0 −1

]]]]]]
]

∈ R
𝑁×𝑁 (14)

and e(𝑡) = [x1(𝑡) − x2(𝑡), . . . , x1(𝑡) − x𝑁(𝑡)]𝑇 denotes the syn-
chronization error. Substituting (8), (9), and (11) for the
derivative of (13), we obtain the following dynamics:

ė𝑠 (𝑡) = −𝑘 (M0𝐿 (G)M−10 ⊗ I𝑛) e𝑠 (𝑡)
− 𝑘 (M0𝐿 (G) ⊗ I𝑛) ê (𝑡) . (15)

The prediction error dynamics (12) and the dynamics (15) can
be rewritten in a matrix form as

[ė𝑠 (𝑡)̇̂e (𝑡) ] = [0 0
0 −𝑘𝑝][e𝑠 (𝑡 − 2𝜏)

ê (𝑡 − 2𝜏) ]

+ [−𝑘 (M0𝐿 (G)M−10 ⊗ I𝑛) −𝑘 (M0𝐿 (G) ⊗ I𝑛)0 0 ] [e𝑠 (𝑡)
ê (𝑡) ] .

(16)

From this equation, the consensus condition is given in
the following theorem.

Theorem 3. Assume that each agent (1) is controlled by
predictor (8) and controller (9) with gain 𝑘, constant input and
output time delay 𝜏 and prediction gain 𝑘𝑝. The constructed
network topology is fixed, undirected, and connected. Then, if
the pair (𝑘𝑝, 𝜏) and 𝑘 satisfy

𝑘 > 0,
0 < 𝑘𝑝𝜏 < 𝜋4 , (17)

the MAS achieves consensus.
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Proof. The proof is given for the stability of the total synchro-
nization error dynamics (16). After the Laplace transforma-
tion, the characteristic equation of (16) can be derived as

det[
[
𝑠I𝑛𝑁 + 𝑘 (M0𝐿 (G)M−10 ⊗ I𝑛) 𝑘 (M0𝐿 (G) ⊗ I𝑛)

0 𝑠I𝑛𝑁 + 𝑘𝑝 (e−2𝜏𝑠I𝑛𝑁)]]
= det (𝑠I𝑛𝑁 + 𝑘 (M0𝐿 (G)M−10 ) ⊗ I𝑛)
⋅ det (𝑠I𝑛𝑁 + 𝑘𝑝 (e−2𝜏𝑠I𝑛𝑁)) = 0.

(18)

Tomake the equation hold, one of the above determinates
should be equal to 0. As can be seen, the first determinant
of (18) represents the synchronization error, and the latter
represents the prediction error. Tomake both errors converge
to 0, all solutions satisfying the following equationsmust have
negative real parts:

det (𝑠I𝑛𝑁 + 𝑘 (M0𝐿 (G)M−10 ) ⊗ I𝑛) = 0,
det (𝑠I𝑛𝑁 + 𝑘𝑝 (e−2𝜏𝑠I𝑛𝑁)) = 0. (19)

Since 𝐿(G) for a fixed, undirected, and connected graph is a
symmetric real matrix and for the eigenvalues it holds that0 < 𝜆1 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑁−1, the term of the first equation in (19)
satisfies the following results:

PM0𝐿 (G)M−10 P−1 =
[[[[[[
[

0 0 ⋅ ⋅ ⋅ 00 𝜆1 ⋅ ⋅ ⋅ 0
... ... d

...
0 0 ⋅ ⋅ ⋅ 𝜆𝑁−1

]]]]]]
]

, (20)

where P ∈ R𝑁×𝑁 is the matrix that transforms M0𝐿(G)M−10
into the diagonalized form. Thus, the first equation can be
written as 𝑠 + 𝑘𝜆𝑖 = 0, 𝑖 = 1, . . . , 𝑁 − 1. To make 𝑠 have
negative real part, we get the condition 𝑘 > 0 from the first
equation.

For the second equation, we consider the smallest value
of 𝜏, such that 𝑠 = 𝑗𝜔, which has a zero real part on the
imaginary axis. Then we have

𝜔 − 𝑘𝑝 sin (𝜔𝜏) = 0,
𝑘𝑝 cos (𝜔𝜏) = 0. (21)

Assuming 𝜔 > 0, we can get 𝜔𝜏 = (𝜋/2) + 2𝑘𝜋, 𝑘 =0, 1, . . . , 𝑁 and 𝜔 = 𝑘𝑝. Since the delay-free system is
described by 𝑠 + 𝑘𝑝 = 0 (which is exponentially stable for𝑘𝑝 > 0), and the continuity of eigenvalues for LTI systems
holds, the roots of the dynamics of the second equation of
(19) lie on the open left half-plane.Therefore, from the second
equation, we get 0 < 𝑘𝑝𝜏 < 𝜋/2.

The first condition corresponds to the consensus condi-
tion for the systemwithout delay, and the second comes from
the stability of the prediction error. This discussion means

that the synchronization-based predictor is an extension of
the full-state observer, and a counterpart of the separation
principle holds for the stability of the system with the
synchronization-based predictor.

Comparedwith the consensus condition (6) ofTheorem 2,
the ranges of both 𝑘 and 𝜏 are extended.The coupling strength𝑘 is independent of time delay in Theorem 3 and 𝑘𝑝 < 𝜋/4𝜏
holds for any constant 𝜏. Moreover, if the prediction error
is not zero, both 𝑘 and 𝑘𝑝 affect the convergence rate. If the
predictor has prior knowledge of the initial condition, 𝑘 is the
only influence factor for the convergence rate.We can choose
a larger value of 𝑘 in order to make the system converge to
consensus faster.

Remark 4. It is known that a directed graph contains a
directed spanning tree, if and only if the corresponding graph
Laplacian 𝐿(G) always has one zero eigenvalue and 𝑁 − 1
eigenvalues that have positive real parts [20]. In this network
topology, the MAS satisfying inequalities (17) can also reach
a consensus.

Concerning the average value of agent states, we have the
following results.

Theorem 5. Consider that the system with agent (1) satisfies
Theorem 3, so that the MAS achieves consensus. This MAS
achieves average consensus for any initial states 𝜑(0) ∈ R𝑛𝑁

and the consensus solution is given as

𝛼𝑝 fl
1𝑇𝑁 ⊗ I𝑛𝑁 𝜑 (0) . (22)

Proof. The total system can be summarised as

ẋ (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑡 − 𝜏) ,
̇̂y (𝑡) = −𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑡)

− 𝑘𝑝 (ŷ (𝑡 − 2𝜏) − x (𝑡 − 𝜏)) .
(23)

Following the method shown in [19], we consider the
following functional vector 𝐹1 : 𝐶([−𝜏, 0],R𝑛𝑁) → R𝑛:

𝐹1 (x𝑡) = 1𝑁 (1𝑇N ⊗ I𝑛)
⋅ (x (𝑡) + ∫𝑡

𝑡−𝜏
−𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑠) 𝑑𝑠)

= 1𝑁 (1𝑇𝑁 ⊗ I𝑛) x (𝑡) ,
(24)

where x𝑡 ∈ 𝐶([−𝜏, 0],R𝑛𝑁) represents the solution x(𝑡) ∈
R𝑛𝑁 on the time interval [𝑡−𝜏, 𝑡] such that x𝑡(𝑠) = x(𝑡+𝑠), 𝑠 ∈[−𝜏, 0]. Since this graph Laplacian 𝐿(G) is a symmetric zero
column-sum matrix, 1𝑇𝑁𝐿(G) = 0 holds. Thus, the integral
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Figure 1: Network structures for three and four agents.

term is vanished in (24).The time-derivative of (24) along the
solution of (23) is given as

𝑑𝑑𝑡𝐹1 (x𝑡) = 1𝑁 (1𝑇𝑁 ⊗ I𝑛)
⋅ (x (𝑡) + ∫𝑡

𝑡−𝜏
−𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑠) 𝑑𝑠)

= 1𝑁 (1𝑇𝑁 ⊗ I𝑛) (−𝑘 (𝐿 (G) ⊗ I𝑛) ŷ (𝑡 − 𝜏)) = 0.
(25)

Therefore, the functional vector 𝐹1(x𝑡) is time-invariant,
and the value always equals the average of the initial state x(0)
given as

𝐹1 (x𝑡) = 1𝑇𝑁 ⊗ I𝑛𝑁 I𝑛𝑁 (1𝑁 ⊗ 𝛼𝑝) = 𝛼𝑝
= 1𝑇𝑁 ⊗ I𝑛𝑁 𝜑 (0) .

(26)

3.3. Simulation Results. By using controller (9) and predictor
(8), we can obtain the simulation results for the system (10)
of three and four agents, respectively, connected by networks
in Figure 1.

The graph Laplacian 𝐿(G1) for three agents is

𝐿 (G1) = [[
[

2 −1 −1
−1 1 0
−1 0 1

]]
]

(27)

and the corresponding eigenvalues are 𝜆𝑖 = [0, 1, 3], 𝑖 =0, 1, 2.
In this simulation the coupling strength is 𝑘 = 2, the

prediction gain 𝑘𝑝 = 0.8, and the time-delay is set as 𝜏 =
0.25 s. The initial states are set as x𝐴 = [1.35, 2.54]𝑇, x𝐵 =[0.98, 2.99]𝑇, and x𝐶 = [1.60, 3.07]𝑇 for each agent, and the
initial states of the predictor are given as ŷ(𝑡) = 0 for −2𝜏 ≤𝑡 ≤ 0.The simulation results are shown in Figure 2. It is clearly
shown that both the prediction error and the synchronization
error converge to 0 for each state. The consensus values of
the system are the average of the states at 𝑡 = 0; that is,
𝛼𝑝 = [3.93, 2.9]𝑇.

For a four-agent system, the graph Laplacian 𝐿(G2) of the
communication network in Figure 1 is

𝐿 (G2) = [[[[[
[

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

]]]]]
]

(28)

and the corresponding eigenvalues are 𝜆𝑖 = [0, 2, 2, 4], 𝑖 =0, 1, 2, 3. The time delay is set as 𝜏 = 1 s, coupling strength𝑘 = 2, and prediction gain 𝑘𝑝 = 0.4 satisfying the consensus
condition shown in Theorem 3. We set ŷ(𝑡) = 0 for −2𝜏 ≤𝑡 ≤ 0 as the initial states of the predictor; the initial states
of dynamics (1) are x𝐴 = [1.12, 2.56]𝑇, x𝐵 = [1.62, 2.57]𝑇,
x𝐶 = [1.59, 3.06]𝑇, and x𝐷 = [1.15, 3.06]𝑇 for the four agents,
respectively.

With more agents and a longer time delay, the MAS
satisfies Theorem 3 and converges to consensus, and the
prediction error converges to 0, as shown in Figure 3. Since
the simulation results show that the two MASs all converge
to consensus under the conditions given in Theorem 3, the
validity of the predictor-based controller is verified.

4. Experimental Results

In this section, by applying controller (9) with state predictor
(8), we show experimental results for multirobot systems.

Consider the two-wheel mobile robot shown in Figure 4.
Let us suppose that the robot moves on a flat plane under a
fixed global frame without drift. Let 𝜉𝑖(𝑡) and 𝜁𝑖(𝑡) denote the
global coordinates of the centre of the 𝑖th mobile robot; 𝜃𝑖(𝑡)
denotes the current angle between the direction of velocity
V𝑖(𝑡) of the centre and the 𝑥-axis, and 𝜔𝑖(𝑡) = 𝑑𝜃𝑖(𝑡)/𝑑𝑡 is the
angular velocity.The kinematic model of the 𝑖th mobile robot
is expressed as

[[[
[

̇𝜉𝑖 (𝑡)̇𝜁𝑖 (𝑡)̇𝜃𝑖 (𝑡)
]]]
]

= [[[
[

cos 𝜃𝑖 (𝑡) 0
sin 𝜃𝑖 (𝑡) 0

0 1
]]]
]

[V𝑖 (𝑡)𝜔𝑖 (𝑡)] (29)

for 𝑖 = 1, . . . , 𝑁.Then, the coordinate (𝜉𝑖𝑜(𝑡), 𝜁𝑖𝑜(𝑡)) of point𝑂𝑖
on the head of the robot used as the outputs is represented by
the coordinate transformation

[𝜉𝑖𝑜 (𝑡)
𝜁𝑖𝑜 (𝑡)] = [𝜉𝑖 (𝑡) + 𝑅 cos 𝜃𝑖 (𝑡)𝜁𝑖 (𝑡) + 𝑅 sin 𝜃𝑖 (𝑡)] , (30)

where 𝑅 ∈ R+ is the radius of the mobile robot.
Applying (30) into (29), we obtain

[ ̇𝜉𝑖𝑜 (𝑡)̇𝜁𝑖𝑜 (𝑡)] = [cos 𝜃𝑖 (𝑡) −𝑅 sin 𝜃𝑖 (𝑡)
sin 𝜃𝑖 (𝑡) 𝑅 cos 𝜃𝑖 (𝑡) ] [V𝑖 (𝑡)𝜔𝑖 (𝑡)] . (31)
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Figure 2: Simulation results for three agents with controller (9) and state predictor (8).
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Figure 3: Simulation results for four agents with controller (9) and state predictor (8).
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Figure 4: Kinematic model of a mobile robot.

For clarity, we simplify [𝜉𝑖𝑜(𝑡), 𝜁𝑖𝑜(𝑡)]𝑇 as x𝑖(𝑡) = [𝜉𝑖(𝑡),𝜁𝑖(𝑡)]𝑇 for the 𝑖th mobile robot. Then (31) can be rewritten as

ẋ𝑖 (𝑡) = [ ̇𝜉𝑖 (𝑡)̇𝜁𝑖 (𝑡)] = [cos 𝜃𝑖 (𝑡) −𝑅 sin 𝜃𝑖 (𝑡)
sin 𝜃𝑖 (𝑡) 𝑅 cos 𝜃𝑖 (𝑡) ] [V𝑖 (𝑡)𝜔𝑖 (𝑡)]

= B (𝜃𝑖 (𝑡)) p𝑖 (𝑡) ,
(32)

where p𝑖(𝑡) = [V𝑖(𝑡), 𝜔𝑖(𝑡)]𝑇. Since det(B(𝜃𝑖(𝑡))) = 𝑅, the
matrix B(𝜃𝑖(𝑡)) is invertible for any 𝜃𝑖(𝑡).

The schematic for the system in the experiment is
depicted in Figure 5. Time delay occurs in the communica-
tion between each robot and a centralized controller. Such a
configuration corresponds with a system that has a separate
central controller and several local controllers as simple on-
board controllers. By using this system, each robot needs only
weak computation capability for the local controller, which
makes the robots smaller and cheaper. We implement the
delayed system by using e-pucks [21], which are two-wheel
mobile robots.

We assume that there is a unified constant input and
output time delay 𝜏 between each robot and a centralized
controller. Applying the input-output feedback linearization
technique, we design the local controller carried by each
robot as follows:

p𝑖 (𝑡) = B−1 (𝜃𝑖 (𝑡)) u𝑖 (𝑡 − 𝜏) , (33)

where u𝑖(𝑡 − 𝜏) ∈ R2 denotes the output from the centralized
controller with time delay 𝜏 ∈ R+. In this way, 𝜃𝑖(𝑡) is the
local information without time delay for each robot 𝑖. The
differential of an angular ̇𝜃𝑖(𝑡) = 𝜔𝑖(𝑡) depends on the control
input 𝜔𝑖(𝑡); 𝜃𝑖(𝑡) is a variant local state, and ̇𝜃𝑖(𝑡) converges
to zero when the control input 𝜔𝑖(𝑡) converges to zero. By

Centralized
controller

uA(t)
e−𝜏s

e−𝜏s

A Local controller
pA(t)

Collision
avoidance

xA(t)

Figure 5: Schematic of the robot𝐴 system.The local controller and
collision avoidance are on-board the robot. Time delay happens on
communications between robot 𝐴 and the centralized controller.

applying (33) to (32), the system is linearized as an integrator
system with input and output time delay given as

ẋ𝑖 (𝑡) = u𝑖 (𝑡 − 𝜏) ,
y𝑖 (𝑡) = x𝑖 (𝑡 − 𝜏) (34)

for 𝑖 = 1, . . . , 𝑁.Then the predictor-based control scheme can
be used for this multirobot system to converge the output of
the robot to consensus.

4.1. Collision Avoidance. On the way to convergence consen-
sus, a robot may collide with other robots. Here, we assume
for robot 𝑖 that the other robots are obstacles. The robot 𝑗 in
danger of colliding with robot 𝑖 is denoted as belonging to the
set

𝑀𝑖 = {x𝑗 (𝑡) | 𝑥2𝑖𝑗 (𝑡) < 𝑑2min, 𝑗 ̸= 𝑖 (𝑗 = 1, . . . , 𝑁)} , (35)

where 𝑥2𝑖𝑗(𝑡) = (𝜉𝑖(𝑡) − 𝜉𝑗(𝑡))2 + (𝜁𝑖(𝑡) − 𝜁𝑗(𝑡))2 denotes the
square of the distance between robots 𝑖 and 𝑗 and 𝑑min is
the minimum safe distance between two robots. Here, the
following RPF proposed in [22] is adopted as

𝑉𝑖𝑗 (𝑡) = {{{{{{{
𝜂( 1𝑥2𝑖𝑗 (𝑡) − 1𝑑2)

2

if 𝑥𝑖𝑗 (𝑡) < 𝑑min

0 if 𝑥𝑖𝑗 (𝑡) ≥ 𝑑min,
(36)

where 𝜂 ∈ R+ is the gain of the RPF. The collision
avoidance algorithm can be implemented by the following
local controller:

u𝑖 (𝑡) = − ∑
𝑗∈𝑀𝑖

𝜕𝑉𝑖𝑗 (𝑡)𝜕x𝑖 (𝑡)
= 4 ∑
𝑗∈𝑀𝑖

𝜂( 1𝑥2𝑖𝑗 (𝑡) − 1𝑑2)( 1𝑥2𝑖𝑗 (𝑡))
2 (x𝑖 (𝑡) − x𝑗 (𝑡)) .

(37)

Here, the distance 𝑥𝑖𝑗(𝑡) is measured by sensing under
the measuring range of robot 𝑖 and the angle 𝜃𝑖(𝑡) is available
as local information. With such local information, the
RPF approach can be utilized without time delay, as in
x𝑖(𝑡) − x𝑗(𝑡) = [𝑥𝑖𝑗(𝑡) cos(𝜃𝑖(𝑡)), 𝑥𝑖𝑗(𝑡) sin(𝜃𝑖(𝑡))]𝑇. With
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Figure 6: Structure of experimental system.

collision avoidance, the controller for the experiment is given
as

p𝑖 (𝑡) = B−1 (𝜃𝑖 (𝑡)) u𝑖 (𝑡 − 𝜏) , (38)

̇̂y𝑖 (𝑡) = u𝑖 (𝑡) − 𝑘𝑝 (ŷ𝑖 (𝑡 − 2𝜏) − y𝑖 (𝑡)) , (39)

u𝑖 (𝑡) =
{{{{{{{{{{{{{{{

−𝑘 ∑
𝑗∈𝑁𝑖

(ŷ𝑖 (𝑡) − ŷ𝑗 (𝑡)) if 𝑥𝑖𝑗 (𝑡) > 𝑑max

0 if 𝑑min ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑑max

4 ∑
𝑗∈𝑀𝑖

𝜂( 1𝑥2𝑖𝑗 (𝑡) − 1𝑑2)( 1𝑥2𝑖𝑗 (𝑡))
2 (x𝑖 (𝑡) − x𝑗 (𝑡)) if 𝑥𝑖𝑗 (𝑡) < 𝑑min

(40)

for 𝑖 = 1, . . . , 𝑁.
The consensus problem is to converge the coordinates of

point𝑂𝑖 onmobile robots to one point. However, considering
the possibility of collision, we first use△𝑟 as the transformed
distance instead of the radius 𝑅 of the robot. Thus, the
transformed coordinates are on the line between point𝑂𝑖 and
the centre of the robot. Then, if 𝑥𝑖𝑗(𝑡) ∈ [𝑑min, 𝑑max] for all𝑖, 𝑗 = 1, . . . , 𝑁, the robots are considered to have achieved
consensus, and the control program stops. Since the actual
volume of the robot should be considered,𝑑min = 2𝑅−2△𝑟+𝛿
and 𝑑max = 2𝑅 + 2△𝑟 + 𝛿, where 𝛿 is the tolerance.

4.2. Experiment Configuration. As shown in Figure 6, the
experimental setup is composed of robots named e-puck,
which move on a smooth plane with two overhead CCD
cameras to obtain the images of the robots moving. PC(i)
is used to analyse the position and angle information of
the robots by image processing designed using the software
HALCON, and another PC(ii) is applied to calculate the
control input 𝑢𝑖(𝑡) and send the control signal to each robot
through a Bluetooth module.

In the experiment, the radius of each robot is 𝑅 =37.5mm, the transformed distance is set as △𝑟 = 5mm, and
the tolerance is set as 𝛿 = 10mm. Therefore, 𝑑max and 𝑑min
in (37) are defined as 𝑑max = 95mm and 𝑑min = 75mm.The

gain of RPF is given as 𝜂 = 0.002. To show the effect of the
predictor, time delays are set artificially.

Figure 7 shows the experimental results in the graph
topology of the three robots in Figure 1 using controller (40).
The initial states, (𝜉𝑖(0), 𝜁𝑖(0), 𝜃𝑖(0)), are 𝐴(1.35, 2.54, 1.33),𝐵(0.98, 2.99, −0.29), and 𝐶(1.60, 3.07, −2.13), respectively.
The design parameters are set as the coupling strength 𝑘 = 2
and prediction gain 𝑘𝑝 = 0.8. Time delay is set as 𝜏 = 0.25 s
artificially.The initial states of the predictor are set as ŷ(𝑡) = 0
for −2𝜏 ≤ 𝑡 ≤ 0.

In Figure 7(a), the ×marks indicate the starting positions
and the solid circles show the final positions of the robots
in which the radius of the small circles is △𝑟 and the
transformed coordinates are on these circles. Both the final
positions of the robots and the synchronization errors given
in Figure 7(b) show that the robots converged to consensus
intuitively.

Figure 8 shows the experimental results for controller
(40) for four e-pucks in the graph topology in Figure 1. The
initial coordinates are 𝐴(1.12, 2.56, 0.98), 𝐵(1.62, 2.57, 2.46),𝐶(1.59, 3.06, −2.29), and 𝐷(1.15, 3.06, −0.84) for the four
robots, respectively, and we set ŷ(𝑡) = 0 for −2𝜏 ≤ 𝑡 ≤ 0
as the initial state of the predictor. Time delay is set as 𝜏 = 1 s
artificially, coupling strength is 𝑘 = 2, and prediction gain𝑘𝑝 = 0.4.
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Figure 7: Experimental results for three robots with controller (40).
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Figure 8: Experimental results for four robots with controller (40).

From the experimental results in Figure 8, we confirmed
that consensus is achieved. Figure 8(a) shows the trajectories
of the four robots that converge to one point. Figure 8(b)
shows that the robots converge to consensus.

Figure 7 shows an experimental result for the same net-
work topology, coupling strength, prediction gain, and initial

conditions as the simulation shown in Figure 2 by using
the robots. In Figures 2(b) and 7(b), the synchronization
errors both have the tendency of convergence to zero and
the agents finally achieve consensus. In the experiment, we
considered the volume of the robot and the collision problem.
The achieved synchronization error is between [𝑑min, 𝑑max]
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due to the controller (37) in Figure 7(b). In Figures 3 and 8,
the similar results are obtained for four agents.

Remark 6. In real applications, time-delay in network com-
munication may be time-varying and/or unknown. Accord-
ing to the experimental results in [18], Internet-induced time
delays between different countries are almost constant. If the
variation of time-varying delay is relatively slower comparing
with the velocity of convergence of prediction error, the delay
can be considered as constant. In this case, the proposed
method is available for the MAS using communication
networks. Even if the practical time-delay is time-varying,
it is possible to add artificial delay to true up the length of
delay to a constant value and adopt the proposed scheme by
overestimating the maximum size of delay.

5. Conclusions

In this paper, we considered the consensus problem of MAS
with input and output time delays. A controller with a
state predictor based on anticipating synchronization was
proposed for this system. The consensus conditions for the
controller were given, and we discussed the average consen-
sus.We concluded that the proposed controller and predictor
could cope with longer time delays, since the number of
robots increased. We provided numerical simulations to
show the validity of the control scheme. Validity was fur-
ther confirmed in experiments with nonholonomic mobile
robots based on the theoretical stability criteria and collision
avoidance mechanism. It was shown that the validity of the
proposed predictor-based controller could be used in real
applications to control multiple mobile robots converging to
consensus. In this study, to apply the predictor-based control
approach, time-delay is considered as a constant value. Since
time-delay is variable in real applications, we would like to
discuss this problem in the future study.
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