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The state analysis method of a traditional distribution network operation is strictly dependent on the physical model of itself, but it
varies as the geography changes, and it is difficult to find the abnormal state of a district network on real-time, especially the sudden
change caused by the distributed energy and EV load. So, a method of the abnormal state detecting for the distribution network
is proposed based on the maximum and minimum eigenvalues. Firstly, a high-dimensional random matrix is established by the
big data from the distribution network management system to take abnormal state detection through a real-time sliding window.
Then, the maximum andminimum eigenvalues of the distribution network are gained by calculating the sample covariance matrix
of the random matrix and determining the maximum and minimum eigenvalues of the latter matrix. Finally, an 1177-node testing
system was taken as an example, and the simulation results showed that the proposed method could detect the abnormal state in
real-time without depending on the physical model and fault type of the grid.

1. Introduction

The state analysis of a traditional distribution network opera-
tion that uses a physical model to establish the mathematical
model and then carries on the numerical calculation has
obtained very good application effects. However, a distribu-
tion network is a complex nonlinear network in which there
is a coupling correlation between the various components.
The mechanism of the abnormal situation of the distribution
network is also more complex. The traditional method varies
as the geography changes, and it is difficult to find the
abnormal state of a district network on real-time, especially
the sudden change caused by the distributed energy and
EV load. The establishment of a physical model is generally
based on certain assumptions and simplifications, and their
applicability in the power grid is poor.

Distribution network operation status analysis has always
been an important research topic. The detection of the

abnormal state of the distribution network can provide
an important basis for the operation of the relevant staff.
Literature [1] proposed a method of operation situational
awareness under steady state based on dynamic power flow
for ADN examining grid’s operation status in time-changing
scenarios. Literature [2] proposed a strategy of operational
status recognition based on FCM (Fuzzy 𝐶-Mean) and
ANFIS (Adaptive Network Fuzzy Inference System) which
constructs a kind of classifier based on ANFIS for the
hierarchical fuzzy inference system and applies the FCM
classification method to optimally initialize its parameters.
Literature [3] proposed a method using the change in phase
current unbalance due to the distributed generator operation.
These methods still rely on the physical model to analyze the
grid operating status and did not make full use of historical
data and real-time data.

Big data technology is a new concept that has attracted
increasing attention in recent years. It refers to a technical
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system or technology architecture that can capture, discover,
and analyze high-volume and complex data [4–6]. Big data
technology shows that the data are not independent but
rather interrelated with mutual influences andmore complex
relationships. For example, meteorological conditions and
socioeconomic situations affect a user’s electricity consump-
tion, electricity consumption data affects electricity market
transactions, electricity market data provides the basis for
decision-making in the relevant public service sector, and
the Geographic Information System (GIS) data of the power
enterprise must use the municipal planning data as a refer-
ence [7–10]. The major advantage of large data technology in
power system applications is that it can be separated from the
physical model to a certain extent. The relationship between
data mining and grid operation can be analyzed from a data-
driven perspective that can be used to solve the practical
problems of power systems, such as the reactive power
optimization problems [11–13]. The maximum-minimum
eigenvalue (MME) algorithm was originally proposed by the
Institute for Infocomm Research in 2007 and was initially
applied to signal detection in the field of cognitive radio, that
is, to perceive user’s signals in a radio network. Based on
the random matrix theory (RMT), the algorithm is used to
process the signal data received by multiple antennas. The
MMEratio is obtained to determinewhether a received signal
is an independent and identically distributed noise signal or
the target user’s signal. The algorithm is characterized by the
use of global data and by sensing and detecting weak signals
[14].

Based on the RMT, this paper uses the MME method
to analyze the operating state of the power system in real-
time and to accurately detect the abnormal time. In this
paper, the RMT is introduced, and the detection method of
maximum and minimum eigenvalue anomalies is proposed
based on the stochastic matrix theory. Finally, the feasibility
and correctness of the proposed algorithm are verified using
a system with 1177 nodes. The results showed that the MME
method had a good effect on application in the abnormal state
detection of a power network, which provides a new idea for
the application of large data real-time analysis technology in
power network operation analysis.

2. High-Dimensional Random Matrix
Modeling of Big Data in Abnormal State
Detection of a Distribution Network

It is assumed that the distribution network system of𝑀-node
(𝑀 ≥ 1) network has a real-time measurement data device.
𝑖th measured data 𝑥𝑖(𝑡) (𝑖 = 1, . . . , 𝑚, 𝑡 = 1, 2, . . . is the time
series for the measurement) is a complex number, which can
be a load-complex vector constituted by the active/reactive
power measurement data or a voltage-complex vector for
each node or branch power. Distribution network operation
database is formed by massive data collected by distribution
networkmeasurement data.The sample data of a certain type
electricity extracted from the operation database generate
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Figure 1: Sliding window random matrix diagram.

a high-dimensional sampling randommatrix S of the follow-
ing equation:

S =
[[[[[[[[
[

𝑥1 (1) ⋅ ⋅ ⋅ 𝑥1 (𝑡) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
d c

𝑥𝑖 (𝑡)
c d

𝑥𝑀 (1) 𝑥𝑀 (𝑡) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

]]]]]]]]
]

. (1)

In order to carry out the abnormal state detection,𝑀 ×
𝑇 sliding window random matrix X is separated from the
sampling random matrix equation (1) by sliding window
method.The sliding window randommatrix model is shown
in Figure 1.

The first column on the right side of sliding window is the
current data. Window width of the sliding window is 𝑇 and
the sliding step 𝑡sw is the same as the time interval between
the adjacent two columns of data.Therefore, when the sliding
window moves in chronological order by one step, the data
of the first column on the left side of the sliding window
randommatrix leaves and the newly acquired data enters the
first column on the right side of the sliding window random
matrix.This paper constructs a simulation platform of sliding
window random matrix, and the structure of the platform is
shown in Figure 2.

3. Maximum-Minimum Eigenvalue
(MME) Method

3.1. Data Acquisition and Normalization Processing. In the
first step, data are acquired by the sliding window, and the
new measurement data are input into the rightmost column
vector x(T) in the random matrix S of the sliding window
in the new sampling period. Next, the normalized matrix
Xn = (𝑥𝑖𝑗)𝑚×𝑛 is obtained by normalizing the sliding window
matrix X𝑀×𝑇 according to (2). The expectation of the matrix
is zero, and the variance is 1.

𝑥𝑖𝑗 = [𝑥𝑖 (𝑗) − 𝜇(𝑥𝑖)]
𝜎(𝑥𝑖)
𝜎(𝑥𝑖)
+ 𝜇(𝑥𝑖), (2)

where 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are the expected value and variance of
each row before normalizing the matrix, respectively, and
𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are the expected value and variance of each row
of the normalized matrix, respectively.
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Figure 2: Schematic diagram of sliding window random matrix simulation platform.
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Figure 3: Flow chart of abnormal state detection based on the maximum-minimum eigenvalue (MME) method.

3.2. The Acquisition of the Sample Covariance Matrix. The
sample covariance matrix of the measured data is obtained
by the sample covariance matrix R(𝑇):

R (𝑇) = 1𝑇
𝑇

∑
𝑡=1

𝑥 (𝑡) 𝑥∗ (𝑡) , (3)

where ∗ denotes a complex conjugate transpose and 𝑥(𝑡)
denotes 𝑖th row of𝑋𝑛.
3.3. Obtaining the MME Ratio 𝜆 of the Covariance Matrix.
After calculating the eigenvalues of the sample covariance
matrixR(𝑇), the characteristic root equaling 0 is the first to be
removed.Then, the ratio 𝜆 is calculated, which is the criterion
for determining whether there is an abnormal condition [15–
17].

𝜆 = 𝜆̂max

𝜆̂min
. (4)

According to the ratio 𝜆 and the magnitude of the
empirical thresholds, it is possible to know whether there are
any abnormalities in the current sampling time. A flow chart
of this process is shown in Figure 3.

4. Examples

To verify the effectiveness of theMMEmethod, the following
simulation experiments were carried out.

The system is based on an 1177-node system of a regional
distribution network with 1176 branches. The schematic dia-
gram of the system is shown in Figure 4. The sampling time
interval was 1 s. The sliding width 𝑇 of the random matrix
was 200. According to the actual situation of the distribution
network’s abnormal state, simulation of the four typical
abnormal states of a single-phase short-circuit, namely, a
three-phase short circuit, load mutation, and a circuit break
scene, were carried out, in which setting the abnormal scene
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Figure 4: Schematic diagram of a regional 1177-node system.

occurred in a branch of the 1177-node system area (Figure 5).
The maximum and minimum eigenvalue algorithms were
used to detect anomaly states in the four typical anomaly
scenarios. The results of detection and identification were
analyzed as follows.

4.1. Single-Phase Ground Fault State Identification. In the case
of a single-phase-to-ground fault, the protection of the circuit

breaker does not operate at the beginning of the line.The line
can continue to run for about 1 to 2 h in the presence of the
fault, but the phase voltage drops to zero at the ground point
and its downstream nodes. The nonfault phase voltage rises
to a line voltage of 1.7 times.

According to the physical phenomena in the case of a
single-phase-to-ground fault, the simulation data scenario is
as follows.
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Figure 5: Sketch map of abnormal branch of the 1177-node system in a certain area.

It is assumed that if a single-phase ground fault occurs
in phase A on branch 26_38 between nodes 26 and 38, the
protection of QF does not work. The voltage of phase A is
reduced to 0, and the voltage of nonfault phases B and C is
increased 1.7 times, and the voltage of other nodes does not
change much apart from its downstream nodes in the tidal
flow directions 38, 39, 40, and 41.

A node voltage matrix was used as the pending matrix
for the sliding window sample. The nodal voltage matrix of
the system can be expressed as follows:

[[[[[[[[
[

𝑈𝑎11 ⋅ ⋅ ⋅ 𝑈𝑎1𝑡1 ⋅ ⋅ ⋅ 𝑈𝑎1𝑡2 ⋅ ⋅ ⋅ 𝑈𝑎1𝑇
𝑈𝑏11 d c

𝑈𝑐11 𝑈𝑖𝑗
c d

𝑈𝑐11771 ⋅ ⋅ ⋅ 𝑈𝑐1177𝑇

]]]]]]]]
]3531×𝑇

. (5)

In type (5), 𝑈𝑎11, 𝑈𝑏11, and 𝑈𝑐11 represent the three-phase
voltage value of node 1 at the first instant, respectively, and𝑈𝑖𝑗
represents the voltage value of one phase at node 𝑗 at time 𝑗.

The detection results are shown in Figure 6, where the
blue line is the MME value of the random matrix of the
detected window, that is, the maximum and minimum
eigenvalue ratios 𝜆; the green dotted line represents the actual
measurement, and the red line represents the threshold. The
threshold is taken from the experience threshold obtained
from the data when the power system runs normally.

As shown in Figure 6, at 350 s, the branch 26_38 has
a single-phase ground fault, and the MME value suddenly
increases and exceeds the threshold.TheMME curve appears
to be significantly spiked. The second spike appears at 550 s,
that is, 200 s after the window width. Between the two spikes
of the curve, the MME curve exhibits random fluctuations.
When the sliding window continues to slide, in the first
column of abnormal data into the sliding window and the
last column of normal data away from the sliding window,
the MME value changes the most.

4.2. Three-Phase Short-Circuit Abnormal State Identification.
In the case of a three-phase short-circuit fault, the circuit
breaker at the beginning of the line will cut off the part
after the circuit breaker, including the faulty node. After
the line breaker, the three-phase voltage of the node and its
downstream node is reduced to zero.
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Figure 6: Abnormal state detection of single-phase ground fault.

According to the physical phenomena in the case of a
three-phase short-circuit fault, the simulation data scenario
is as follows.

It is assumed that if the three-phase short-circuit fault
occurs at the branch 26_38 between the nodes 26 and 38, the
protection of the circuit breakerQF between the nodes 25 and
26 is immediately activated.The three-phase voltage drops to
0 after the fault occurs, including nodes 26 to 36 and 38 to 43,
and the voltage of other nodes does not change much.

The MME curve of the three-phase short-circuit fault
(Figure 7) was similar to that of the single-phase ground fault.
The data matrix adopted the node voltage matrix, which can
also be expressed as (4). The fault occurs at 400 s, the MME
value rises at 400 and 600 s, and the time interval of one
window is 200 s. In this way, the time of occurrence of the
three-phase short-circuit fault can be accurately detected.

4.3. Disconnected Status Abnormal State Identification. In
case of a circuit break failure, the protection of the circuit
breaker at the first of the line does not work, and the line
can continue to run. However, when a circuit break failure
happens in a branch between two nodes, the branch power
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Figure 7: Abnormal state detection of three-phase short circuit.

in the faulty place and its downstream branch drops to 0, and
little change occurs in other branches.

According to the physical phenomena in the case of
disconnection failure, the simulation data scenario is as
follows. It is assumed that if a disconnection fault occurs
in phase A at branch 26_38 between nodes 26 and 38, the
circuit breaker between nodes 25 and 26 does not work and,
in the 38_39, 39_40, and 40_41 branch, phase A branch power
dropped to 0 after failure.

A branch power matrix was used as the pending matrix
for the sliding window sample. The branch power matrix of
the system could be expressed as follows:

[[[[[[[[
[

𝑃𝑎11 ⋅ ⋅ ⋅ 𝑃𝑎𝑡1 ⋅ ⋅ ⋅ 𝑃𝑎𝑡2 ⋅ ⋅ ⋅ 𝑃𝑎𝑇
𝑃𝑏11 d c

𝑃𝑐11 𝑃𝑖𝑗
c d

𝑃𝑐11761 ⋅ ⋅ ⋅ 𝑃𝑐1176𝑇

]]]]]]]]
]3528×𝑇

. (6)

In (6),𝑃𝑎11,𝑃𝑏11, and𝑃𝑐11 represent the three-phase branch
power value of node 1 in the first moment, and 𝑃𝑖𝑗 shows one-
phase branch power value of a node at moment 𝑗.

At 300 s, the fault occurs in branch 26_38 (Figure 8). In
this case, the MME value rises sharply above the threshold
value, and the curve shows a spike. The MME curve is differ-
ent from that obtained by single-phase grounding and three-
phase short-circuit anomaly detection.The curve shows only
a spike that is caused by the different types of matrix data.
Power is not as stable as the voltage fluctuates more than in
the normal situation.When the sliding window is sliding, the
last row of normal data that leaves the window matrix has
little effect on the data correlation change in the matrix, so
that the MME curve of the power matrix appears only as a
spike when an exception occurs.
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Figure 8: Abnormal state detection of a disconnect situation.

4.4. Abnormal State Identification under Load Mutation. In
the case of a sudden change in load, when the power of a
node rises abruptly, the effect of the other nodes is very small
because of the stability of the power system.

According to the physical phenomena in the case of
load mutation anomaly, the simulation data scenario was as
follows: for node 38, an abnormality of “load jumpanddump”
was set. That is, at node 38, the power was either reduced to
zero or increased three times. The node power matrix of the
system could be expressed as follows:

[[[[[[[[
[

𝑃𝑎11 ⋅ ⋅ ⋅ 𝑃𝑎1𝑡1 ⋅ ⋅ ⋅ 𝑃𝑎1𝑡2 ⋅ ⋅ ⋅ 𝑃𝑎1𝑇
𝑃𝑏11 d c

𝑃𝑐11 𝑃𝑖𝑗
c d

𝑃𝑐11771 ⋅ ⋅ ⋅ 𝑃𝑐1177𝑇

]]]]]]]]
]3531×𝑇

. (7)

In (7), 𝑃𝑎11, 𝑃𝑏11, and 𝑃𝑐11 represent the node power value
of node 1 in the first moment, and 𝑃𝑖𝑗 shows the one-phase
power value of a node at moment 𝑗.

As shown in Figure 9, the load drop occurred at node 38 at
350 s, and the MME curve spiked at random, after which, the
MME curve fluctuated randomly for some time. In Figure 10,
at 400 s, the load on node 38 rose suddenly, and the MME
curve showed a spike similar to the load dump. The time of
occurrence of the abnormality can be detected by detecting
the peak of the MME curve.

5. Conclusions

(1) This paper presents a method for detecting an abnormal
state of running system based on a stochastic matrix theory
and uses the sliding window to construct the samplingmatrix
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Figure 9: Abnormal state detection of load rising.
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Figure 10: Abnormal state detection of load rising.

for real-time analysis. Historical and current status data are
fully utilized. In this paper, the data sampling of each period
is analyzed continuously in the running history, and the
running state of the system is reflected in the MME curve.

(2) Compared with the traditional method in a running
state analysis, thismethod, which emerged out of the physical
model based on the RMT, greatly have better adaptability.

(3) The experimental results of four anomaly cases can
be used to detect an anomaly occurrence time based on the
MMEmethod without depending on the physical model and
fault type of the grid, which proves the effectiveness of the
proposed method.
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