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Propagation of transverse electric electromagnetic waves in a homogeneous plane two-layered dielectric waveguide filled with a
nonlinear medium is considered. The original wave propagation problem is reduced to a nonlinear eigenvalue problem for an
equation with discontinuous coefficients. The eigenvalues are propagation constants (PCs) of the guided waves that the waveguide
supports. The existence of PCs that do not have linear counterparts and therefore cannot be found with any perturbation method
is proven. PCs without linear counterparts correspond to a novel propagation regime that arises due to the nonlinearity. Numerical
results are also presented; the comparison between linear and nonlinear cases is made.

1. Introduction

Theory of electromagnetic wave propagation in regular (pla-
nar, cylindrical, etc.) waveguides filled with linear dielectrics
traditionally attracts attention [1–4].This theory is interesting
due to several reasons: first, such problems describe real
physical processes that are of importance for applications;
second, from themathematical point of view, this theory is an
affluent source of sophisticated and interesting mathematical
problems.

Theory of electromagnetic waves in nonlinear media
has also attracted attention for decades [5–12]. There are a
lot of topics in this field, for example, electromagnetic
wave propagation in self-focusing and self-defocusingmedia,
higher harmonic generation (especially second and third),
and Raman scattering [6, 8, 10, 13].

In the theory of nonlinear electromagnetic wave propa-
gation, the most advanced results can be found for the case
of monochromatic polarised (TE and TM) waves in planar
layered dielectric waveguides. From the mathematical stand-
point, similar problems for circle cylindrical waveguides are
much more complicated. To the best of our knowledge, the
first rigorous formulation of TE and TMwave propagation in
plane and circle cylindrical waveguides with nonlinear filling

had been proposed in [14], and since then these and similar
problems have been studied very intensively [7, 10, 15–25].
Nevertheless, key results in the cases of TE and TM wave
propagation in a layerwithKerr nonlinearity have been found
only recently [23–25].

It is worth noting that the development of the wave
propagation theory in a single layer is a first step towards
studying stratified (or multilayered) waveguide structures.
Layered and periodic waveguides are of special interest
for optical guiding industry. Since such structures play an
important role in a number of applications in optics, then
they compel attention of researchers [26–35].

This paper focuses on the problem of monochromatic TE
wave propagation in a plane two-layered dielectric waveguideΣ filled with Kerr media. The guided wave harmonically
depends on one of the longitudinal coordinates and decays
along the transverse coordinate. Perfectly conducted wall is
located on one of the waveguide boundaries; on the opposite
side, the waveguide is open and the half-space is filled
with a homogeneous isotropic nonmagnetic medium having
constant permittivity. We apply the approach developed in
[36]. From the mathematical point of view, the problem
under investigation is a nonlinear eigenvalue problem for an
ordinary nonlinear autonomous differential equation of the
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Figure 1: Geometry of the problem. Here 𝜀𝑖 = 𝜀0𝜀𝑖, 𝜀𝑠 = 𝜀0𝜀𝑠, and𝛼̃𝑖 = 𝜀0𝛼𝑖.
second order with discontinuous coefficients and boundary
and transmission conditions followed from electromagnetic
theory. Eigenvalues of the problem are propagation constants
(PCs) of eigenwaves of the waveguide. The PCs are solutions
to the so-called dispersion equation (DE).We derive theDE in
the general case. If one of the layers is nonlinear and the other
one is linear, then the DE can be studied in detail [23, 36].

2. Statement of the Problem

We consider the propagation of a monochromatic TE wave(E,H)𝑒−𝑖𝜔𝑡, where 𝜔 is the circular frequency, in a lossless
two-layered plane dielectric waveguide Σ = Σ1 ∪ Σ2, whereΣ1 = {(𝑥, 𝑦, 𝑧) : 0 ⩽ 𝑥 < ℎ1, (𝑦, 𝑧) ∈ R2} ,

Σ2 = {(𝑥, 𝑦, 𝑧) : ℎ1 ⩽ 𝑥 ⩽ ℎ1 + ℎ2, (𝑦, 𝑧) ∈ R2} . (1)

The TE wave is described as follows:

E = (0, 𝐸𝑦 (𝑥) 𝑒𝑖𝛾𝑧, 0)⊤ ,
H = (𝐻𝑥 (𝑥) 𝑒𝑖𝛾𝑧, 0,𝐻𝑧 (𝑥) 𝑒𝑖𝛾𝑧)⊤ , (2)

where E and H are the complex amplitudes [14] and 𝛾 is an
unknown real propagation constant (spectral parameter).

In the half-space 𝑥 < 0, the permittivity is constant and
is equal to 𝜀𝑠 = 𝜀0𝜀𝑠, where 𝜀𝑠 ⩾ 1 and 𝜀0 > 0 is the
permittivity of free space. There are no sources in the entire
space. Everywhere, 𝜇 = 𝜇0, where 𝜇0 is the permeability of
free space.

The waveguide Σ is characterised by the permittivity 𝜀 =𝜀0𝜀, where
𝜀 = {{{

𝜀1 + 𝛼1 |E|2 , (𝑥, 𝑦, 𝑧) ∈ Σ1,𝜀2 + 𝛼2 |E|2 , (𝑥, 𝑦, 𝑧) ∈ Σ2 (3)

and 𝛼1, 𝛼2 > 0 (see Figure 1). In what follows, we assume that𝜀𝑠 < 𝜀1 < 𝜀2 are real constants. There is a perfectly conducted
wall 𝜎 at the boundary 𝑥 = ℎ1 + ℎ2.

Complex amplitudes (2) satisfy Maxwell’s equations,

rotH = −𝑖𝜔𝜀E,
rotE = 𝑖𝜔𝜇0H, (4)

and decay as𝑂(|𝑥|−1)when 𝑥 → −∞; tangential components
of the fields are continuous on the boundaries 𝑥 = 0 and 𝑥 =ℎ1; tangential component of the electric field vanishes on the
boundary 𝑥 = ℎ1 + ℎ2. It is assumed that the value 𝐸𝑦|𝑥=0 ̸= 0
is prescribed.

If it does not lead to misunderstanding, the explicit
dependence on 𝑥 and 𝛾 is omitted.

Substituting (2) into (4), one gets𝑖𝛾𝐻𝑥 (𝑥) − 𝐻󸀠𝑧 (𝑥) = −𝑖𝜔𝜀0𝜀𝐸𝑦 (𝑥) ,−𝑖𝛾𝐸𝑦 (𝑥) = 𝑖𝜔𝜇0𝐻𝑥 (𝑥) ,
𝐸󸀠𝑦 (𝑥) = 𝑖𝜔𝜇0𝐻𝑧 (𝑥) .

(5)

Let 𝑘20 = 𝜔2𝜇0𝜀0. Expressing𝐻𝑥 and𝐻𝑧 from the second and
third equations in (5) and substituting the results into the first
equation, one obtains𝐸󸀠󸀠𝑦 = (𝛾2 − 𝑘20𝜀) 𝐸𝑦. (6)

Denoting 𝐸𝑦 by 𝑦1 and 𝑦2 in the layers Σ1 and Σ2,
respectively, one obtains the equations𝑦󸀠󸀠1 = − (𝜅21 + 𝛽1𝑦21) 𝑦1,𝑦1 ≡ 𝑦1 (𝑥; 𝛾) , 𝑥 ∈ [0, ℎ1] , (7)

𝑦󸀠󸀠2 = − (𝜅22 + 𝛽2𝑦22) 𝑦2,𝑦2 ≡ 𝑦2 (𝑥; 𝛾) , 𝑥 ∈ [ℎ1, ℎ1 + ℎ2] , (8)

where 𝜅2𝑖 fl 𝑘20𝜀𝑖 − 𝛾2 and 𝛽𝑖 fl 𝑘20𝛼𝑖 (𝑖 = 1, 2); 𝜅2𝑖 are not
necessarily positive.

Equation (6) is linear in the half-space 𝑥 < 0. Taking into
account conditions at infinity, one obtains its solution in the
form 𝐸𝑦 (𝑥) = 𝐴𝑒𝜅𝑠𝑥, (9)

where 𝜅2𝑠 fl 𝛾2 − 𝑘20𝜀𝑠 > 0. This solution results in the con-
dition 𝛾2 > 𝑘20𝜀𝑠.

The continuity condition for the tangential field compo-
nents results in the continuity of 𝐸𝑦 and 𝐸󸀠𝑦 at 𝑥 = 0 and𝑥 = ℎ1. Using solution (9) and the continuity of 𝐸𝑦 and 𝐸󸀠𝑦,
one obtains 𝑦1(0) = 𝐴 and 𝑦󸀠1(0) = 𝜅𝑠𝐴. Since 𝐸𝑦 corre-
sponds to the tangential component of the electric field, then
it vanishes at𝑥 = ℎ1+ℎ2. In view of this, one gets the following
conditions: 𝑦󸀠1 (0) − 𝜅𝑠𝑦1 (0) = 0,𝑦2 (ℎ1 + ℎ2) = 0, (10)

𝑦1 (ℎ1 − 0) − 𝑦2 (ℎ1 + 0) = 0,𝑦󸀠1 (ℎ1 − 0) − 𝑦󸀠2 (ℎ1 + 0) = 0, (11)
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where 𝑦1(0) = 𝐴 ̸= 0 is supposed to be known (without loss
of generality, 𝐴 > 0).

Thus, the original wave propagation problem is reduced
to the problem 𝑃(𝛽1, 𝛽2), which is to determine PCs 𝛾 = 𝛾,
such that there exists a nontrivial function

𝑦 (𝑥; 𝛾) = {{{
𝑦1 (𝑥; 𝛾) , 𝑥 ∈ [0, ℎ1] ;𝑦2 (𝑥; 𝛾) , 𝑥 ∈ [ℎ1, ℎ1 + ℎ2] , (12)

which satisfies (7)-(8), conditions (10)-(11), and

𝑦 ∈ 𝐶1 [0, ℎ1 + ℎ2] ∩ 𝐶2 [0, ℎ1] ∩ 𝐶2 [ℎ1, ℎ1 + ℎ2] . (13)

The problem 𝑃(𝛽1, 𝛽2) can be treated as an eigenvalue
problem for a nonlinear differential equation of the second
order with discontinuous coefficients on a segment with
mixed boundary conditions and transmission conditions at
the point 𝑥 = ℎ1.
3. Linear Problem

Here we consider the case 𝛼1 = 𝛼2 = 0, which corresponds
to the linear problem denoted by 𝑃(0, 0). In this case, (7) and
(8) are linear:

𝑦󸀠󸀠1 (𝑥) = −𝜅21𝑦1 (𝑥) , 𝑥 ∈ [0, ℎ1] ,𝑦󸀠󸀠2 (𝑥) = −𝜅22𝑦2 (𝑥) , 𝑥 ∈ [ℎ1, ℎ1 + ℎ2] . (14)

Using (10), solutions to (14) are written in the following
form:

(i) For 𝛾2 > 𝑘20𝜀2,
𝑦1 = 𝐴(𝜅𝑠𝜅1 sinh (𝜅1𝑥) + cosh (𝜅1𝑥)) ,𝑦2 = 𝐵 sinh (𝜅2 (𝑥 − ℎ1 − ℎ2)) , (15)

where 𝜅21 fl −𝜅21 and 𝜅22 fl −𝜅22 .
(ii) For 𝑘20𝜀1 < 𝛾2 < 𝑘20𝜀2,

𝑦1 = 𝐴(𝜅𝑠𝜅1 sinh (𝜅1𝑥) + cosh (𝜅1𝑥)) ,𝑦2 = 𝐵 sin (𝜅2 (𝑥 − ℎ1 − ℎ2)) , (16)

where 𝜅21 fl −𝜅21 .
(iii) For 𝑘20𝜀𝑠 < 𝛾2 < 𝑘20𝜀1,

𝑦1 = 𝐴(𝜅𝑠𝜅1 sin (𝜅1𝑥) + cos (𝜅1𝑥)) ,𝑦2 = 𝐵 sin (𝜅2 (𝑥 − ℎ1 − ℎ2)) . (17)

Using solutions (15)–(17) and (11), the DE for the problem𝑃(0, 0) is written in the following form:
(i) For 𝛾2 > 𝑘20𝜀2,𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1)𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1) = − 𝜅1 sinh (𝜅2ℎ2)𝜅2 cosh (𝜅2ℎ2) , (18)

where 𝜅21 = −𝜅21 and 𝜅22 = −𝜅22 .

(ii) For 𝑘20𝜀1 < 𝛾2 < 𝑘20𝜀2,
𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1)𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1) = − 𝜅1 sin (𝜅2ℎ2)𝜅2 cos (𝜅2ℎ2) , (19)

where 𝜅21 = −𝜅21 .
(iii) For 𝑘20𝜀𝑠 < 𝛾2 < 𝑘20𝜀1,
𝜅𝑠 sin (𝜅1ℎ1) + 𝜅1 cos (𝜅1ℎ1)𝜅𝑠 cos (𝜅1ℎ1) − 𝜅1 sin (𝜅1ℎ1) = − 𝜅1 sin (𝜅2ℎ2)𝜅2 cos (𝜅2ℎ2) . (20)

It is clear that (18) has no solutions. Indeed, the left-hand
side is positive and right-hand side is negative.Thus, solutions
to the linear problem satisfy the condition

𝑘20𝜀𝑠 < 𝛾2 < 𝑘20𝜀2. (21)

Let us consider (19). Introduce the function

𝐹 (𝛾2)
= 𝜅2 cos (𝜅2ℎ2) (𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1))+ 𝜅1 sin (𝜅2ℎ2) (𝑘𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1)) .

(22)

Let sin (𝜅2ℎ2) = 0; therefore 𝛾2 = 𝑘20𝜀2 − (𝜋𝑛/ℎ2)2 = 𝛾2∗,
where 𝑛 ⩾ 1 is an integer, such that 𝑘20𝜀2 − (𝜋𝑛/ℎ2)2 > 𝑘20𝜀1
[see formula (19)]. Thus, one obtains

𝐹 (𝛾2∗) = 𝜋𝑛ℎ2 (−1)𝑛 (𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1)) . (23)

Choosing the lowest possible 𝑛 = 1, one gets 𝐹(𝛾2∗) < 0. The
inequality 𝜀2 − 𝜋2/𝑘20ℎ22 > 𝜀1 must be fulfilled.

Now let cos (𝜅2ℎ2) = 0; therefore 𝛾2 = 𝑘20𝜀2 − ((𝜋 +2𝜋𝑚)/2ℎ2)2 = 𝛾∗2, where 𝑚 ⩾ 0 is an integer, such that𝑘20𝜀2 − ((𝜋 + 2𝜋𝑚)/2ℎ2)2 > 𝑘20𝜀1 [see formula (19)]. Thus, one
obtains

𝐹 (𝛾∗2) = 𝜅1 (−1)𝑚 (𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1)) . (24)

Choosing the lowest possible𝑚 = 0, one gets 𝐹(𝛾∗2) > 0. The
inequality 𝜀2 − 𝜋2/4𝑘20ℎ22 > 𝜀1 must be fulfilled.

Since 𝐹 is continuous for 𝛾 ∈ (𝛾∗, 𝛾∗) and 𝐹(𝛾2∗)𝐹(𝛾∗2) <0, then there is 𝛾 ∈ (𝛾∗, 𝛾∗) such that 𝐹(𝛾) = 0. The inequality

ℎ2 > 𝜋𝑘0√𝜀2 − 𝜀1 (25)

is a sufficient condition of existence of solutions to (19).
Let us pass to (20). Introduce the function

𝐹 (𝛾2)
= 𝜅2 cos (𝜅2ℎ2) (𝜅𝑠 sin (𝜅1ℎ1) + 𝜅1 cos (𝜅1ℎ1))+ 𝜅1 sin (𝜅2ℎ2) (𝜅𝑠 cos (𝜅1ℎ1) − 𝜅1 sin (𝜅1ℎ1)) .

(26)
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Let sin (𝜅2ℎ2) = 0; therefore 𝛾2 = 𝑘20𝜀2 − (𝜋𝑛/ℎ2)2 = 𝛾2∗,
where 𝑛 ⩾ 1 is an integer, such that 𝑘20𝜀𝑠 < 𝑘20𝜀2 − (𝜋𝑛/ℎ2)2 <𝑘20𝜀1 [see formula (20)]. Thus, one obtains

𝐹 (𝛾2∗) = 𝜋𝑛ℎ2 (−1)𝑛 (𝜅𝑠 sin (𝜅1ℎ1) + 𝜅1 cos (𝜅1ℎ1))
= 𝜋𝑛ℎ2 (−1)𝑛√𝜅21 + 𝜅2𝑠 sin (𝜅1ℎ1 + 𝜙) ,

(27)

where sin𝜙 = 𝜅1/√𝜅21 + 𝜅2𝑠 and cos𝜙 = 𝜅𝑠/√𝜅21 + 𝜅2𝑠 .
Choosing the lowest possible 𝑛 = 1, one gets 𝐹(𝛾2∗) < 0
subject to 0 < 𝜅1ℎ1 + 𝜙 < 𝜋. Since the inequality 𝜀𝑠 <𝜀2 − (𝜋/𝑘0ℎ2)2 < 𝜀1 must be fulfilled, then 𝜋/𝑘0√𝜀2 − 𝜀𝑠 <ℎ2 < 𝜋/𝑘0√𝜀2 − 𝜀1.

Now let cos (𝜅2ℎ2) = 0; therefore 𝛾2 = 𝑘20𝜀2 − ((𝜋 +2𝜋𝑚)/2ℎ2)2 = 𝛾∗2, where 𝑚 ⩾ 0 is an integer, such that𝑘20𝜀𝑠 < 𝑘20𝜀2 − ((𝜋 + 2𝜋𝑚)/2ℎ2)2 < 𝑘20𝜀1 [see formula (20)].
Thus, one obtains

𝐹 (𝛾∗2) = 𝜅1 (−1)𝑚 (𝜅𝑠 cos (𝜅1ℎ1) − 𝜅1 sin (𝜅1ℎ1))
= 𝜅1 (−1)𝑚√𝜅21 + 𝜅2𝑠 cos (𝜅1ℎ1 + 𝜙) . (28)

Choosing the lowest possible 𝑚 = 0, one gets 𝐹(𝛾∗2) > 0
subject to 𝜅1ℎ1 + 𝜙 < 𝜋/2. Since the inequality 𝜀𝑠 < 𝜀2 −(𝜋/2𝑘0ℎ2)2 < 𝜀1 must be fulfilled, then 𝜋/2𝑘0√𝜀2 − 𝜀𝑠 < ℎ2 <𝜋/2𝑘0√𝜀2 − 𝜀1.

It follows from the above that the inequalities𝜋𝑘0√𝜀2 − 𝜀𝑠 < ℎ2 < 𝜋2𝑘0√𝜀2 − 𝜀1 ,
ℎ1 < 1𝜅1 (𝜋2 − 𝜙)

(29)

give a sufficient condition of existence of solutions to (20).
Thus, we formulate the following.

Statement 1. The problem 𝑃(0, 0) does not have more than a
finite number of PCs 𝛾𝑖, 𝑖 = 1, 𝑙. For any 𝑖 = 1, 𝑙, it is true that𝑘20𝜀𝑠 < 𝛾2𝑖 < 𝑘20𝜀2.
Proof. The existence of solutions to (19) and (20) subject
to conditions (25) and (29), respectively, results from the
analysis given above. These conditions are only sufficient. It
is also clear how conditions (25) and (29) change when the
number of solutions increases.

The functions 𝐹 depend analytically on 𝛾. Since 𝛾 belongs
to a finite interval [see formula (21)], then each of (19) and
(20) does not have more than a finite number of isolated
solutions inside the interval.

4. Nonlinear Problem: Dispersion
Equations and Theorem of Equivalence

In the following, we need auxiliary results given below by
Statements 2 and 3.

Statement 2. The Cauchy problem for (7) with initial data𝑦1 (0) = 𝐴,𝑦󸀠1 (0) = 𝐴𝜅𝑠, (30)

where 𝐴 > 0 and 𝜅𝑠 = √𝛾2 − 𝑘20𝜀𝑠 > 0 are constants, has a
unique continuous solution 𝑦1 ≡ 𝑦1(𝑥; 𝛾) defined globally on[0, 𝑥∗], where 𝑥∗ > 0 is an arbitrary real point. This solution
depends continuously on 𝛾 for all 𝛾2 > 𝑘20𝜀𝑠.
Proof. First integral of (7) takes the form

𝑦󸀠21 + 𝜅21𝑦21 + 12𝛽1𝑦41 = 𝐶1, (31)

where, using conditions (30), one finds

𝐶1 = (𝑘20𝜀1 − 𝑘20𝜀𝑠 + 12𝛽1𝐴2)𝐴2. (32)

It is clear that 𝐶1 does not depend on 𝛾, and 𝐶1 > 0 if 𝛽1 ⩾ 0.
Introduce new variables:𝜏1 (𝑥) = 𝑦21 (𝑥) ,

𝜂1 (𝑥) = 𝑦󸀠1 (𝑥)𝑦1 (𝑥) .
(33)

Equation (7) can be rewritten as a system:𝜏󸀠1 = 2𝜏1𝜂1,𝜂󸀠1 = − (𝜂21 + 𝜅21 + 𝛽1𝜏1) . (34)

First integral (31) takes the form12𝛽1𝜏21 + (𝜂21 + 𝜅21) 𝜏1 = 𝐶1. (35)

Solving (35)with respect to 𝜏1, taking into account the fact
that 𝜏1 ⩾ 0, and substituting the result into the right-hand side
of the second equation in (34), one obtains𝜂󸀠1 = −𝑤1 (𝜂1; 𝛾) , (36)

where 𝑤1(𝜂1; 𝛾) = √(𝜂21 + 𝜅21)2 + 2𝛽1𝐶1 and the radicand is
positive for all real 𝜂1 and 𝛾.

Using conditions (30), one finds𝜂1 (0) = 𝜅𝑠 > 0. (37)

Since 𝜂󸀠1 < 0, 𝜂1 monotonically decreases for 𝑥 > 0. In
the general case, 𝑦1(𝑥) can have zeros at some points on the
interval (0, 𝑥∗). Suppose that 𝑦1(𝑥) has 𝑛1 zeros 𝑥1, . . . , 𝑥𝑛1 ∈(0, 𝑥∗). Then 𝜂1 has 𝑛1 break points 𝑥1, . . . , 𝑥𝑛1 ∈ (0, 𝑥∗). If𝑛1 = 0, then 𝑦1(𝑥) does not become zero for any 𝑥 ∈ [0, 𝑥∗]
and, therefore, 𝜂1 is continuous for 𝑥 ∈ [0, 𝑥∗]. It is clear that𝑦󸀠1(𝑥𝑖) ̸= 0 for all 𝑖 = 1, 𝑛1. Formula (36) implies that𝜂1 (𝑥𝑖 − 0) = −∞,𝜂1 (𝑥𝑖 + 0) = +∞,𝑖 = 1, 𝑛1.

(38)
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Thereby, solutions to (36) are sought on each of the
intervals [0, 𝑥1), (𝑥1, 𝑥2), . . . , (𝑥𝑛1 , 𝑥∗):
∫𝜂(𝑥1−0)
𝜂(𝑥)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 + 𝑐0, 0 ⩽ 𝑥 < 𝑥1;
− ∫𝜂(𝑥)
𝜂(𝑥𝑖+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 + 𝑐𝑖,𝑥𝑖 < 𝑥 < 𝑥𝑖+1, 𝑖 = 0, 𝑛1 − 1;
−∫𝜂(𝑥)
𝜂(𝑥𝑛1+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 + 𝑐𝑛1 , 𝑥𝑛1 < 𝑥 < 𝑥∗.
(39)

Substituting 𝑥 = 0, 𝑥 = 𝑥𝑖+1 − 0, and 𝑥 = 𝑥∗ into the
first, second, and third equations, respectively, in (39), one
determines

𝑐0 = ∫𝜂(𝑥1−0)
𝜂(0)

𝑑𝑠𝑤1 (𝑠; 𝛾) ;
𝑐𝑖 = −∫𝜂(𝑥𝑖+1−0)

𝜂(𝑥𝑖+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥𝑖+1, 𝑖 = 1, 𝑛1 − 1;
𝑐𝑛1 = −∫𝜂(𝑥∗)

𝜂(𝑥𝑛1+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥∗.
(40)

Using the found 𝑐𝑖, one can rewrite (39) in the following
form:

∫𝜂(𝑥1−0)
𝜂(𝑥)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 + ∫
𝜂(𝑥1−0)

𝜂(0)

𝑑𝑠𝑤1 (𝑠; 𝛾) ,0 ⩽ 𝑥 < 𝑥1;
− ∫𝜂(𝑥)
𝜂(𝑥𝑖+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 − ∫
𝜂(𝑥𝑖+1−0)

𝜂(𝑥𝑖+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥𝑖+1,𝑥𝑖 < 𝑥 < 𝑥𝑖+1, 𝑖 = 1, 𝑛1 − 1;
−∫𝜂(𝑥)
𝜂(𝑥𝑛1+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) = 𝑥 − ∫
𝜂(𝑥∗)

𝜂(𝑥𝑛1+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥∗,𝑥𝑛1 < 𝑥 < 𝑥∗.

(41)

By substituting 𝑥 = 𝑥1 − 0, 𝑥 = 𝑥𝑖 + 0, and 𝑥 = 𝑥𝑛 + 0 into
the first, second, and third equations, respectively, of previous
equation, one obtains

0 = 𝑥1 + ∫𝜂(𝑥1−0)
𝜂(0)

𝑑𝑠𝑤1 (𝑠; 𝛾) ,
0 = 𝑥𝑖 − ∫𝜂(𝑥𝑖+1−0)

𝜂(𝑥𝑖+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥𝑖+1, 𝑖 = 1, 𝑛1 − 1;
0 = 𝑥𝑛1 − ∫𝜂(𝑥∗)

𝜂(𝑥𝑛1+0)

𝑑𝑠𝑤1 (𝑠; 𝛾) − 𝑥∗.
(42)

Taking into account (37) and (38), one finds, from (42),

0 < 𝑥1 = ∫𝜅𝑠
−∞

𝑑𝑠𝑤1 (𝑠; 𝛾) ,
0 < 𝑥𝑖+1 − 𝑥𝑖 = ∫+∞

−∞

𝑑𝑠𝑤1 (𝑠; 𝛾) , 𝑖 = 1, 𝑛1 − 1;
0 < ℎ1 − 𝑥𝑛1 = ∫+∞

𝜂(𝑥∗)

𝑑𝑠𝑤1 (𝑠; 𝛾) .
(43)

Formulas (43) give explicit expressions for distances
between zeros of 𝑦1. Moreover, since the left-hand sides in
(43) are finite, the right-hand sides are also finite. Therefore,
the improper integrals on the right-hand sides converge.

Summing up all the terms in (43), one gets

𝑥1 + 𝑥2 − 𝑥1 + 𝑥3 − 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛1−1 − 𝑥𝑛1−2 + 𝑥𝑛1− 𝑥𝑛1−1 + 𝑥∗ − 𝑥𝑛1
= ∫𝜅𝑠
−∞
𝑤1𝑑𝑠 + (𝑛1 − 1)∫+∞

−∞
𝑤1𝑑𝑠 + ∫+∞

𝜂(𝑥∗)
𝑤1𝑑𝑠.

(44)

From the last formula, one finds

∫𝜅𝑠
𝜂(𝑥∗)
𝑤1𝑑𝑠 + 𝑛1 ∫+∞

−∞
𝑤1𝑑𝑠 = 𝑥∗. (45)

Formula (45) shows that the solution of the Cauchy
problem to (7) with initial conditions (30) exists and is
defined globally at any segment [0, 𝑥∗]. The uniqueness of
this solution and its continuity with respect to 𝛾 follows from
smoothness of the right-hand side of (7) with respect to 𝑦1
and 𝛾 [37].

Let us consider the function 𝑝(𝛾) fl 𝑦󸀠1(ℎ1; 𝛾)/𝑦1(ℎ1; 𝛾).
Since the right-hand side of (7) depends on 𝛾 analytically,
the solution 𝑦1 ≡ 𝑦1(𝑥; 𝛾) of the considered Cauchy problem
depends on 𝛾 analytically as well [38] and therefore 𝑦1 and𝑦󸀠1 depend analytically on 𝛾. Since 𝑦1 and 𝑦󸀠1 do not vanish
simultaneously, 𝑝 ≡ 𝑝(𝛾) is an analytical function that can
have only poles of the first order.

Passing to the limit 𝑥∗ → ℎ1 − 0 in (45), one gets

Φ1 (𝛾; 𝑛1, 𝑝) ≡ ∫𝜅𝑠
𝑝
𝑤1𝑑𝑠 + 𝑛1 ∫+∞

−∞
𝑤1𝑑𝑠 = ℎ1, (46)

where 𝑛1 = 0, 1, 2, . . .. We notice that if 𝑝 > 𝜅𝑠, then
necessarily 𝑛1 ⩾ 1.
Statement 3. The Cauchy problem for (8) with initial data

𝑦2 (ℎ1 + ℎ2) = 0,𝑦󸀠2 (ℎ1 + ℎ2) = 𝐵, (47)

where 𝐵 is a real constant, has a unique continuous solution𝑦2 ≡ 𝑦2(𝑥; 𝛾) defined globally on [𝑥∗, ℎ1 + ℎ2], where 𝑥∗ <ℎ1 + ℎ2 is an arbitrary real point. This solution depends
continuously on 𝛾 for all 𝛾2 > 𝑘20𝜀𝑠.
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Proof. Now let us consider (8). First integral of (8) has the
form

𝑦󸀠22 + 𝜅22𝑦22 + 12𝛽2𝑦42 = 𝐶2, (48)

where, using condition (47), one calculates

𝐶2 = 𝐵2 > 0, (49)

where 𝐵 depends on 𝛾. The positivity of 𝐶2 is essential.
Introduce new variables:𝜏2 (𝑥) fl 𝑦22 (𝑥) ,

𝜂2 (𝑥) fl 𝑦󸀠2 (𝑥)𝑦2 (𝑥) .
(50)

Equation (8) can be rewritten as a system:

𝜏󸀠2 = 2𝜏2𝜂2,𝜂󸀠2 = − (𝜂22 + 𝜅22 + 𝛽2𝜏2) . (51)

First integral (48) takes the form12𝛽2𝜏22 + (𝜂22 + 𝜅22) 𝜏2 = 𝐶1. (52)

Solving (52)with respect to 𝜏2, taking into account the fact
that 𝜏2 ⩾ 0, and substituting the result into the right-hand side
of the second equation in (51), one obtains

𝜂󸀠2 = −𝑤2 (𝜂2; 𝛾) , (53)

where 𝑤(𝜂2; 𝛾) = √(𝜂22 + 𝜅22)2 + 2𝛽2𝐶2 and the radicand is
positive for all real 𝜂2 and 𝛾.

Using condition (47) and the fact that 𝜂󸀠2 < 0, one finds𝜂2 (ℎ1 + ℎ2 − 0) = −∞. (54)

Since 𝜂󸀠2 < 0, 𝜂2monotonically decreases for 𝑥 ∈ (𝑥∗, ℎ1+ℎ2). However, 𝜂2 is continuous if and only if 𝑦2(𝑥) does not
vanish for all 𝑥 ∈ (𝑥∗, ℎ1 + ℎ2). In the general case, 𝑦2(𝑥) can
have zeros at some points on the interval (ℎ1, ℎ1+ℎ2). Suppose
that 𝑦2(𝑥) has 𝑛2 zeros 𝑥1, . . . , 𝑥𝑛2 ∈ (𝑥∗, ℎ1 + ℎ2). Then 𝜂2
has 𝑛2 break points 𝑥1, . . . , 𝑥𝑛2 ∈ (𝑥∗, ℎ1 + ℎ2). It is clear that𝑦󸀠2(𝑥𝑖) ̸= 0 for all 𝑖 = 1, 𝑛2. Formula (53) implies that

𝜂2 (𝑥𝑖 − 0) = −∞,𝜂2 (𝑥𝑖 + 0) = +∞,𝑖 = 1, 𝑛2.
(55)

Thereby, solutions to (53) are sought on each of the
intervals (𝑥∗, 𝑥1), (𝑥1, 𝑥2), . . . , (𝑥𝑛2 , ℎ1 + ℎ2).

Using the same reasoning as in the proof of Statement 2,
one obtains the expression

∫𝜂(𝑥∗)
−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) + 𝑛2 ∫
+∞

−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) = ℎ2. (56)

Formula (56) shows that the solution to the Cauchy prob-
lem for (8) with initial conditions (47) exists and is defined
globally at any segment [𝑥∗, ℎ1 + ℎ2]. The uniqueness of this
solution and its continuity with respect to 𝛾 follows from
smoothness of the right-hand side of (8) with respect to 𝑦2
and 𝛾 [37].

Passing to the limit 𝑥∗ → ℎ1 + 0 in (56), one gets

Φ2 (𝛾; 𝑛2, 𝑝) ≡ ∫𝑝
−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) + 𝑛2 ∫
+∞

−∞

𝑑𝑠𝑤2 (𝑠; 𝛾)= ℎ2, (57)

where 𝑛2 = 0, 1, 2, . . ..
The following theorem takes place.

Theorem1 (of equivalence). Thevalue 𝛾 is a PC of the problem𝑃(𝛽1, 𝛽2) if and only if there are integers 𝑛1 = 𝑛1 ⩾ 0 and𝑛2 = 𝑛2 ⩾ 0 such that 𝛾 = 𝛾 is a solution to the DE:

Φ1 (𝛾; 𝑛1, 𝑝) = ℎ1,Φ2 (𝛾; 𝑛2, 𝑝) = ℎ2 (58)

with certain 𝑝 = 𝑝.
Proof. It follows from the derivation of expressions (46) and
(57) that if 𝛾 = 𝛾 is an eigenvalue of the problem 𝑃(𝛽1, 𝛽2),
then it is a solution to system (58) with 𝑛1 = 𝑛1, 𝑛2 = 𝑛2, and𝑝 = 𝑝. Let us prove that each solution 𝛾 = 𝛾 to system (58) is
an eigenvalue.

Let system (58) have a solution 𝛾 = 𝛾 with 𝑛1 = 𝑛1, 𝑛2 =𝑛2, 𝑝 = 𝑝, and 𝑦1(0) = 𝐴.
Consider the Cauchy problem for (7) with initial data

(30), where 𝜅𝑠 = √𝛾2 − 𝑘20𝜀𝑠. In accordance with Statement 2,
its solution 𝑦1 ≡ 𝑦1(𝑥, 𝛾) exists, is unique, and is defined for𝑥 ∈ [0, ℎ1]. At this step, we do not claim that 𝑦󸀠1(ℎ1)/𝑦1(ℎ1) =𝑝. Using the found solution 𝑦1 and formula (33), one
determines the functions 𝜏1 and 𝜂1. It is clear that 𝜏1(0) = 𝐴2
and 𝜂1(0) = 𝜅𝑠.

Assuming that 𝜂1(ℎ1) = 𝑝1 < 𝑝 and using the found 𝜏1
and 𝜂1, one obtains the expression

∫𝜅𝑠
𝑝1

𝑑𝑠𝑤1 (𝑠; 𝛾) + 𝑛1 ∫
+∞

−∞

𝑑𝑠𝑤1 (𝑠; 𝛾) = ℎ1, (59)

which corresponds to the first line in (58).We rewrite it in the
form

∫𝑝
𝑝1

𝑑𝑠𝑤1 (𝑠; 𝛾) + ∫
𝜅𝑠

𝑝

𝑑𝑠𝑤1 (𝑠; 𝛾) + 𝑛1 ∫
+∞

−∞

𝑑𝑠𝑤1 (𝑠; 𝛾) = ℎ1. (60)

Since 𝛾 = 𝛾 satisfies the first line in (58) with 𝑝 = 𝑝, then
in the first line in (58) and in (60) the integrands coincide.
Subtracting one from another, one obtains

∫𝑝
𝑝1

𝑑𝑠𝑤1 (𝑠; 𝛾) = 0. (61)
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Due to the obvious estimates ∫+∞
−∞
(𝑑𝑠/𝑤1(𝑠; 𝛾)) > ∫𝑝𝑝1(𝑑𝑠/𝑤1(𝑠; 𝛾)) > 0, one obtains that (61) is fulfilled only if 𝑝1 = 𝑝.

Therefore, the condition 𝜂(ℎ1) = 𝑝1 < 𝑝 is false. In the same
way, it can be shown that the condition 𝜂(ℎ1) = 𝑝1 > 𝑝 is also
false. Thus, 𝑝1 = 𝑝.

Now let us pass to the Cauchy problem for (8) with initial
data (47), where𝐵 ≡ 𝐵(𝛾). In accordance with Statement 3, its
solution𝑦2 ≡ 𝑦2(𝑥, 𝛾) exists, is unique, and is defined globally
for 𝑥 ∈ [ℎ1, ℎ1 + ℎ2]. In this case, using the continuity of 𝐸𝑦
and𝐸󸀠𝑦, first integral (48), and (49), one finds that the quantity𝐵 is determined from the equation

𝐵2 = 𝑦󸀠21 + (𝑘20𝜀2 − 𝛾2) 𝑦21 + 12𝛽2𝑦41 > 0, (62)

where 𝑦1 and 𝑦󸀠1 are calculated at 𝑥 = ℎ1 with 𝛾 = 𝛾 (𝑦1 and𝑦󸀠1 are already found).
At this step,we donot claim that𝑦󸀠2(ℎ1)/𝑦2(ℎ1) = 𝑝. Using

the found solution 𝑦2 and formula (50), one determines the
functions 𝜏2 and 𝜂2.

We assume that 𝜂2(ℎ1) = 𝑝2 > 𝑝. Using the found 𝜏2 and𝜂2, one obtains the expression
∫𝑝2
−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) + 𝑛2 ∫
+∞

−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) = ℎ2, (63)

which corresponds to the second line in (58). We rewrite it in
the following form:

∫𝑝
−∞

𝑑𝑠𝑤2 (𝑠; 𝛾) + ∫
𝑝2

𝑝

𝑑𝑠𝑤2 (𝑠; 𝛾) + 𝑚2 ∫
+∞

−∞

𝑑𝑠𝑤2 (𝑠; 𝛾)= ℎ2. (64)

Since 𝛾 = 𝛾 satisfies the second line in (58) with 𝑝 = 𝑝,
then in the second line in (58) and in (64) the integrands
coincide. Subtracting one from another, one obtains

∫𝑝2
𝑝

𝑑𝑠𝑤2 (𝑠; 𝛾) = 0. (65)

Due to the obvious estimates ∫+∞
−∞
(𝑑𝑠/𝑤2(𝑠; 𝛾)) > ∫𝑝2𝑝 (𝑑𝑠/𝑤2(𝑠; 𝛾)) > 0, one obtains that (65) is fulfilled only if 𝑝2 = 𝑝.

Thus, the condition 𝜂2(ℎ1) = 𝑝2 > 𝑝 is false. In the same way,
it can be shown that the condition 𝜂(ℎ1) = 𝑝2 < 𝑝 is also false.
Thus, 𝑝2 = 𝑝.

In other words, we have shown that the functions 𝑦1
and 𝑦2 satisfy (7) and (8) and conditions (10) and (11), and,
therefore, the function

𝑦 (𝑥; 𝛾) = {{{
𝑦1 (𝑥; 𝛾) , 𝑥 ∈ [0, ℎ1] ;𝑦2 (𝑥; 𝛾) , 𝑥 ∈ [ℎ1, ℎ1 + ℎ2] (66)

is an eigenfunction of the problem 𝑃(𝛽1, 𝛽2) corresponding
to the eigenvalue 𝛾 = 𝛾.

5. Solvability of the Nonlinear Problem

Theorem 1 is derived for the general case, that is, 𝛽1, 𝛽2 > 0.
The DE (58) can be studied theoretically and numerically.
However, the existence of infinitely many PCs for the general
case can be proven only if a special restriction is imposed on𝐵 ≡ 𝐵(𝛾). This restriction establishes the behaviour of 𝐵 for
big 𝛾. To bemore precise, 𝐵(𝛾)must not decrease “too” rapid.
As a matter of fact, such a restriction does not result from the
physical formulation of the problem. For this reason belowwe
study two simplified problems,where either𝛽1 or𝛽2 vanishes.

In this section, we use the following notation for the
eigenvalues 𝛾 of problems𝑃(0, 𝛽2) and 𝑃(𝛽1, 0): 𝛾𝑖means that
all the eigenvalues are arranged in the ascending order; 𝛾(𝑚)
means that this eigenvalue is a solution of (57) with 𝑛2 = 𝑚
[for the problem 𝑃(0, 𝛽2)] and (46) with 𝑛1 = 𝑚 [for the
problem 𝑃(𝛽1, 0)].
5.1. Case 𝛽1 = 0 and 𝛽2 ̸= 0. If 𝛽1 = 0 (or 𝛼1 = 0), solutions
to (7) are found elementarily. This allows one to explicitly
compute the quantity 𝑝, which is

𝑝 = 𝜅1 𝜅𝑠 cos (𝜅1ℎ1) − 𝜅1 sin (𝜅1ℎ1)𝜅𝑠 sin (𝜅1ℎ1) + 𝜅1 cos (𝜅1ℎ1)
= 𝜅1 𝜅𝑠 − 𝜅1 tan (𝜅1ℎ1)𝜅1 + 𝜅𝑠 tan (𝜅1ℎ1) .

(67)

This expression (due to its analytical dependence on 𝛾) can
be used for 𝜅21 ⩾ 0 as well as for 𝜅21 ⩽ 0. Note that 𝑝 is a
real value for all 𝛾2 > 𝑘20𝜀𝑠. Indeed, for 𝛾2 > 𝑘20𝜀1, one has𝜅1 = 𝑖𝜅1, where 𝜅21 = 𝛾2 − 𝑘20𝜀1, and then cos (𝑖𝑥) = cosh (𝑥)
and sin (𝑖𝑥) = 𝑖 sinh (𝑥); then

𝑝 = 𝜅1 𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1)𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1)
= 𝜅1 𝜅𝑠 + 𝜅1 tanh (𝜅1ℎ1)𝜅1 + 𝜅𝑠 tanh (𝜅1ℎ1) .

(68)

It can be checked that the substitution of the explicit
expression for 𝑝 into the first equation of system (58) leads
to the identity. Thus, in this case, system (58) reduces to the
only equation Φ2 (𝛾; 𝑛2, 𝑝) = ℎ2, (69)

whereΦ2 and 𝑝 are given by (57) and (67), respectively; 𝑛2 =0, 1, 2, . . ..
The solvability of the problem 𝑃(0, 𝛽2) is established by

the following.

Theorem 2. For 𝛽1 = 0, any 𝛽2 > 0, and any fixed 𝐴 ̸= 0, the
problem𝑃(0, 𝛽2) has an infinite number of PCs 𝛾𝑖 (𝑖 = 1, 2, . . .)
with the following properties:

(1) If 𝛾𝑖 is the solution to 𝑃(0, 𝛽2), then 𝛾2𝑖 ∈ (𝑘20𝜀𝑠, +∞)
and lim𝑖→∞𝛾2𝑖 = +∞.

(2) If the linear problem 𝑃(0, 0) has 𝑞 solutions 𝛾1 < 𝛾2 <⋅ ⋅ ⋅ < 𝛾𝑞, then there exists a constant 𝛽0 > 0 such that,
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for any 𝛽2 = 𝛽󸀠2 < 𝛽0, it is true that 𝛾2𝑖 ∈ (𝑘20𝜀𝑠, 𝑘20𝜀2)
and lim𝛽󸀠

1
→0𝛾𝑖 = 𝛾𝑖 (𝑖 = 1, 𝑞), where 𝛾1, 𝛾2, . . . , 𝛾𝑞 are

first 𝑞 solutions to 𝑃(0, 𝛽󸀠2).
(3) If 𝛾𝑖 →∞, thenmax𝑥∈(ℎ1 ,ℎ1+ℎ2)|𝑦2(𝑥, 𝛾𝑖)| → ∞.

(4) For big 𝛾 and arbitrary small Δ > 0, the asymptotic
two-sided inequality

(1 − Δ) 1ℎ1 ln 𝑚𝜋ℎ2𝐴√𝛽2 ⩽ 𝛾 (𝑚)
⩽ (1 + Δ) 1ℎ1 ln √2 (𝑚 + 1) 𝜋ℎ2𝐴√𝛽2

(70)

is valid.

Proof. Now let us study the behaviour of 𝐶2 ≡ 𝐶2(𝛾) with
respect to 𝛾. Explicit solution to (7) with initial data (30) has
the form𝑦1(𝑥) = 𝐴((𝜅𝑠/𝜅1) sin (𝜅1𝑥)+cos (𝜅1𝑥)). At the point𝑥 = ℎ1, one gets

𝑦1 (ℎ1) = 𝐴(𝜅𝑠𝜅1 sin (𝜅1ℎ1) + cos (𝜅1ℎ1)) ,
𝑦󸀠1 (ℎ1) = 𝐴𝜅1 (𝜅𝑠𝜅1 cos (𝜅1ℎ1) − sin (𝜅1ℎ1)) .

(71)

Substituting (71) into (48), one obtains

𝐶2 = 𝜅21 (𝜅𝑠𝜅1 cos (𝜅1ℎ1) − sin (𝜅1ℎ1))
2 𝐴2

+ 𝜅22 (𝜅𝑠𝜅1 sin (𝜅1ℎ1) + cos (𝜅1ℎ1))
2 𝐴2

+ 12𝛽2 (𝜅𝑠𝜅1 sin (𝜅1ℎ1) + cos (𝜅1ℎ1))
4 𝐴4.

(72)

If 𝑘20𝜀𝑠 < 𝛾2 ⩽ 𝑘20𝜀1, then 𝜅21 ⩾ 0 and 𝜅22 ⩾ 0 and, therefore,𝐶2 > 0.
If 𝑘20𝜀1 < 𝛾2 ⩽ 𝑘20𝜀2, then 𝜅21 < 0 and 𝜅22 ⩾ 0. As before, we

denote 𝜅1 = 𝑖𝜅1, where 𝜅21 = 𝛾2 − 𝑘20𝜀1 > 0. Then

𝐶2 = 𝜅21 (𝜅𝑠𝜅1 cosh (𝜅1ℎ1) + sinh (𝜅1ℎ1))
2 𝐴2

+ 𝜅22 (𝜅𝑠𝜅1 sinh (𝜅1ℎ1) + cosh (𝜅1ℎ1))
2 𝐴2

+ 12𝛽2 (𝜅𝑠𝜅1 sinh (𝜅1ℎ1) + cosh (𝜅1ℎ1))
4 𝐴4

> 0.

(73)

If 𝛾2 > 𝑘20𝜀2, then 𝜅21 < 0 and 𝜅22 < 0. As before, we denote𝜅1 = 𝑖𝜅1 and 𝜅2 = 𝑖𝜅2, where 𝜅21 = 𝛾2 − 𝑘20𝜀1 > 0 and 𝜅22 =𝛾2 − 𝑘20𝜀2 > 0. Then

𝐶2 = 𝜅21 (𝜅𝑠𝜅1 cosh (𝜅1ℎ1) + sinh (𝜅1ℎ1))
2 𝐴2

− 𝜅22 (𝜅𝑠𝜅1 sinh (𝜅1ℎ1) + cosh (𝜅1ℎ1))
2 𝐴2

+ 12𝛽2 (𝜅𝑠𝜅1 sinh (𝜅1ℎ1) + cosh (𝜅1ℎ1))
4 𝐴4.

(74)

Grouping terms in the last expression for 𝐶2, one gets𝜅𝑠𝜅1 cosh (𝜅1ℎ1) + sinh (𝜅1ℎ1)
= 12 (𝜅𝑠𝜅1 (𝑒𝜅1ℎ1 + 𝑒−𝜅1ℎ1) + (𝑒𝜅1ℎ1 − 𝑒−𝜅1ℎ1))
= 12 (𝑎+𝑒𝜅1ℎ1 + 𝑎−𝑒−𝜅1ℎ1) ,𝜅𝑠𝜅1 sinh (𝜅1ℎ1) + cosh (𝜅1ℎ1)
= 12 (𝜅𝑠𝜅1 (𝑒𝜅1ℎ1 − 𝑒−𝜅1ℎ1) + (𝑒𝜅1ℎ1 + 𝑒−𝜅1ℎ1))
= 12 (𝑎+𝑒𝜅1ℎ1 − 𝑎−𝑒−𝜅1ℎ1) ,

(75)

where 𝑎+ fl 𝜅𝑠/𝜅1 + 1 and 𝑎− fl 𝜅𝑠/𝜅1 − 1.
Then

𝐶2 = 132𝛽2𝐴4𝑎4+𝑒4𝜅1ℎ1
+ 14𝐴2 (𝑘20𝜀2 − 𝑘20𝜀1 − 12𝛽2𝑎+𝑎−𝐴2) 𝑎2+𝑒2𝜅1ℎ1
+ 12𝐴2 (𝜅21 + 𝜅22 + 38𝛽2𝑎+𝑎−𝐴2) 𝑎+𝑎−
+ 14𝐴2 (𝑘20𝜀2 − 𝑘20𝜀1 − 12𝛽2𝑎+𝑎−𝐴2) 𝑎2−𝑒−2𝜅1ℎ1
+ 132𝛽2𝐴4𝑎4−𝑒−4𝜅1ℎ1 .

(76)

Since 𝑎+ > 1 and 𝑎− > 0 are bounded above, then it is clear
that for sufficiently small 𝛽2 > 0 the constant 𝐶2 > 0 for all𝛾2 > 𝑘20𝜀2. It is also clear that for any fixed 𝛽2 > 0 there exists𝛾∗ such that 𝐶2 > 0 for all 𝛾 > 𝛾∗.

Using the expansion (1 + 𝑥)𝛼 = 1 + 𝑂(𝑥), where |𝑥| <1 and −1 < 𝛼 < 1, for sufficiently large 𝛾, one gets the
asymptotics

𝐶2 = 𝛽2𝐴4 (12 + 𝑂 (𝛾−2)) 𝑒4ℎ1𝛾. (77)

Since both integrands in (69) are positive, the estimate𝑛2𝑇 ⩽ Φ2 (𝛾; 𝑛2, 𝑝) ⩽ (𝑛2 + 1) 𝑇 (78)
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takes place, where 𝑛2 ⩾ 0 and𝑇 = ∫+∞−∞ (𝑑𝑠/𝑤2).Thus we need
to evaluate 𝑇. For further analysis, we use the easy checked
inequalities 1/(𝑎 + 𝑏) ⩽ 1/√𝑎2 + 𝑏2 ⩽ √2/(𝑎 + 𝑏), where𝑎 ⩾ 0 and 𝑏 > 0. These inequalities give

𝑇∗ ⩽ 𝑇 ⩽ √2𝑇∗, (79)

where 𝑇∗ = ∫+∞
−∞
(𝑑𝑠/(|𝑠2 + 𝜅22| + √2𝛽2𝐶2)). Integral 𝑇∗ is

calculated explicitly.
For 𝛾2 < 𝑘20𝜀2, the value 𝜂2 + 𝜅22 > 0 and, therefore, one

has

𝑇∗ = 2∫+∞
0

𝑑𝑠󵄨󵄨󵄨󵄨𝑠2 + 𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2
= 2∫+∞
0

𝑑𝑠𝑠2 + 𝜅22 + √2𝛽2𝐶2 = 𝜋√󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2 .
(80)

Let 𝛾2 ⩾ 𝑘20𝜀2; then
𝑇∗ = 2∫+∞

0

𝑑𝑠󵄨󵄨󵄨󵄨𝑠2 + 𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2
= 2∫|𝜅2|
0

𝑑𝑠−𝑠2 − 𝜅22 + √2𝛽2𝐶2
+ 2∫+∞
|𝜅2|

𝑑𝑠𝑠2 + 𝜅22 + √2𝛽2𝐶2
= 2∫|𝜅2|
0

𝑑𝑠󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2 − 𝑠2
+ 2∫+∞
|𝜅2|

𝑑𝑠𝑠2 + √2𝛽2𝐶2 − 󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 = 2𝐼1 + 2𝐼2.

(81)

Obviously, the denominator in 𝐼1 is always positive.

Calculating 𝐼1, one gets
𝐼1 = ∫|𝜅2|

0

𝑑𝑠󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2 − 𝑠2
= −12√󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2 ln

√2𝛽2𝐶2(󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + √󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2)2 .
(82)

Two cases are possible for 𝐼2. If |𝜅22| −√2𝛽2𝐶2 ⩾ 0, that is,𝛾2 ⩾ 𝑘20𝜀2 + √2𝛽2𝐶2, then
𝐼2 = ∫+∞

|𝜅2|

𝑑𝑠𝑠2 − (󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 − √2𝛽2𝐶2)
= − 12√󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 − √2𝛽2𝐶2 ln

√2𝛽2𝐶2(󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + √󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 − √2𝛽2𝐶2)2 .
(83)

If −|𝜅22|+√2𝛽2𝐶2 > 0, that is, 𝑘20𝜀2 ⩽ 𝛾2 < 𝑘20𝜀2+√2𝛽2𝐶2,
then

𝐼2 = ∫+∞
|𝜅2|

𝑑s𝑠2 − 󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2
= 1√− 󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2 (

𝜋2
− arctan 󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨√− 󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨 + √2𝛽2𝐶2).

(84)

Combining the found results, one arrives at the formula

𝑇∗ =
{{{{{{{{{{{{{{{{{

𝜋𝜃 , 𝛾2 < 𝑘20𝜀2,
−1𝜃 ln √2𝛽2𝐶2(󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + 𝜃)2 + 2𝜃1 (𝜋2 − arctan

󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨𝜃1 ) , 𝑘20𝜀2 ⩽ 𝛾2 ⩽ 𝑘20𝜀2 + √2𝛽2𝐶2,
−1𝜃 ln √2𝛽2𝐶2(󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + 𝜃)2 − 1𝜃2 ln √2𝛽2𝐶2(󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + 𝜃2)2 , 𝛾2 ⩾ 𝑘20𝜀2 + √2𝛽2𝐶2,

(85)

where 𝜃 = √|𝜅22| + √2𝛽2𝐶2, 𝜃1 = √−|𝜅22| + √2𝛽2𝐶2, and 𝜃2 =√|𝜅22| − √2𝛽2𝐶2.
Taking into account formula (77), it is clear that the

inequality 𝛾2 ⩾ 𝑘20𝜀2 + √2𝛽2𝐶2 with fixed 𝛽2 holds only if𝛾 belongs to a finite interval.
Taking into account the fact that for large 𝛾 the value 𝐶2

is asymptotically equal to (1/2)𝛽2𝐴4𝑒4ℎ1𝛾, one finds that the
second formula in (85) must be used for sufficiently big 𝛾.

Further, we need the following expansions: ln (1 + 𝑥) =𝑥 + 𝑂(𝑥2) and arctan (𝑥) = 𝑥 + 𝑂(𝑥3), which are valid for

|𝑥| < 1. Using these expansions for the second line in (85),
one finds

𝑇∗ = − 1
4√2𝛽2𝐶2 (1 +

󵄨󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨󵄨√2𝛽2𝐶2)
−1/2

⋅ (ln√2𝛽2𝐶2 − 2 ln (󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨 + 𝜃))
+ 2
4√2𝛽2𝐶2 (1 −

󵄨󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨󵄨√2𝛽2𝐶2)
−1/2
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⋅ (𝜋2 − 󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨𝜃1 + 𝑂((
󵄨󵄨󵄨󵄨𝜅2󵄨󵄨󵄨󵄨𝜃1 )
2))

= 1
4√2𝛽2𝐶2 (𝜋 + 𝑂(

󵄨󵄨󵄨󵄨󵄨𝜅22󵄨󵄨󵄨󵄨󵄨
4√2𝛽2𝐶2)) .

(86)

Taking into account the fact that

(2𝛽2𝐶2)−1/4 = (2𝛽2 ⋅ 12𝛽2𝐴4 (1 + 𝑂 (𝛾−2)) 𝑒4ℎ1𝛾)−1/4
= 𝑒−ℎ1𝛾𝐴√𝛽2 (1 + 𝑂 (𝛾−2)) ,

(87)

one finally obtains

𝑇∗ = 𝜋𝑒−ℎ1𝛾𝐴√𝛽2 (1 + 𝑂 (𝛾−2)) (88)

for sufficiently large 𝛾.
It follows from (88) that lim𝛾2→∞𝑇∗ = 0. This means

that for any ℎ1, ℎ2 > 0 there is an integer 𝑛∗ ⩾ 0 such
that, for any integer 𝑛2 ⩾ 𝑛∗, the DE (69) has at least one
solution. This implies the existence of infinitely many 𝛾𝑖 with
an accumulation point at infinity.

Passing to the limit 𝛽2 → 0 in the first line of (85), one
obtains either (20) or (19) depending on 𝑘20𝜀𝑠 < 𝛾2 < 𝑘20𝜀1 or𝑘20𝜀1 < 𝛾2 < 𝑘20𝜀2. This implies item (2) of the theorem.

Multiplying (8) by 𝑦2 and integrating over [ℎ1, ℎ1 + ℎ2],
one gets the following for 𝛾2 > 𝑘20𝜀2:
∫ℎ1+ℎ2
ℎ1

𝑦2𝑦󸀠󸀠2 𝑑𝑥 = −𝜅22 ∫ℎ1+ℎ2
ℎ1

𝑦22𝑑𝑥 − 𝛽2 ∫ℎ1+ℎ2
ℎ1

𝑦42𝑑𝑥. (89)

This gives

𝑦2𝑦󸀠2󵄨󵄨󵄨󵄨󵄨ℎ1+ℎ2ℎ1 − ∫ℎ1+ℎ2
ℎ1

𝑦󸀠22 𝑑𝑥
= −𝜅22 ∫ℎ1+ℎ2

ℎ1

𝑦22𝑑𝑥 − 𝛽2 ∫ℎ1+ℎ2
ℎ1

𝑦42𝑑𝑥.
(90)

Taking into account the fact that

𝑦2 (ℎ1) 𝑦󸀠2 (ℎ1)
= 𝐴2𝜅1 (𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1))
⋅ (𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1)) > 0,

(91)

where 𝜅1ℎ1 > 0 and 𝑦2(ℎ1 + ℎ2) = 0, formula (90) results in

𝛽2 ∫ℎ1+ℎ2
ℎ1

𝑦42𝑑𝑥
= 𝐴2𝜅1 (𝜅𝑠 sinh (𝜅1ℎ1) + 𝜅1 cosh (𝜅1ℎ1))
⋅ (𝜅𝑠 cosh (𝜅1ℎ1) + 𝜅1 sinh (𝜅1ℎ1)) + ∫ℎ1+ℎ2

ℎ1

𝑦󸀠22 𝑑𝑥
+ (𝛾2 − 𝑘20𝜀2)∫ℎ1+ℎ2

ℎ1

𝑦22𝑑𝑥.

(92)

If 𝛾 → ∞, then, obviously, the right-hand side of this equality
tends to∞ and so does the left-hand side. This implies that
lim𝛾2→∞max𝑥∈[ℎ1 ,ℎ1+ℎ2]|𝑦2(𝑥; 𝛾)| = ∞.

For max𝑥∈[ℎ1 ,ℎ1+ℎ2]|𝑦2(𝑥; 𝛾)| using (48), one can derive an
exact formula provided that 𝑦2(𝑥; 𝛾) has at least two zeros
inside the segment.

In order to derive the asymptotic estimates for 𝛾𝑖, let us
get back to formula (88). It follows from (78) and (79) that𝑛2𝑇∗ ⩽ 𝑛2𝑇 ⩽ Φ2 (𝛾; 𝑛2, 𝑝) ⩽ (𝑛2 + 1) 𝑇⩽ √2 (𝑛2 + 1) 𝑇∗. (93)

Since 𝑛2𝑇∗ bounds ℎ2 from below and √2(𝑛2 + 1)𝑇∗
bounds ℎ2 from above, then, solving the equations ℎ2 =𝑛2(𝜋𝑒−ℎ1𝛾/𝐴√𝛽2) and ℎ2 = √2(𝑛2 + 1)(𝜋𝑒−ℎ1𝛾/𝐴√𝛽2), with
respect to 𝛾, one finds (70).
5.2. Case 𝛽1 ̸= 0 and 𝛽2 = 0. If 𝛽2 = 0 (or 𝛼2 = 0), solutions
to (8) are found elementarily. This allows one to explicitly
compute the quantity 𝑝, which is𝑝 = 𝜅2 cot (𝜅2ℎ2) . (94)

This expression (due to its analytical dependence on 𝛾) can
be used for 𝜅22 ⩾ 0 as well as for 𝜅22 ⩽ 0. Note that 𝑝 is a
real value for all 𝛾2 > 𝑘20𝜀𝑠. Indeed, for 𝛾2 > 𝑘20𝜀1, one has𝜅2 = 𝑖𝜅2, where 𝜅22 = 𝛾2 − 𝑘20𝜀2 and then cos (𝑖𝑥) = cosh 𝑥 and
sin (𝑖𝑥) = 𝑖 sinh𝑥; then

𝑝 = 𝜅2 cos (𝜅2ℎ2)sin (𝜅2ℎ2) = 𝑖𝜅2 cosh (𝜅2ℎ2)𝑖 sinh (𝜅2ℎ2)
= 𝜅2 cosh (𝜅2ℎ2)sinh (𝜅2ℎ2) .

(95)

It is clear that the substitution of the explicit expression
for 𝑝 into the second equation of system (58) leads to the
identity. Thus, in this case, system (58) reduces to the only
equation Φ1 (𝛾; 𝑛1, 𝑝) = ℎ1, (96)

whereΦ1 and 𝑝 are given by (46) and (94), respectively; 𝑛1 =0, 1, 2, . . ..
The solvability of the problem 𝑃(𝛽1, 0) is established by

the following.
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Theorem 3. For 𝛽2 = 0, any 𝛽1 > 0, and any fixed 𝐴 ̸= 0, the
problem𝑃(𝛽1, 0) has an infinite number of PCs 𝛾𝑖 (𝑖 = 1, 2, . . .)
with the following properties:

(1) If 𝛾𝑖 is the solution to 𝑃(𝛽1, 0), then 𝛾2𝑖 ∈ (𝑘20𝜀𝑠, +∞)
and lim𝑖→∞𝛾2𝑖 = ∞.

(2) If the linear problem 𝑃(0, 0) has 𝑞 solutions 𝛾1 < 𝛾2 <⋅ ⋅ ⋅ < 𝛾𝑞, then there exists a constant 𝛽0 > 0 such that,
for any 𝛽1 = 𝛽󸀠1 < 𝛽0, it is true that 𝛾2𝑖 ∈ (𝑘20𝜀𝑠, 𝑘20𝜀2)
and lim𝛽󸀠

1
→0𝛾𝑖 = 𝛾𝑖 (𝑖 = 1, 𝑞), where 𝛾1, 𝛾2, . . . , 𝛾𝑞 are

first 𝑞 solutions to 𝑃(𝛽󸀠1, 0).
(3) If 𝑠 > 𝑞, then lim𝛽󸀠

1
→+0𝛾𝑠 = +∞.

(4) If 𝛾𝑖 →∞, thenmax𝑥∈(0,ℎ1)|𝑦2(𝑥, 𝛾𝑖)| → ∞.
(5) For big 𝛾 and arbitrary small Δ > 0, the asymptotic

two-sided inequality

(1 − Δ) 𝛾∙ (𝑚) ⩽ 𝛾 (𝑚) ⩽ (1 + Δ) 𝛾∙ (√2 (𝑚 + 1)) (97)

is valid, where 𝛾2∙ (𝑚) = 𝜀1 + [𝑓−1(ℎ/4𝑚)]2 and 𝑓−1 is
the inversion of 𝑓(𝑡) = 𝑡−1 ln 𝑡.

Proof. The constant 𝐶1 in (96) is defined explicitly by (32).

Using (16) at the point 𝑥 = ℎ1, one obtains𝑦2 (ℎ1) = −𝐵 sin (𝜅2ℎ2) ,𝑦󸀠2 (ℎ1) = 𝐵𝜅2 cos (𝜅2ℎ2) . (98)

Substituting these values into (31) and using (32), one obtains
the biquadratic equation

𝐵4 + 2𝜅21 sin2 (𝜅2ℎ2) + 𝜅22 cos2 (𝜅2ℎ2)𝛽1 sin4 (𝜅2ℎ2) 𝐵2
− 2𝑘20 (𝜀1 − 𝜀𝑠) + 𝛽1𝐴2𝛽1 sin4 (𝜅2ℎ2) 𝐴2 = 0. (99)

Using the same estimations as in the proof of Theorem 2
and evaluating the integral contained in (96), one finds

𝑛1𝑇∗ ⩽ 𝑛1𝑇 ⩽ Φ1 (𝛾; 𝑛1, 𝑝) ⩽ (𝑛1 + 1) 𝑇⩽ √2 (𝑛1 + 1) 𝑇∗, (100)

where 𝑇∗ = ∫+∞
−∞
(𝑑𝜂/(|𝜂2 + 𝜅21| + √2𝛽1𝐶1)).

Integral 𝑇∗ is computed in the same way as in the proof
of Theorem 2; the result has the form

𝑇∗ =
{{{{{{{{{{{{{{{{{

𝜋𝜃 , 𝛾2 < 𝑘20𝜀1,
−1𝜃 ln √2𝛽1𝐶1(󵄨󵄨󵄨󵄨𝜅1󵄨󵄨󵄨󵄨 + 𝜃)2 + 2𝜃1 (𝜋2 − arctan

󵄨󵄨󵄨󵄨𝜅1󵄨󵄨󵄨󵄨𝜃1 ) , 𝑘20𝜀1 ⩽ 𝛾2 ⩽ 𝑘20𝜀1 + √2𝛽1𝐶1,
−1𝜃 ln √2𝛽1𝐶1(󵄨󵄨󵄨󵄨𝜅1󵄨󵄨󵄨󵄨 + 𝜃)2 − 1𝜃2 ln √2𝛽1𝐶1(󵄨󵄨󵄨󵄨𝜅1󵄨󵄨󵄨󵄨 + 𝜃2)2 , 𝛾2 ⩾ 𝑘20𝜀1 + √2𝛽1𝐶1,

(101)

where 𝜃 = √|𝜅21| + √2𝛽1𝐶1, 𝜃1 = √−|𝜅21| + √2𝛽1𝐶1, and 𝜃2 =√|𝜅21| − √2𝛽1𝐶1.
In order to derive the asymptotic estimates for the

eigenvalues 𝛾𝑖, let us get back to formula (101). Since 𝐶1 is
a (fixed) constant [it does not depend on 𝛾; see formula
(32)], the third line in (101) corresponds to sufficiently big𝛾. Thus, for sufficiently big 𝛾, the third line of (101) gives the
asymptotics

𝑇∗ = 4 ln 𝛾𝛾 + 𝑂 (𝛾−1) . (102)

It follows from (102) that lim𝛾2→∞𝑇∗ = 0. This implies
that for any prescribed ℎ1, ℎ2 > 0 there is an integer 𝑛∗ ⩾ 0
such that (96) has at least one solution for any integer 𝑛1 ⩾ 𝑛∗.
Thus, there exists an infinite number of positive eigenvalues𝛾𝑖 with accumulation point at infinity.

Passing to the limit 𝛽1 → +0 in the first line of (101) gives
either (20) or (19) depending on 𝑘20𝜀𝑠 < 𝛾2 < 𝑘20𝜀1 or 𝑘20𝜀1 <𝛾2 < 𝑘20𝜀2. This implies item (2) of the theorem.

Item (3) of the theorem results from the behaviour of the
second and third lines in (101) as 𝛽1 → +0.

Multiplying (7) by 𝑦1 and integrating over [0, ℎ1], one
obtains

𝑦2 (ℎ1) 𝑦󸀠2 (ℎ1) − 𝜅𝑠𝐴2 + ∫ℎ1
0
𝑦󸀠21 𝑑𝑥

= 𝜅21 ∫ℎ1
0
𝑦21𝑑𝑥 + 𝛽1 ∫ℎ1

0
𝑦41𝑑𝑥.

(103)

It follows from (103) that ∫ℎ1
0
𝑦41𝑑𝑥 → ∞ as 𝛾 → ∞. This

implies item (4) of the theorem.
The asymptotic estimates in the theorem result from

formula (102).

6. Numerical Results

Figures 2–13 show results of numerical experiments. The
following parameters are used: 𝐴 = 1 [E] and 𝜀𝑠 = 1; 𝜀1 = 2
and 𝜀2 = 2.5 (Figures 2–9); 𝜀1 = 5 and 𝜀2 = 10 (Figures 10 and
11); 𝜀1 = 5 and 𝜀2 = 5.01 (Figures 12 and 13); other parameters
are specified in the captions; 𝜔 = 2𝜋𝑓/𝑐, where 𝑐 is the speed
of light.
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Figure 2: DCs for the linear case: ℎ1 = 1 and ℎ2 = 4 [mm]; vertical dashed line 𝑓 = 45 [GHz]; 𝛾1 ≈ 1.0170 (green dot) and 𝛾2 ≈ 1.3709
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Figure 3: Eigenmodes 𝐸𝑦(𝑥) for the PCs marked in Figure 2: 𝛾1 ≈ 1.0170 (green) and 𝛾2 ≈ 1.3709 (brown).
In Figures 2, 4, 6, 8, 10, and 12(a), the dispersion curves

(DCs) are plotted (𝛾 versus 𝑓). The DCs for the linear and
nonlinear cases are given in red and blue colours, respectively.
Dashed lines in Figure 2 correspond to the boundaries for 𝛾.
Points of intersections of the vertical dashed line with DCs
are PCs.

Dashed lines in Figures 3, 5, 7, and 9 correspond to the
boundary between the layers.

Figures 2 and 3 correspond to the linear problem (𝛼1 =𝛼2 = 0). For chosen frequency, there are 2 PCs; eigenmodes
for them are shown in Figure 3.

The dependence 𝛾 versus 𝐴, where 𝐴 = 𝐸𝑦(0), is shown
in Figures 2, 4, 6, 8, 10, and 12(b). The linear and nonlinear
cases are given in red and blue colours, respectively. Points
of intersections of the vertical dashed line (corresponding to

𝐴 = 1) with the curves are PCs. Obviously, in the linear case,
the PCs do not depend on 𝐴 and therefore linear solutions
are horizontal (red) lines.

There are two types of PCs for the nonlinear case. The
first type corresponds to the PCs, which are close to the
corresponding linear solutions (in the linear limit, they
reduce to the linear solutions; see item (2) inTheorems 2 and
3). The second type corresponds to the PCs, which present
a novel guiding regime (they do not reduce to any linear
solutions in the linear limit; see item (3) in Theorem 3). In
the latter case, we call them “purely nonlinear” PCs; see also
[23–25]. In Figures 4, 6, and 8, the PC 𝛾1 marked with a blue
dot corresponds to the first type; the PCs 𝛾2 and 𝛾3 marked
with green and brown dots, respectively, correspond to the
second type.
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Figure 4: (a) DCs for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02 [E−2], 𝛼2 = 0, ℎ1 = 5, ℎ2 = 4 [mm], and 𝐸𝑦(0) = 1 [E]; vertical dashed
line 𝑓 = 36.1 [GHz]; nonlinear PCs: 𝛾1 ≈ 1.1509 (blue dot), 𝛾2 ≈ 1.2701 (green dot), and 𝛾3 ≈ 4.5003 (brown dot), respectively; linear PC:𝛾2 ≈ 1.0860 (red dot). (b)The dependence 𝛾 versus𝐴 for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02 [E−2], 𝛼2 = 0, ℎ1 = 5, ℎ2 = 4 [mm],
and 𝑓 = 36.1 [GHz]; vertical dashed line 𝐸𝑦(0) = 1 [E]; nonlinear PCs: 𝛾1 ≈ 1.1509 (blue dot), 𝛾2 ≈ 1.2701 (green dot), and 𝛾3 ≈ 4.5003
(brown dot), respectively; linear PC: 𝛾2 ≈ 1.0860 (red dot).
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Figure 5: Eigenmodes 𝐸𝑦(𝑥) for the PCs marked in Figure 4: 𝛾2 ≈ 1.0860 (red, linear case), 𝛾1 ≈ 1.1509 (blue), 𝛾2 ≈ 1.2701 (green), and𝛾3 ≈ 4.5003 (brown).
In Figures 6 and 8, for any frequency, there are infinitely

many PCs in the nonlinear cases (few of them are shown and
marked in the figures) and only 2 PCs in the linear case.

DCs for the linear cases (red DCs) presented in Figures 6
and 8 coincide with the DCs for the linear case presented in
Figure 2.

Figures 5, 7, and 9 allow one to compare linear and
nonlinear modes. It can be seen from these pictures that, for
a “linear” PC and for a “nonlinear” one (which reduces to the
“linear” one in the linear limit), eigenmodes are also close.
Obviously, for such a nonlinear PC, perturbation methods
can be applied. However, two other nonlinear eigenmodes
(shown in green and brown colours) are not close to any
linear solution and they do not reduce to linear solutions

in the linear limit; these very eigenmodes we call purely
nonlinear.

In Figures 8–13, the nonlinear case for different sets
of 𝛼1, 𝛼2 is shown, where both coefficients 𝛼1 and 𝛼2 are
nonzero. In this case, we did not prove the existence of
infinitely many PCs; however, these figures are similar to
corresponding figures, where 𝛼1 or 𝛼2 equals zero.
7. Conclusion

The paper focuses on the problem of wave propagation in a
plane layered dielectric waveguide filled with Kerr medium.
The existence of guided modes that have linear counterparts
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Figure 6: (a) DCs for nonlinear (blue) and linear (red) cases: 𝛼1 = 0, 𝛼2 = 0.03 [E−2], ℎ1 = 1 [mm], ℎ2 = 4 [mm], and 𝐸𝑦(0) = 1 [E]; vertical
dashed line 𝑓 = 45 [GHz]; nonlinear PCs: 𝛾1 ≈ 1.4625 (blue dot), 𝛾2 ≈ 1.7012 (green dot), and 𝛾3 ≈ 2.6038 (brown dot), respectively. The
linear case coincides with one presented in Figure 2. (b) The dependence 𝛾 versus 𝐴 for nonlinear (blue) and linear (red) cases: 𝛼1 = 0,𝛼2 = 0.03 [E−2], ℎ1 = 1 [mm], ℎ2 = 4 [mm], and 𝑓 = 45 [GHz]; vertical dashed line 𝐸𝑦(0) = 1 [E]; nonlinear PCs: 𝛾1 ≈ 1.4625 (blue dot),𝛾2 ≈ 1.7012 (green dot), and 𝛾3 ≈ 2.6038 (brown dot), respectively; linear PC: 𝛾2 ≈ 1.3709 (red dot).
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Figure 7: Eigenmodes 𝐸𝑦(𝑥): 𝛾2 ≈ 1.3709 (red, linear case), 𝛾1 ≈ 1.4625 (blue), 𝛾2 ≈ 1.7012 (green), and 𝛾3 ≈ 2.6038 (brown).
and guided modes that do not have linear counterparts
is proven. The latter waves correspond to a novel guided
regime. Since the Kerr nonlinearity is widely studied in
nonlinear optics (see, e.g., [7–14]), the results found here
can be interesting and important from both theoretical and
applied points of view.

It is worth noting that similar results have been found for
some other cases. Indeed, it was proven lately that, even in a
simpler case of a one-layer waveguide, the Kerr nonlinearity

results in the existence of novel guided regimes as well [23–
25]. Moreover, similar results have recently been found in the
case of polynomial nonlinearity [39]. Thus, the existence of
infinitely many nonperturbative PCs is a general feature of
polynomial (nonlinear) permittivities with positive terms.

One of the most known peculiarities of nonlinear guided
waves is power-dependent PCs; this is clearly shown in
Figures 2, 4, 6, 8, 10, and 12(b). It is interesting that varying
the value 𝐴, one strongly affects the corresponding PC and
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Figure 8: (a) DCs for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02, 𝛼2 = 0.03 [E−2], ℎ1 = 1, ℎ2 = 4 [mm], and 𝐸𝑦(0) = 1 [E]; black
dashed line 𝑓 = 45 [GHz]; nonlinear PCs: 𝛾1 ≈ 1.4548 (blue dot), 𝛾2 ≈ 1.7476 (green dot), and 𝛾3 ≈ 2.7896 (brown dot), respectively. The
linear case coincides with one presented in Figure 2. (b) The dependence 𝛾 versus 𝐴 for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02,𝛼2 = 0.03 [E−2], ℎ1 = 1, ℎ2 = 4 [mm], and 𝑓 = 45 [GHz]; black dashed line 𝐸𝑦(0) = 1 [E]; nonlinear PCs: 𝛾1 ≈ 1.4548 (blue dot), 𝛾2 ≈ 1.7476
(green dot), and 𝛾3 ≈ 2.7896 (brown dot), respectively; linear PC: 𝛾2 ≈ 1.3709 (red dot).
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Figure 9: Eigenmodes 𝐸𝑦(𝑥) for the PCs marked in Figure 8: 𝛾2 ≈ 1.3709 (red, linear case), 𝛾1 ≈ 1.4548 (blue), 𝛾2 ≈ 1.7476 (green), and𝛾3 ≈ 2.7896 (brown).
therefore the eigenmode. The fact that the power-dependent
PCs can have some potential for optical signal processing is
pointed out inmany papers (see, e.g., [28–34]). For additional
description of applications of nonlinear guided waves and
Kerr effect, see [32, 34], wheremany useful references are also
given.

The result given in the paper clearly shows that nonlinear
problems can have solutions that cannot be considered as
perturbations of solutions of corresponding linear problems.
Thus, it is necessary to be careful when one linearizes a

nonlinear problem and considers the linearized problem
without proving that there are no other solutions.

Of course, it is impossible to expect the existence of
purely nonlinear waves for infinitely many PCs. However, it
is possible that purely nonlinear waves can be observed in an
experiment for some first purely nonlinear PCs. Indeed, as is
seen from Figures 5, 7, and 9, max values of few first purely
nonlinear eigenmodes are not too big (in comparison with
the linear eigenmode). This probably gives an opportunity to
observe such waves in an experiment. For the rest of the PCs,
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Figure 10: (a) DCs for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02, 𝛼2 = 0.01 [E−2], ℎ1 = 10, ℎ2 = 5 [mm], and 𝐸𝑦(0) = 1 [E]; black
dashed line 𝑓 = 30.2 [GHz]; nonlinear PCs: 𝛾1 ≈ 0.8145 (blue dot) and 𝛾2 ≈ 1.0723 (green dot), respectively. (b) The dependence 𝛾 versus𝐴 for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02, 𝛼2 = 0.01 [E−2], ℎ1 = 10, ℎ2 = 5 [mm], and 𝑓 = 30.2 [GHz]; black dashed line𝐸𝑦(0) = 1 [E]; nonlinear PCs: 𝛾1 ≈ 0.8145 (blue dot) and 𝛾2 ≈ 1.0723 (green dot), respectively.
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Figure 11: Eigenmodes 𝐸𝑦(𝑥) for the PCs marked in Figure 10: 𝛾1 ≈ 0.8145 (blue) and 𝛾2 ≈ 1.0723 (green).
the value max𝑥∈[0,ℎ1+ℎ2]|𝐸𝑦(𝑥; 𝛾𝑖)| is so high that the Kerr law
is no longer valid.

As a matter of fact, different types of nonlinearities
admit nonlinear solutions that become linear ones in the
linear limit. For example, for a wide range of saturated
nonlinearities, there exist only a finite number of PCs [40, 41].
Thus, there is a qualitative difference between saturated and
unbounded (Kerr, qubic-quintic-septic, and, more generally,
power and polynomial) nonlinearities. It seems that this

difference can be used in order to understand what kinds of
nonlinear permittivities are closer to real situations.

If the purely nonlinear guided modes are confirmed by
experiment, the theory of nonlinear guidedwave propagation
will definitely advance. If they are not observed in experi-
ments, then well-known and widespread formulas for non-
linear permittivities must be changed so that mathematical
analysis of these models can give results that better satisfy
reality.
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Figure 12: (a) DCs for nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02, 𝛼2 = 0.01 [E−2], ℎ1 = 10, ℎ2 = 5 [mm], and 𝐸𝑦(0) = 1 [E]; black
dashed line 𝑓 = 33 [GHz]; nonlinear PCs: 𝛾1 ≈ 0.7189 (blue dot) and 𝛾2 ≈ 0.9937 (green dot), respectively. (b)The dependence 𝛾 versus𝐴 for
nonlinear (blue) and linear (red) cases: 𝛼1 = 0.02, 𝛼2 = 0.01 [E−2], ℎ1 = 10, ℎ2 = 5 [mm], and 𝐸𝑦(0) = 1 [E]; black dashed line 𝑓 = 33 [GHz];
nonlinear PCs: 𝛾1 ≈ 0.7189 (blue dot) and 𝛾2 ≈ 0.9937 (green dot), respectively.
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Figure 13: Eigenmodes 𝐸𝑦(𝑥) for the PCs marked in Figure 12: 𝛾1 ≈ 0.7189 (blue) and 𝛾2 ≈ 0.9937 (green).
In spite of the fact that in some papers the nonlinear

eigenmodes are searched in an explicit form (see, e.g., [7, 16,
17, 20–22, 34]), this way is not an appropriate one. Indeed, on
one hand, explicit solutions to nonlinear equations are often
complicated special functions (if it is possible to find them
at all) and, therefore, it is almost impossible to study such
solutions.On the other hand,many properties/characteristics
of eigenwaves can be calculated from original differential
equations and boundary conditions, like it is done in this

paper. In order to check calculations, one solves numerically
the DE (58) with respect to 𝛾 in a prescribed segment; then,
for each found PC, one solves the Cauchy problem for (7) and
(8) with initial data at 𝑥 = 0 and transmission conditions
(11) at 𝑥 = ℎ1. In this case, the second condition (10) is
fulfilled indispensably (obviously, in numerical calculations,𝑦2(ℎ1 + ℎ2) cannot be exactly zero). Thus, Theorems 1, 2, and
3 together with computations allow one to find all nonlinear
eigenwaves for which the PCs are calculated.
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