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We provide a structural property of trees, which is applied to show that if a plane graph 𝐺 contains two edge-disjoint spanning
trees, then its dual graph 𝐺∗ has the vertex-arboricity at most 2. We also show that every maximal plane graph of order at least 4
contains two edge-disjoint spanning trees.

1. Introduction

All graphs considered in this paper are finite simple graphs.
Given graph 𝐺, let 𝑉(𝐺), 𝐸(𝐺), |𝐺|, and ‖𝐺‖ denote its vertex
set, edge set, vertex number, and edge number, respectively.
For a vertex V ∈ 𝑉(𝐺), let 𝑑𝐺(V) denote the degree of V in
𝐺. Moreover, let Δ(𝐺) and 𝛿(𝐺) denote the maximum degree
and minimum degree of𝐺, respectively. A tree is a connected
graph without cycles. A plane graph is a particular drawing of
a planar graph on the Euclidean plane.

A subgraph 𝐻 of 𝐺 is called a spanning one if 𝑉(𝐻) =
𝑉(𝐺). A plane graph 𝐺 is calledmaximal if every face of 𝐺 is
a triangle. A connectedEulerian graph is a connected one that
contains no vertices of degree odd. The dual, denoted by 𝐺∗,
of a plane graph𝐺 is a plane graph whose vertices correspond
to the faces of 𝐺 and edges correspond to the edges of 𝐺 in
this way: if 𝑒 is an edge of 𝐺 incident to faces 𝑓1, 𝑓2, then the
endpoints of the dual edge 𝑒∗ ∈ 𝐸(𝐺∗) are vertices V1, V2 of𝐺

∗

that represent the faces of 𝑓1, 𝑓2 of 𝐺. The vertex-arboricity
𝑎(𝐺) of a graph 𝐺 is the minimum number of subsets into
which 𝑉(𝐺) can be partitioned so that each subset induces a
forest.

The vertex-arboricity of a graph was first introduced by
Chartrand et al. [1], named as point-arboricity. Among other
things, they proved that the vertex-arboricity of planar graphs
is at most 3. Chartrand andKronk [2] showed that this bound

is sharp by presenting a planar graph of the vertex-arboricity
3. More generally, Kronk [3] showed that if 𝑆 is a surface with
Euler genus 𝑔, then 𝑎(𝑆) = 3 and if 𝑆 is the sphere or the
Klein bottle, then 𝑎(𝑆) = ⌊(9 + √1 + 24𝑔)/4⌋. Hara et al. [4]
extended partially Kronk’s result by proving that 𝑙𝑎(𝑆) = 3
if 𝑆 is the projective plane or the torus, and 𝑙𝑎(𝑆) ≤ 4 if 𝑆
is the Klein bottle. Here the vertex-arboricity of surface 𝑆 is
defined to be the maximum of the vertex-arboricity of all
graphs embeddable into 𝑆. Other results about the vertex-
arboricity of embedded graphs in the surface are referred to
in [5–8].

The following theorem, due to Stein [9], characterizes
completely maximal plane graphs with vertex-arboricity 2.

Theorem 1. Let 𝐺 be a maximal plane graph with |𝐺| ≥ 4.
Then 𝑎(𝐺) = 2 if and only if 𝐺∗ is Hamiltonian.

Hakimi and Schmeichel [10] extended Stein’s theorem to
the following form.

Theorem 2. Let𝐺 be a plane graph.Then 𝑎(𝐺) = 2 if and only
if 𝐺∗ contains a connected Eulerian spanning subgraph.

Note that determining whether a graph to have a con-
nected Eulerian spanning subgraph is quite difficult. Thus
a natural question is as follows: which plane graphs have
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a connected Eulerian spanning subgraph? In this paper, we
provide a sufficient condition about the problem.

2. Structural Property

Let 𝑃 = (𝑥, 𝑦) denote a path from vertex 𝑥 to vertex 𝑦. We
call a vertex of degree 1 a leaf in a tree. The following lemma
is of interest by itself.

Theorem 3. Let 𝑇 be a tree with |𝑇| ≥ 2 and 𝑛 ≥ 1 be
an integer. If 𝑆 ⊆ 𝑉(𝑇) with |𝑆| = 2𝑛 ≤ |𝑇|, then 𝑆 can
be partitioned into two sets 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑌 =
{𝑦1, 𝑦2, . . . , 𝑦𝑛} such that 𝑇 contains 𝑛 edge-disjoint paths 𝑃𝑖 =
(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Proof. The proof is proceeded by induction on the order of
𝑇. If 2 ≤ |𝑇| ≤ 3, then 𝑇 is a path of length 1 or 2. Note that
𝑛 = 1 in this case, so the theorem holds trivially. Suppose
that 𝑇 is a tree with |𝑇| ≥ 4. Let 𝑆 be a subset of 𝑉(𝑇) with
|𝑆| = 2𝑛 ≤ |𝑇|. If 𝑇 contains a leaf V which is not in 𝑆, then
|𝑆| ≤ |𝑇| − 1. Let 𝑇󸀠 = 𝑇 − V. Then 𝑇󸀠 is a tree of order |𝑇| − 1
and 𝑆 ⊆ 𝑉(𝑇󸀠) satisfies |𝑆| = 2𝑛 ≤ |𝑇| − 1 = |𝑇󸀠|. By the
induction hypothesis, 𝑆 can be partitioned into two sets 𝑋 =
{𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} such that 𝑇󸀠 contains
𝑛 edge-disjoint paths 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛. Clearly,
𝑆 = 𝑋 ∪ 𝑌 also is a required partition of 𝑇.

So assume that 𝑆 contains all the leaves of 𝑇. If there exist
two leaves 𝑥 and 𝑦 adjacent to a common vertex 𝑢, we let𝑇󸀠 =
𝑇− {𝑥, 𝑦} and 𝑆󸀠 = 𝑆 \ {𝑥, 𝑦}. Then 𝑇󸀠 is a tree of order |𝑇| − 2
and 𝑆󸀠 ⊆ 𝑉(𝑇󸀠) satisfies |𝑆󸀠| = |𝑆|−2 = 2𝑛−2 ≤ |𝑇|−2 = |𝑇󸀠|.
By the induction hypothesis, 𝑆󸀠 can be partitioned into two
sets 𝑋󸀠 = {𝑥1, 𝑥2, . . . , 𝑥𝑛−1} and 𝑌󸀠 = {𝑦1, 𝑦2, . . . , 𝑦𝑛−1} such
that 𝑇󸀠 contains 𝑛 − 1 edge-disjoint paths 𝑃󸀠

𝑖
= (𝑥𝑖, 𝑦𝑖), 𝑖 =

1, 2, . . . , 𝑛−1. Defining𝑃𝑛 = 𝑥𝑢𝑦,𝑃𝑖 = 𝑃󸀠
𝑖
for 𝑖 = 1, 2, . . . , 𝑛−1,

𝑋 = 𝑋󸀠 ∪ {𝑥}, and 𝑌 = 𝑌󸀠 ∪ {𝑦}, we obtain a desired partition
𝑆 = 𝑋 ∪ 𝑌 of 𝑇.

Now suppose that every vertex of 𝑇 is adjacent to at most
one leaf. Let 𝑄 = V1V2V3 ⋅ ⋅ ⋅ V𝑘 be a longest path in 𝑇. Then it
is easy to see that 𝑘 ≥ 4 and V1, V𝑘 are leaves. If V2 is adjacent
to some vertex, 𝑢1, different from V1 and V3, then 𝑢1 is not a
leaf by the assumption.There exists a vertex 𝑢2, other than V2,
adjacent to 𝑢1. However, 𝑄

󸀠 = 𝑢2𝑢1V2V3 ⋅ ⋅ ⋅ V𝑘 is a path whose
length is greater than that of 𝑄, contradicting the choice of
𝑄. Hence it follows that 𝑑𝑇(V2) = 2. Similarly, we derive that
𝑑𝑇(V𝑘−1) = 2.

If V2 ∈ 𝑆, we define 𝑇󸀠 = 𝑇 − {V1, V2} and 𝑆
󸀠 = 𝑆 \ {V1, V2}.

Then 𝑆󸀠 ⊆ 𝑉(𝑇󸀠) satisfies |𝑆󸀠| = |𝑆|−2 = 2𝑛−2 ≤ |𝑇|−2 = |𝑇󸀠|.
By the induction hypothesis, 𝑆󸀠 admits a required partition
𝑋󸀠 ∪ 𝑌󸀠 with |𝑋󸀠| = |𝑌󸀠| = 𝑛 − 1 so that 𝑇󸀠 contains 𝑛 − 1
edge-disjoint paths 𝑃1, 𝑃2, . . . , 𝑃𝑛−1. In 𝑇, we define 𝑃𝑛 = V1V2,
𝑋 = 𝑋󸀠 ∪ {V1}, and 𝑌 = 𝑌󸀠 ∪ {V2}.

If V2 ∉ 𝑆, then |𝑆| ≤ |𝑇| − 1. Let 𝑇󸀠 = 𝑇 − V2 + V1V3 and
𝑆󸀠 = 𝑆. Then 𝑇󸀠 is a tree of order |𝑇| − 1 and 𝑆󸀠 ⊆ 𝑉(𝑇󸀠) with
|𝑆󸀠| = 2𝑛 ≤ |𝑇| − 1 = |𝑇󸀠|. By the induction hypothesis, 𝑆󸀠 can
be partitioned into two sets 𝑋󸀠 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑌󸀠 =
{𝑦1, 𝑦2, . . . , 𝑦𝑛} such that 𝑇󸀠 contains 𝑛 edge-disjoint paths
𝑃󸀠
𝑖
= (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛. Since V1 is a leaf of𝑇

󸀠, V1 is an end
of some path 𝑃󸀠

𝑖0
. Furthermore, V1V3 ∈ 𝐸(𝑃

󸀠

𝑖0
). Without loss of

generality, suppose that 𝑖0 = 𝑛 and 𝑃𝑛 = V1V3𝑧1𝑧2 ⋅ ⋅ ⋅ 𝑧𝑚. In 𝑇,
we let𝑋 = 𝑋󸀠, 𝑌 = 𝑌󸀠, 𝑃𝑛 = V1V2V3𝑧1𝑧2 ⋅ ⋅ ⋅ 𝑧𝑚, and 𝑃𝑖 = 𝑃󸀠

𝑖
for

𝑖 = 1, 2, . . . , 𝑛 − 1. A desired partition of 𝑆 in 𝑇 is established.
This proves the theorem.

Bymeans ofTheorem 3, we can give a simple proof for the
following result.

Theorem 4. Let 𝐺 be a graph with |𝐺| ≥ 4. If 𝐺 contains
two edge-disjoint spanning trees, then 𝐺 contains a connected
Eulerian spanning subgraph.

Proof. Suppose that𝑇1 and𝑇2 are two edge-disjoint spanning
trees of 𝐺. Then 𝑉(𝑇1) = 𝑉(𝑇2) = 𝑉(𝐺). Let 𝑆∗ denote the
subset of vertices of degree odd in 𝑇1. Then |𝑆∗| is even. Since
𝑇1 contains at least two leaves, 2 ≤ |𝑆∗| = 2𝑛 ≤ |𝑇1| = |𝑇2|.
Since 𝑆∗ ⊆ 𝑉(𝑇2), by Theorem 3, 𝑆∗ can be partitioned
into two sets 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}
such that 𝑇2 contains 𝑛 edge-disjoint paths 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖),
𝑖 = 1, 2, . . . , 𝑛.

Let𝑀 denote the subgraph of 𝐺 induced by the edge set
𝐸(𝑃1) ∪ ⋅ ⋅ ⋅ ∪ 𝐸(𝑃𝑛). Let 𝐻 = 𝑇1 ∪ 𝑀. 𝑇1 is connected and
spanning, so is𝐻. Let V ∈ 𝑉(𝐻) = 𝑉(𝐺). It is easy to observe
that 𝑑𝐻(V) = 𝑑𝑇1(V) + 𝑑𝑀(V). If V ∉ 𝑆∗, then both 𝑑𝑇1(V) and
𝑑𝑀(V) are even, and hence 𝑑𝐻(V) is even. If V ∈ 𝑆

∗, then both
𝑑𝑇1(V) and 𝑑𝑀(V) are odd, and so 𝑑𝐻(V) is even. It follows
that𝐻 is Eulerian. Thus𝐻 is a connected Eulerian spanning
subgraph of 𝐺. The proof of the theorem is complete.

Combining Theorems 2 and 4, we obtain the main result
in this paper.

Theorem 5. Let 𝐺 be a plane graph. If 𝐺∗ contains two edge-
disjoint spanning trees, then 𝑎(𝐺) = 2.

3. Spanning Trees in Maximal Plane Graphs

Let 𝐺 be a maximal plane graph. Then the following proper-
ties (a)–(d) hold:

(a) ‖𝐺‖ = 3|𝐺| − 6;
(b) 3 ≤ 𝛿(𝐺) ≤ 5 if |𝐺| ≥ 4;
(c) Each of the faces in 𝐺 is of degree 3;
(d) If |𝐺| = 3, then 𝐺 is isomorphic to𝐾3; if |𝐺| = 4, then

𝐺 is isomorphic to𝐾4; if |𝐺| = 5, then𝐺 is isomorphic
to𝐾5−𝑒, where 𝑒 is any edge of𝐾5. In particular, when
|𝐺| ≥ 5, we have that Δ(𝐺) ≥ 4.

Theorem 6. Every maximal plane graph 𝐺 with Δ(𝐺) ≥ 3
contains two edge-disjoint spanning trees.

Proof. We prove the theorem by induction on the vertex
number |𝐺|. Since Δ(𝐺) ≥ 3, it follows that |𝐺| ≥ 4. If
|𝐺| = 4, then𝐺 is isomorphic to𝐾4, and𝐾4 can be easily edge-
partitioned into two edge-disjoint spanning trees. Hence the
basis step of induction is established. Let 𝐺 be a maximal
plane graph with |𝐺| ≥ 5. So Δ(𝐺) ≥ 4. By the above property
(b), 𝐺 contains a vertex V with 3 ≤ 𝑑𝐺(V) ≤ 5. Set 𝑘 = 𝑑𝐺(V).
Let V0, V1, . . . , V𝑘−1 denote the neighbors of V in𝐺 in clockwise
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order and 𝑓0, 𝑓1, . . . , 𝑓𝑘−1 denote the incident faces of V in 𝐺
in clockwise order with VV𝑖, VV𝑖+1 as two boundary edges of 𝑓𝑖
for 𝑖 = 0, 1, . . . , 𝑘 − 1. Here all the indices are taken modulo 𝑘.
Note that 𝑓0, 𝑓1, . . . , 𝑓𝑘−1 are all 3 faces.

Theproof is split into the following three cases, depending
on the size of 𝑘.

Case 1 (𝑘 = 3). Let 𝐺󸀠 = 𝐺 − V. Then 𝐺󸀠 is a maximal plane
graph with |𝐺󸀠| < |𝐺| and Δ(𝐺󸀠) ≥ Δ(𝐺) − 1 ≥ 3. By the
induction hypothesis,𝐺󸀠 contains two edge-disjoint spanning
trees𝑇󸀠

1
and𝑇󸀠
2
. Let𝑇1 = 𝑇󸀠

1
+VV1 and𝑇2 = 𝑇󸀠

2
+VV2. Obviously,

𝑇𝑖 is a spanning tree of 𝐺 for 𝑖 = 1, 2, and 𝐸(𝑇1) ∩ 𝐸(𝑇2) = 0.
Thus, the theorem holds in this situation.

Case 2 (𝑘 = 4). In viewof the planarity of𝐺, at least one of V0V2
and V1V3 does not belong to 𝐸(𝐺). Without loss of generality,
assume that V0V2 ∉ 𝐸(𝐺). Let 𝐺󸀠 = 𝐺 − V + V0V2. Then 𝐺󸀠 is a
maximal plane graph with |𝐺󸀠| < |𝐺| and Δ(𝐺󸀠) ≥ Δ(𝐺)− 1 ≥
3. By the induction hypothesis,𝐺󸀠 contains two edge-disjoint
spanning trees 𝑇󸀠

1
and 𝑇󸀠

2
. If V0V2 ∉ 𝐸(𝑇󸀠

1
) ∪ 𝐸(𝑇󸀠

2
), then we

define 𝑇𝑖 = 𝑇󸀠
𝑖
+ VV𝑖 for 𝑖 = 1, 2. If V0V2 ∈ 𝐸(𝑇󸀠

1
), then we

define 𝑇1 = (𝑇󸀠
1
− V0V2) + {VV0, VV2} and 𝑇2 = 𝑇󸀠

2
+ VV1. If

V0V2 ∈ 𝐸(𝑇󸀠
2
), then we define 𝑇1 = 𝑇󸀠

1
+ VV1 and 𝑇2 = (𝑇󸀠

2
−

V0V2) + {VV0, VV2}. It is easy to inspect that 𝑇1 and 𝑇2 are two
edge-disjoint spanning trees of 𝐺 in each of the above three
cases.

Case 3 (𝑘 = 5). Again, by the planarity of 𝐺, there exists a
vertex V𝑖, say 𝑖 = 0, such that V0V2, V0V3 ∉ 𝐸(𝐺). Let 𝐺󸀠 = 𝐺 −
V+ {V0V2, V0V3}. Then𝐺󸀠 is a maximal plane graph with |𝐺󸀠| <
|𝐺| and Δ(𝐺󸀠) ≥ Δ(𝐺) − 1 ≥ 3. By the induction hypothesis,
𝐺󸀠 contains two edge-disjoint spanning trees 𝑇󸀠

1
and 𝑇󸀠

2
. We

have to consider the following subcases.

Case 3.1. At least one of V0V2 and V0V3 does not belong to
𝐸(𝑇󸀠
1
) ∪ 𝐸(𝑇󸀠

2
), say V0V3 ∉ 𝐸(𝑇

󸀠

1
) ∪ 𝐸(𝑇󸀠

2
).

If V0V2 ∉ 𝐸(𝑇
󸀠

1
)∪𝐸(𝑇󸀠

2
), thenwe set𝑇𝑖 = 𝑇󸀠

𝑖
+VV𝑖 for 𝑖 = 1, 2.

If V0V2 ∈ 𝐸(𝑇󸀠
1
), then we set 𝑇1 = (𝑇󸀠

1
− V0V2) + {VV0, VV2} and

𝑇2 = 𝑇󸀠
2
+ VV3. If V0V2 ∈ 𝐸(𝑇󸀠

2
), then we set 𝑇1 = 𝑇󸀠

1
+ VV1 and

𝑇2 = (𝑇󸀠
2
− V0V2) + {VV0, VV2}.

Case 3.2 (V0V2, V0V3 ∈ 𝐸(𝑇󸀠
1
) ∪ 𝐸(𝑇󸀠

2
)). We need to deal with

the following two subcases by symmetry.

Case 3.2.1 (V0V2, V0V3 ∈ 𝐸(𝑇󸀠
𝑖
) for some 𝑖 ∈ {1, 2}). Without

loss of generality, assume that 𝑖 = 1. It is enough to set 𝑇1 =
(𝑇󸀠
1
− {V0V2, V0V3}) + {VV0, VV2, VV3} and 𝑇2 = 𝑇󸀠

2
+ VV1.

Case 3.2.2 (V0V2 ∈ 𝐸(𝑇󸀠
1
) and V0V3 ∈ 𝐸(𝑇󸀠

2
)). Let 𝐴1 and 𝐵1

denote the two components of 𝑇󸀠
1
− V0V2 with V0 ∈ 𝑉(𝐴1) and

V2 ∈ 𝑉(𝐵1), and 𝐴2 and 𝐵2 denote the two components of
𝑇󸀠
2
− V0V3 with V0 ∈ 𝑉(𝐴2) and V3 ∈ 𝑉(𝐵2). Since V0V2 is a cut

edge of 𝑇󸀠
1
, it follows that V1 belongs to exactly one of 𝑉(𝐴1)

and 𝑉(𝐵1). Similarly, V4 belongs to exactly one of 𝑉(𝐴2) and
𝑉(𝐵2).

If V1 ∈ 𝑉(𝐴1), then we define 𝑇1 = (𝑇󸀠
1
− V0V2) + {VV1, VV2}

and 𝑇2 = (𝑇󸀠
2
− V0V3) + {VV0, VV3}.

If V4 ∈ 𝑉(𝐴2), then we define 𝑇1 = (𝑇󸀠
1
− V0V2) + {VV0, VV2}

and 𝑇2 = (𝑇󸀠
2
− V0V3) + {VV3, VV4}.

Now assume that V1 ∈ 𝑉(𝐵1) and V4 ∈ 𝑉(𝐵2).This implies
that V0V1 ∉ 𝐸(𝑇󸀠

1
) and V0V4 ∉ 𝐸(𝑇󸀠

2
). If V0V1 ∉ 𝐸(𝑇󸀠

2
), then we

define 𝑇1 = (𝑇󸀠
1
− V0V2) + {V0V1, VV1} and 𝑇2 = (𝑇󸀠

2
− V0V3) +

{VV0, VV3}. If V0V4 ∉ 𝐸(𝑇󸀠
1
), then we define 𝑇1 = (𝑇󸀠

1
− V0V2) +

{VV0, VV2} and𝑇2 = (𝑇󸀠
2
−V0V3)+{V0V4, VV4}. Otherwise, V0V1 ∈

𝐸(𝑇󸀠
2
) and V0V4 ∈ 𝐸(𝑇

󸀠

1
). It suffices to define 𝑇1 = (𝑇󸀠

1
−V0V2)+

{VV2, VV4} and 𝑇2 = (𝑇󸀠
2
− V0V3) + {VV1, VV3}.

It is easy to inspect that 𝑇1 and 𝑇2 are two edge-disjoint
spanning trees of 𝐺 in every possible case above. This
completes the proof of the theorem.

The following consequence follows immediately from
Theorems 4 and 6.

Corollary 7. Every maximal planar graph 𝐺 with |𝐺| ≥ 4
contains a connected Eulerian spanning subgraph.
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