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This paper is focused on the topology design of compliant mechanisms undergoing large displacement (over 20% of the structural
dimension). Based on the artificial springmodel and the geometrically nonlinear finite element analysis, the optimization problem is
formulated so as tomaximize the output displacement under a givenmaterial volume constraint. Amodified additive hyperelasticity
technique is proposed to circumvent numerical instabilities that occurred in the low-density or intermediate-density elements
during the optimization process. Compared to the previous method, the modified technique is very effective and can provide more
accurate response analysis for the large-displacement compliant mechanism. The whole optimization process is carried out by the
gradient-based mathematical programming method. Numerical examples of a force-inverting mechanism and a microgripping
mechanism are presented. The obtained optimal solutions verify the applicability of the proposed numerical techniques and show
the necessity of considering large displacement in the design problem.

1. Introduction

With the advantages of fast fabrication and easy miniatur-
ization, compliance mechanisms have been widely used in
modern drivetrain systems, aerospace structures, electronic
equipment, bioengineering, biomedical devices, and many
other applications. The optimal layout of compliant mecha-
nisms can be typically found by using the topology optimiza-
tion methods. Such a design problem can be viewed as a
trade-off between the flexibility to deliver required motions
and the rigidity to overcome external resistance.

Early attention to the topology optimization of compliant
mechanisms was focused on the mathematical modeling of
the design problem. Among others, Ananthasuresh et al. [1]
and Saxena and Ananthasuresh [2] used the combination of
output displacement and strain energy as the objective func-
tion. In this formulation, an actuation force was applied at the
input port and a spring was added to the output port. In order

to make the optimal mechanisms-like structure adapted
to the stiffness of the workpiece, Sigmund [3] presented
an optimization formulation to maximize the mechanical
advantage (MA) of compliant mechanisms. Hetrick and Kota
[4] proposed an energy efficiency criterion, which is the ratio
between the net energy transferred at the output and the
input energy. In addition, an artificial spring formulation [5]
has also been introduced to address this problem, in which
the actuator’s stiffness was modeled by an input spring and
only the output displacement was taken as the objective
function. Recently, a comparative study by Deepak et al.
[6] revealed that all above formulations yield almost similar
topologies, though they show different convergence ability.
Based on these optimization formulations and the linear
finite element analysis, topology optimization of small-
displacement compliant mechanisms has been successfully
realized by using some familiar approaches including the
solid isotropic material with penalization (SIMP) approach
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[7], the evolutionary structural optimization (ESO) method
[8, 9], the level set-based topology optimization method [10,
11], and some nodal variable-based methods [12, 13].

In many circumstances, compliant mechanisms undergo
large displacement during operation. To obtain a meaningful
optimal topology, it is necessary to accurately describe the
nonlinear large-displacement structural behavior of com-
pliant mechanisms in the optimization process. Therefore,
many works have been published in the field of topology
optimization of compliant mechanisms by incorporating the
geometrically nonlinear finite element analysis. Based on the
SIMP approach and the total Lagrangian finite element for-
mulation, Pedersen et al. [14] proposed a synthesis tool for the
design of large-displacement and path-generating compliant
mechanisms. Their results showed that the practical output
displacement obtained by nonlinear topology optimization
would be up to 2.5 times the output displacement obtained by
the linearmethod. Sigmund [15] further extended the nonlin-
ear method to the topology optimization of thermoelectrical
micro actuators. Bruns and Tortorelli [16] investigated the
topology optimization problem of compliant mechanisms
considering geometrical and material nonlinearities. They
suggested an element removal and reintroduction strategy to
relieve the instability associated with mesh distortion in low-
density elements [17]. Maute and Frangopol [18] designed
microelectromechanical systems (MEMS) by geometrically
nonlinear topology optimization accounting for stochastic
uncertainties. Luo and Tong [19] developed a parameteriza-
tion level set method for shape and topology optimization of
compliant mechanisms involving large deformation. In these
studies, the motion of compliant mechanisms is typically
limited by about 10% of the length scale of the design domain.

As the literature survey reveals, topology optimization
with geometrically nonlinear analysis provides an attractive
way for the design of compliant mechanisms. However,
few studies address the topology optimization of compliant
mechanisms undergoing very large displacement (e.g., over
20% of the structural dimension), partly because of the
extreme distortion of mesh and serious “element instability
phenomenon” exhibited in the optimization process. In this
case, the tangent stiffness matrix of distorted elements will
become negative definite, which leads to serous nonconver-
gence of the nonlinear finite element analysis as well as the
topology optimization process.

In this paper, we aim to develop an effective method of
the topology optimization for large-displacement compliant
mechanisms.The artificial spring formulation associatedwith
thematerial interpolation scheme is adopted in the optimiza-
tion model. The additive hyperelasticity technique reported
in our previous work [20] is extended and improved to
not only eliminate the element instability phenomenon that
often appears in problems with large deformation, but also
provide more accurate response analysis. After obtaining the
sensitivity information, the topology optimization problem is
solved by using the Method of Moving Asymptotes (MMA)
[21]. Finally, twonumerical examples are presented to validate
the proposed technique and to investigate the effects of
large displacement on the optimal topology of compliant
mechanisms.
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Figure 1: Design problem of compliant mechanisms.

2. Topology Optimization Formulation of
Compliant Mechanisms

We consider a general design problem of compliant mech-
anisms for maximizing specified output displacement or
output force under a given input force. As mentioned in the
Introduction, several optimization formulations have been
proposed for such a problem.Here, the artificial springmodel
proposed by Bendsøe and Sigmund [5] is employed. To this
end, two artificial springs are attached to the design domain.
As shown in Figure 1, one spring is applied at the output port
to simulate the resistance from a workpiece, and another is
put at the loading point to exert a certain control on the net
input work.

By taking the material relative densities as design vari-
ables, the topology optimization of compliant mechanisms is
formulated as

max
𝜌

𝑢out (𝜌)
s.t. R (u (𝜌) ,𝜌) = 0,

𝑁∑
𝑒=1

𝜌𝑒𝑉𝑒 ≤ 𝑉∗,
0 < 𝜌min ≤ 𝜌𝑒 ≤ 1, (𝑒 = 1, 2, . . . , 𝑁) ,

(1)

where 𝑢out(𝜌) denotes the resulting output displacement, 𝜌 =
[𝜌1, 𝜌2, . . . , 𝜌𝑁]𝑇 is the vector of elemental relative densities,𝑁 is the total finite element number of the discretized design
domain, and u and R are the global displacement vector
and the global residual force vector, respectively. Note that
R depends nonlinearly on the elemental material properties,
which are modeled as a power-law function of the elemental
relative densities by the SIMP approach. The equilibrium
state of the large-displacement compliant mechanism is
represented by R(u(𝜌),𝜌) = 0 and should be solved by
an iterative procedure, for example, the Newton-Raphson
method. 𝑉𝑒 is the volume of the eth element and 𝑉∗ is the
upper bound on material volume. 𝜌min = 0.001 is the lower
bound of material relative density.
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3. Solution Strategy

3.1. Modified Additive Hyperelasticity Technique. During the
course of material density-based topology optimization, low-
density elements are inevitable, especially when a sensitivity
filter or density filter technique is applied. For problems
involving large deformation, these low-density elements may
cause severe instability due to local buckling or mesh distor-
tions. The local instability induced by low-density areas may
cause serious convergence issue in the geometrically nonlin-
ear finite element analysis. Indeed, this phenomenon is one
of the main difficulties hindering the topology optimization
of large-displacement compliant mechanisms.

Two simple and intuitive treatments, the “convergence
criterion relaxation” [22] and the “element removal” [17],
have been proposed to overcome local instability in the
minimum-density elements. The former method excludes
the nodes surrounded by minimum-density elements from
the convergence criterion, while the latter method removes
minimum-density elements from the finite element mesh.
However, both methods cannot completely overcome this
difficulty in the design of compliant mechanisms undergoing
a very large deformation due to the fact that local instabil-
ity may also occur in intermediate-density elements (e.g.,𝜌𝑒 = 0.01 to 0.3). Other more complex methods, such as
the element connectivity parameterization method [23, 24]
and the Levenberg-Marquardt method [25], have also been
introduced to stabilize the optimization process. In addition,
Wang et al. [26] proposed a new energy interpolation scheme
to alleviate the numerical instability in the low stiffness
region. In this study, amodifiedmethod based on the additive
hyperelasticity technique proposed by Luo et al. [20] is
employed.

The basic idea of the additive hyperelasticity technique is
to add a specified soft hyperelasticmaterial to the low-density
elements thatmay become unstable.The additive hyperelastic
material for the eth element has the following strain energy
function according to the Yeoh model [27]:

Ψadd
𝑒 (𝐼1) = (1 − 𝜌𝑒𝑝) (𝑐𝑒1 (𝐼1 − 3) + 𝑐𝑒2 (𝐼1 − 3)2) , (2)

where 𝐼1 = tr(C) is the first invariant of the right Cauchy-
Green strain tensorC, 𝑐𝑒1 > 0 and 𝑐𝑒2 > 0 arematerial constants
of the additive hyperelastic material for the eth element, 𝜌𝑒 is
the elemental density, and 𝑝 is the penalization factor used
in the SIMP approach. It is seen that the shearing capacity
of the additive hyperelastic material is gradually increased as
a result of increasing strain. Thus, the stiffness of low-density
element is enhanced under compression to prevent itself from
instability. In order to achieve this, two issues need to be
further addressed.

The first issue is how to identify the low-density elements
that tend to be unstable during the optimization process. A
simple criterion is the ratio between the element strain in the
kth optimization step and the specified threshold value 𝜀∗;
that is,

𝜂(𝑘)𝑒 = 𝜀(𝑘)𝑒,von𝜀∗ , (3)

where 𝜀𝑒,von is the average vonMises strain of the eth element.
From our numerical experiments, we set the threshold value
as 𝜀∗ = 1.0 in the compliant mechanism topology optimiza-
tion problem. If 𝜂(𝑘)𝑒 ≥ 1, this means that the deformation of
the eth element is close to the instability point. Otherwise,
there is little possibility for the eth element to become
unstable in the next iteration step.

The second issue is the choice of parameters 𝑐𝑒1 and 𝑐𝑒2 for
the additive hyperelastic material. Under small strain, local
instability is not an issue and thus initial Young’s modulus
(𝐸ini = 6𝑐𝑒1) of the additive hyperelastic material should be
small enough. Therefore, we set the minimum value 𝑐𝑒1 =𝜌min
𝑝𝐸0/6, where 𝐸0 is Young’s modulus of the solid elastic

material. Under large strain, the stiffness of the additive
hyperelastic material highly depends on the parameter 𝑐𝑒2
and a large value of 𝑐𝑒2 can ensure effective elimination of
instability. However, it may also lead to a large prediction
discrepancy of the actual behavior of the mechanism. A
reasonable value of 𝑐𝑒2 for the additive material in the eth
element can be updated by an adaptive strategy, which is
expressed by

𝑐𝑒,(𝑘+1)2 = {{{
𝑐𝑒,(𝑘)2 ⋅ √𝜂(𝑘)𝑒 , if 𝜂(𝑘)𝑒 < 1
𝑐𝑒,(𝑘)2 ⋅ (𝜂(𝑘)𝑒 )3 , if 𝜂(𝑘)𝑒 ≥ 1, (4)

where the superscripts (𝑘 + 1) and (𝑘) denote the iteration
steps of optimization.

Comparedwith our previous work [20], which uses a uni-
form value of additive material parameters for all elements,
this study proposed a modified strategy to eliminate the
element instability by selecting a more reasonable value of 𝑐𝑒2
for each element. As will be illustrated in Section 4.1, by using
the proposed modified algorithm, the discrepancy between
the responses of the remodeled structure and the actual
structure for large-displacement compliant mechanisms will
be substantially reduced.

3.2. Nonlinear Finite Element Analysis Procedures. We now
perform the finite element analysis of the remodeled compli-
antmechanism undergoing large displacement and rotations.
The remodeled mechanism is composed of original linear
elastic material and additive hyperelastic material. Here,
the additive hyperelastic material is invoked to describe
nonlinearmaterial behaviors under large strains. Using linear
Hooke’s law, we express the second Piola-Kirchhoff stress Sori
in the original elastic material as follows:

Sori = Dori
𝜀, (5)

where 𝜀 is the Green-Lagrange strain andDori is the constitu-
tive elasticity tensor of the original elastic material. Using the
SIMP model, for each element, the elasticity tensor Dori

𝑒 is a
function of the elemental relative density 𝜌𝑒:

Dori
𝑒 = 𝜌𝑝𝑒 D0 (𝑒 = 1, 2, . . . , 𝑁) , (6)

where D0 is the elasticity tensor of the fully solid material
and 𝑝 > 1 is the penalization factor. In this study, we set
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𝑝 = 3 for penalizing intermediate-density values during the
optimization process.

For the additive hyperelastic part, the second Piola-
Kirchhoff stress Sadd can be obtained from the derivative of
the strain energy function Ψadd; that is,

Sadd = 𝜕Ψadd

𝜕𝜀 = 2𝜕Ψadd

𝜕C = 2 3∑
𝑖=1

(𝜕Ψadd

𝜕𝐼𝑖
𝜕𝐼𝑖𝜕C) , (7)

where 𝐼1, 𝐼2, and 𝐼3 are the three invariants of C. Then,
according to (2), the second Piola-Kirchhoff stress in the
additive hyperelastic material for each element is computed
by

Sadd𝑒 = 2 (1 − 𝜌𝑒𝑝) (𝑐𝑒1 + 2𝑐𝑒2 (𝐼1 − 3)) 𝜕𝐼1𝜕C
(𝑒 = 1, 2, . . . , 𝑁) .

(8)

Under large displacement, the Green-Lagrange strain is
defined by

𝜀𝑖𝑗 = 1
2 (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) (9)

and can be rewritten after discretization as

d𝜀 = B (u) du = (B0 + B𝐿) du, (10)

where B0 is the linear part of the strain-displacement matrix
and B𝐿 represents the second-order term.

The Green-Lagrange strain is work-conjugate to the sec-
ond Piola-Kirchhoff stress. Therefore, the static equilibrium
state of the remodeled mechanism is expressed by

R (u,𝜌) = ∫
Ω0

B (u)𝑇 (Sori + Sadd) dΩ + Kspringu − P

= 0,
(11)

where R denotes the residual force, Ω0 is the undeformed
volume of the design domain, Kspring is the stiffness matrix
obtained by assembling the contributions of two artificial
springs, and P is the vector of prescribed input force.
The static equilibrium (11) for the compliant mechanism is
nonlinear and can be typically solved by using the Newton-
Raphson procedure.

3.3. Design Sensitivity Analysis. In this section, the adjoint
variable method for sensitivities calculation of the objective
function 𝑢out(𝜌) is presented. Direct differentiation of the
static equilibrium function (11) with respect to the design
variable 𝜌𝑒 leads to
dR (u,𝜌)

d𝜌𝑒 = 𝜕R (u,𝜌)
𝜕𝜌𝑒 + 𝜕R𝑇

𝜕u
𝜕u
𝜕𝜌𝑒 = 0,

(𝑒 = 1, 2, . . . , 𝑁) .
(12)

Then, the gradient 𝜕𝑢out/𝜕𝜌 is computed by

𝜕𝑢out𝜕𝜌𝑒 = (𝜕𝑢out𝜕u )𝑇 𝜕u𝜕𝜌𝑒
= −(𝜕𝑢out𝜕u )𝑇(𝜕R𝑇𝜕u )

−1 𝜕R (u,𝜌)
𝜕𝜌𝑒 ,
(𝑒 = 1, 2, . . . , 𝑁) ,

(13)

where 𝜕R/𝜕u = K𝑇 is the global tangent stiffness matrix at
the equilibrium state.

To calculate (13), we first introduce an adjoint vector 𝜆,
which can be easily obtained as the solution to the linear
adjoint equation

K𝑇𝜆 = 𝜕𝑢out𝜕u . (14)

The partial derivative of the global residual with respect
to the eth design variable is

𝜕R (u,𝜌)
𝜕𝜌𝑒 = ∫

Ω0

B (u)𝑇(𝜕Sori𝜕𝜌𝑒 +
𝜕Sadd
𝜕𝜌𝑒 ) dΩ. (15)

Here, the partial derivatives of the second Piola-Kirchhoff
stresses Sori and Sadd with respect to the design variable are
obtained from the differentiation of (5) and (8).

Submitting (14) and (15) into (13), it yields that

𝜕𝑢out𝜕𝜌𝑒 = −𝜆𝑇∫
Ω0

B (u)𝑇(𝜕Sori𝜕𝜌𝑒 +
𝜕Sadd
𝜕𝜌𝑒 ) dΩ,
(𝑒 = 1, 2, . . . , 𝑁) .

(16)

In the finite element implementation, the 4-node plane
stress elements are used. It is well known that the use of low-
order finite elements in topology optimization may lead to
checkerboard patterns and mesh dependency. In this study,
the sensitivity filter technique [28] is employed to circumvent
this problem; that is,

𝜕𝑢out𝜕𝜌𝑒 = 1
𝜌𝑒∑𝑁𝑚=1𝐻𝑒,𝑚

𝑁∑
𝑚=1

(𝐻𝑒,𝑚𝜌𝑚 𝜕𝑢out𝜕𝜌𝑚 )
(𝑒 = 1, 2, . . . , 𝑁) ,

(17)

where 𝐻𝑒,𝑚 = max{0, 𝑟min − Δ(𝑒,𝑚)/𝐿} is the weight factor,Δ(𝑒,𝑚) represents the distance between the centroids of
element 𝑒 and element𝑚, 𝐿 is the side length of the elements,
and 𝑟min is the filter radius.

3.4. Algorithm. The detailed topology optimization proce-
dures for the design of a compliant mechanism using the
above formulation and the modified additive hyperelasticity
technique are described in Figure 2. With the proposed
technique, the element instability in low-density elements
can be completely overcome without sacrificing the accu-
racy of structural response analysis. Note that the main
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Figure 2: Flowchart of the topology optimization incorporating modified additive hyperelasticity technique.

computational cost is the Newton-Raphson iterations for
solving the nonlinear equilibrium equations. The MMA
algorithm proposed by Svanberg [21] is used as an optimizer
for updating design variables. The termination criterion of
the optimization processes is the following: the maximal
difference between the design variables of two adjacent
iterations is less than 0.01.

4. Numerical Examples

The proposed topology optimization methodology is applied
to the design of two compliant mechanisms undergoing large
displacement.The solid material properties for the compliant
mechanisms are given as follows: Young’s modulus is 𝐸0 =100MPa and Poisson’s ratio is ] = 0.3. The filter radius for
design sensitivities is 𝑟min = 1.8.
4.1. Design of an Inverter Mechanism. The design domain
and the boundary conditions of the displacement inverter are
sketched in Figure 3. The top left corner and the bottom left
corner of the design domain are fixed and an external force𝐹in is applied in the middle (point A) of the left side. The
domain size is 100mm × 100mm. Two artificial springs with

Fin

kin kout

uout
BA

10 mm

10 mm

100 mm

Figure 3: Design domain of the inverter mechanism.

stiffness values 𝑘in = 1.0N/mm and 𝑘out = 0.2N/mm are put
at point A and point B, respectively. The design problem is to
find a force-inverting mechanism that maximizes the output
displacement𝑢out at point B.Thematerial volume is restricted
to 25% of the total volume of the design domain.

In view of the symmetry, one half of the design domain
is discretized by 5000 (100 × 50) 4-node plane elements. The
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(a) (b) (c)

Figure 4: Comparison of optimal topologies for the inverter mechanism considering different inputs. (a) 𝐹in = 2N. (b) 𝐹in = 18N. (c)𝐹in = 36N.

Table 1: Solution details for the inverter mechanism by the proposed method.

Number of
iterations

Maximum value of 𝑐𝑒2
(×𝐸0) 𝑢in (mm) Input work𝑊in

(Nmm) 𝑢out (mm) Output work𝑊out (Nmm) 𝑊out/𝑊in

𝐹in = 2N 65 1.0000𝐸 − 8 0.68 0.449 1.49 0.222 49.44%
𝐹in = 18N 76 1.0000𝐸 − 8 6.01 36.030 11.98 14.352 39.83%
𝐹in = 36N 61 2.5615𝐸 − 6 13.16 150.287 23.15 53.592 35.66%

relative density of each element is treated as a design variable.
Three different values of𝐹in = 2N,𝐹in = 18N, and𝐹in = 36N
are considered.

The optimization results considering geometrical nonlin-
earity for different input forces are compared in Figures 4(a)–
4(c).The black region indicates the fully solid material, while
the white region represents the low-density or void elements.
It is noted that the optimal topologies change as the input
force increases. For a small input 𝐹in = 2N, the optimum
material distribution is shown in Figure 4(a) with small
output displacement of 𝑢out = 1.49mm. When 𝐹in = 36N,
the topology optimization procedure yields a rather different
design as depicted in Figure 4(c). The main difference is the
length and the incline angle of the right bars connected to the
output point. In this case, the maximum output displacement
is predicted to be 𝑢out = 23.15mm.

Figure 5 plots the iteration histories of the proposed
optimization processes. It can be seen that the optimization
objective for each case converges to a stable value within 80
iterations.The corresponding details of solutions, such as the
number of iterations, themaximumvalue of parameter 𝑐𝑒2 , the
input displacement 𝑢in, the input work𝑊in = (1/2)(𝐹in𝑢in −𝑘in𝑢2in), the output displacement 𝑢out, the output work𝑊out =(1/2)𝑘out𝑢2out, and the work transmission ratio𝑊out/𝑊in, are
listed in Table 1. It is observed that the topology in Figure 4(a)
gains the most energy-efficient way to transfer input to
output. However, it cannot generate large displacement at the
output point.

The deformed shapes of the optimized topologies for
three cases of input force are shown in Figures 6(a)–6(c).
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Figure 5: Optimization histories for the inverter mechanism.

It is seen that some low-density elements in Figure 6(c) for
the case of 𝐹in = 36N undergo very large strains. However,
these elements do not suffer from instability because the
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(a) (b) (c)

Figure 6: Deformed shapes of optimized structures for the inverter considering different inputs. (a)𝐹in = 2N, 𝑢out = 1.49mm. (b)𝐹in = 18N,𝑢out = 11.98mm. (c) 𝐹in = 36N, 𝑢out = 23.15mm.

additive hyperelastic material is added. The final contour of
the parameter 𝑐𝑒2 for the case of 𝐹in = 36N is plotted in
Figure 7. In most parts of the design domain, the parameter𝑐𝑒2 is extremely low. Therefore, the additive material only
has slight effects on the overall response of the compliant
mechanism. In order to show this, the optimal topology in
Figure 4(c) was also analyzed by the nonlinear finite element
method incorporating the element removal technique, in
which the low-density elements with 𝜌𝑒 ≤ 0.01 are removed
from the finite element model, as shown in Figure 8. The
curves of output displacement versus input work predicted
by the modified additive material model are compared with
the element removal model in Figure 9. In this large-
displacement case, the maximum discrepancy between the
two sets of results is no more than 1.0%. On the contrary, if
one adopted the previous method as suggested in [20] that
uses a uniform value of 𝑐2 = 2.57 × 10−6𝐸0 for all ele-
ments, the maximum discrepancy becomes 4.7%. Therefore,
the modified additive hyperelasticity technique is capable
of eliminating the element instability and providing more
accurate response analysis than the previous method during
the topology optimization of large-displacement compliant
mechanisms.

4.2. Design of a Gripper Mechanism. The second benchmark
example considered in this study is the topology optimization
of a gripper mechanism. The geometrical dimension of the
design domain and the boundary condition are given in
Figure 10. The spring parameters are set as 𝑘in = 0.4N/mm
and 𝑘out = 0.1N/mm. Here, the output displacement is to
be maximized under two different input force values 𝐹in =2N and 𝐹in = 20N. The allowable material volume ratio
is specified as 25%. In the finite element model, only the
symmetric upper design domain is discretized by 4839 nodes
and 4688 four-node finite elements by using an element size
of 1mm.

The optimized solutions obtained by the proposed
method for the two input force values are presented in

2.57

2.25

1.93

1.61

1.29
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Figure 7: Contour of the parameter 𝑐𝑒2 for the inverter mechanism
in the case of 𝐹in = 36N.

Figure 8: Element removal model for the design in Figure 4(c).
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Figure 9: Output displacement versus input work curves for the design in Figure 4(c) by different models.
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Figure 10: Design domain of the gripper mechanism.

Figures 11(a) and 11(b). The resulting optimal solution in
Figure 11(a) has a significant topological difference from the
solution in Figure 11(b) due to the large-displacement effect.
The latter design gains output displacement of 12.91mm,
while the former gains only 1.44mm. The curves of output
displacement versus input work for both designs are com-
pared in Figure 12 based on the modified additive material
model and the element removal model. The comparison
shows that the relative discrepancy between the additive
material-based response and the true response is rather small.
In addition, even if a large input work (𝑊in = 82Nmm) is
imposed, the design in Figure 11(a) can only yield 9.17mm
output displacement, which is much less than that of the
design in Figure 11(b). This reveals that it is meaningful to

account for the large-displacement effects in topology design
of compliant mechanisms.

The deformed shape of the additivematerial-basedmodel
for the design in Figure 11(b) is shown in Figure 13, from
which the effectiveness of using the proposed method to
prevent instability in low-density elements can be validated.

It should be noted that, besides the element instability,
another main difficulty in the topology optimization of
compliant mechanisms is that there are some usually small
hinge-like regions in the final topology, for example, in
Figures 4 and 6. How to avoid such hinges during the
topology optimization has been extensively investigated up to
now.Many efficient methods, such as the length-scale control
method [29], the morphology-based restriction scheme [30],
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(a) (b)

Figure 11: Comparison of optimal layouts of the gripper mechanism with different inputs. (a) 𝐹in = 2N. (b) 𝐹in = 20N.
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Figure 12: Output displacement versus input work curves for the
designs in Figure 11.

and the level set-based control method [31], have been pro-
posed. Interested readers are referred to some recent publica-
tions [7, 32–34].

5. Conclusions

Based on the density penalization model and the modified
additive hyperelasticity technique, a topology optimization
method for large-displacement compliant mechanisms is
presented. The modified additive hyperelastic material can

Figure 13: Deformed shape of the design in Figure 11(b). 𝐹in = 20N,𝑢out = 12.91mm.

effectively overcome the element instability difficulty, while
exerting only a negligible influence on the structural nonlin-
ear response prediction. Compared to the previous method,
this modified technique provides more accurate results
in structural response. The present method is easy to be
implemented, without causing extra computational burden.
It can generate a meaningful and well-defined topology
when the mechanism is required to deliver relatively large
displacement. Topology optimization of two benchmark
examples of compliant mechanisms is tested. It is shown that
the obtained optimal designs with large displacement have
distinct differences in topology and performance compared
with those with small displacement.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.



10 Mathematical Problems in Engineering

Acknowledgments

This work is supported by the Fundamental Research Funds
for the Central Universities (DUT15RC(3)026).

References

[1] G. K. Ananthasuresh, S. Kota, and Y. Gianchandani, “Amethod-
ical approach to the design of compliant micromechanisms,” in
Proceedings of the Solid-State Sensor and ActuatorWorkshop, pp.
189–192, 1994.

[2] A. Saxena and G. K. Ananthasuresh, “On an optimal property
of compliant topologies,” Structural and Multidisciplinary Opti-
mization, vol. 19, no. 1, pp. 36–49, 2000.

[3] O. Sigmund, “On the design of compliant mechanisms using
topology optimization,” Mechanics of Structures and Machines,
vol. 25, no. 4, pp. 493–524, 1997.

[4] J. A.Hetrick and S. Kota, “An energy formulation for parametric
size and shape optimization of compliant mechanisms,” Journal
of Mechanical Design, vol. 121, no. 2, pp. 229–234, 1999.

[5] M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory,
Methods, and Applications, Springer, Berlin, Germany, 2003.

[6] S. R. Deepak, M. Dinesh, D. K. Sahu, and G. K. Ananthasuresh,
“A comparative study of the formulations and benchmark prob-
lems for the topology optimization of compliant mechanisms,”
Journal of Mechanisms and Robotics, vol. 1, no. 1, Article ID
011003, 2009.

[7] E. Lee and H. C. Gea, “A strain based topology optimization
method for compliant mechanism design,” Structural and Mul-
tidisciplinary Optimization, vol. 49, no. 2, pp. 199–207, 2014.
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