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In order to implement an optimized solution for cell range expansion (CRE) and enhanced intercell interference coordination
(eICIC) schemes in long-term evolution-advanced (LTE-A) heterogeneous cellular networks (HCNs) and to realize good load-
balancing performance in existing LTE-A systems, a practical tessellation-based algorithm is proposed. In this algorithm, a
globalized cell-specific bias optimization and a localized almost blank subframe (ABS) ratio update are proposed. The proposed
scheme does not require major changes to existing protocols. Thus, it can be implemented in existing LTE-A systems with any
legacy user equipment (UE) with only a partial update to the BSs and core networks. From simulation results, it is shown that
the tessellation formed by the proposed approach is quite consistent with the optimal one for various realistic scenarios. Thus, the
proposed scheme can provide a much better load-balancing capability compared with the conventional common bias scheme.
Owing to the improved load-balancing capability, the user rate distribution of the proposed scheme is much better than that
obtained from the conventional scheme and is even indistinguishable from that of the ideal joint user association scheme.

1. Introduction

In current cellular networks, low-powered small cells are
being installed with conventional macrocells to form hetero-
geneous networks (HCNs) as a way to meet users increasing
demand for mobile broadband traffic [1]. Considering a
cochannel deployment in which macrocells and small cells
use the same carrier frequencies and conventional cell asso-
ciation, this may mislead most users by selecting macrocells
as the best-serving cells owing to the large difference in
downlink transmit powers. Thus, to achieve the potential of
such an HCN, appropriate load balancing is essential and
is expected to play an important role in offloading loads
from macrocells to small cells [2–4]. For this, cell range
expansion (CRE) and enhanced intercell interference coor-
dination (eICIC) using almost blank subframes (ABS) have
already been adopted in 3GPP long-term evolution-advanced
(LTE-A). 3GPP LTE-A allows for offloading even to legacy

UEs and protects such offloaded small-cell users by providing
a certain muted portion of subframes so that more users can
be offloaded from macrocells to small cells with a significant
performance gain [5–7].

There have been many load-balancing schemes in litera-
ture to determine the bias values for CRE and the ABS ratio
for the eICIC, which can be categorized as follows: (i) a joint
optimization of user association and ABS ratios such as in
[8, 9], (ii) a global optimization of CRE bias values and ABS
ratios such as in [10, 11], and (iii) a local optimization of
ABS ratios for a given common bias value such as in [12–14].
As an ideal approach for CRE and eICIC optimization, joint
optimization methods for user association and ABS ratios
have been studied [8, 9]. In [8], a centralized optimization
problem for user association considering the ABS ratio is
formulated and solved to maximize a network-wide utility
and shows a large gain in network performance. In [9], a
joint problem for user association, the ABS ratio, and radio
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resource scheduling is studied, and a distributed algorithm
is developed.The algorithm shows improvement in network-
wide resource utilization. However, in order to implement
such a joint approach in an existing network architecture,
existing network elements should be updated and legacy UEs
need to bemodified or even replaced to support this new user
association process. In the current LTE-A, user association
can adopt the CRE method by using a bias value [15], where
a positive bias is assigned to each cell, and each user is
associated with the cell of the maximum biased reference
signal received power (RSRP). In order to determine a proper
bias value and ABS ratio, a global optimization method
using cell-specific bias values [10] or a common bias value
[11] for small-cell CRE has been studied. In this method, a
centralized approach is considered where the CRE bias values
and ABS ratios are determined at a central entity [e.g., the
enhanced packet core- (EPC-) mobility management entity
(MME)] to provide good performance. Although they may
be compatible with legacy UEs, a large amount of overhead is
caused by frequent signal exchanges for updating each user’s
SNR or each BS information. These events are necessary to
estimate user rates, and an overall update to the BSs and the
core network is also required. As an efficient implementation
in an existing network, a local optimization of ABS ratios
based on a given common CRE bias value has been also
studied [12–14]. In this optimization, simple centralized or
distributed algorithms for determining eICIC ABS ratios
based on a given common CRE bias value are proposed
by comparing local load situations in each macrocell and
neighboring small cells. Although this approach can be
applied to legacy UEs and requires only a partial update to
the BSs and the core network, its performance is limited
mainly owing to the use of a common CRE bias value, even
without any optimization. Thus, in order to achieve more
successful load balancing in existing LTE-A networks, a more
efficient method for determining cell-specific bias values
and ABS ratios needs to be developed. This method should
be implemented without major changes to existing cellular
networks.

In this paper, a practical tessellation-based approach
is proposed to maximize the network-wide proportional
fairness (PF) among users in LTE-A HCNs. In these HCNs,
cell-specific bias values are determined to form a suboptimal
tessellation similar to an optimal tessellation that may be
obtained from a joint optimization for the CRE bias values
and ABS ratios. The proposed scheme does not require any
major modifications to existing protocols and thus can be
easily applicable to practical LTE-A systems. The proposed
algorithm consists of the following two steps: (i) based on
the long-term accumulated user measurement information,
cell-specific bias values are optimized and updated globally
by the EPC-MME in a long-term manner and are delivered
infrequently to small cells; and (ii) the ABS ratio and
ABS/NS resource scheduling are optimized locally among
each mBS and its associated sBSs only. It is shown that the
proposed scheme can be easily realized in practical LTE-
A systems without modifying any existing protocols, while
achieving a good load-balancing performance comparedwith
conventional methods. The rest of this paper is organized

as follows. In Section 2, an abstract system model for an
LTE-AHCN is provided, and the proposed tessellation-based
approach for efficient load balancing in an existing LTE-A
HCN is described in Section 3. In Section 4, simulation results
for various realistic scenarios and corresponding discussions
are provided, and concluding remarks are given in Section 5.

2. The System Model

Consider a downlink two-tier HCN in which macrocells are
overlaid with small cells using a lower transmit power. The
transmit powers of an mBS and an sBS are denoted as 𝑃𝑚
and 𝑃𝑠, respectively. In addition, the set of user locations,
the set of mBS locations, and the set of sBS locations are
denoted as U = {u1, u2, . . .}, B𝑚 = {b𝑚1 , b𝑚2 , . . .}, and
B𝑠 = {b𝑠1, b𝑠2, . . .}, respectively. Here, each sBS location can
be configured for different small-cell service scenarios. For
example, in rural environments, sBSs can be deployed in rural
communities and remote industries [16]. For urban (dense
urban) environments, sBSs can be deployed to support city
hot zones or transportation hubs (e.g., airports or railway
stations) [17].

The LTE-A core network architecture is abstracted as
shown in Figure 1. The sBSs are connected via X2 to the
nearest mBS. Here, the nearest mBS for sBS b ∈ B𝑠 is denoted
as 𝜔(b). In addition, each mBS or sBS is connected via S1 to
an EPC composed of theMME, the serving gateway (S-GW),
and the packet data network gateway (P-GW). In addition,
the LTE-A air interface is abstracted so that each subframe of
1ms intervals consists of 𝑁RB multiple resource blocks (RBs)
that are divided into ABSs and normal subframes (NSs). For
an ABS, interference from the nearest mBS is almost muted
so that the signal quality of small-cell users in the range-
expanded regions can be greatly improved.

Globally, the EPC-MME determines a set of bias values
for sBSs, denoted as 𝜅 = {𝜅b | b ∈ B𝑠}. These values are
based on long-term accumulated SNR measurement reports
fromusers, where 𝜅b denotes the bias value for sBS b, which is
updated infrequently and delivered to each mBS or sBS. Each
user obtains bias information for neighbor sBSs via a system
information (SI) block mapped on the radio resource control
(RRC) SI message over the downlink shared channel (DL-
SCH). After receiving the bias values of its neighbor sBSs,
each user chooses its serving BS based on the biased RSRP
information as

b∗u = argmax
b∈Bu

10 log10𝛾u,b + 𝜅b, (1)

where 𝛾u,b denotes the averaged received signal-to-noise
power ratio (SNR) between BS b and user u and reports its
measurement 𝛾u = {𝛾u,b | b ∈ Bu} and Bu ⊂ B𝑚 ∪ B𝑠 denotes
a neighbor BS list for user u to the selected BS. Note that (1)
becomes conventional cell selection with a maximum RSRP
when 𝜅b = 0 forb ∈ B𝑚∪B𝑠. Here, denote the set of associated
users as b ∈ B𝑚 ∪ B𝑠 as Ub = {u ∈ U | b∗u = b}. Based on
the current user association results, the ABS ratio 𝜍d of each
mBS d ∈ B𝑚 is optimized locally among each mBS d and its
local sBSs in B𝑠d = {b ∈ B𝑠 | 𝜔(b) = d}. For each mBS
d ∈ B𝑚, to determine the ABS ratio 𝜍d, each mBS d collects
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Figure 1: Abstract LTE-A HCNmodel.

all SNR measurement information via the sBS’s message Ξb
from its local sBSs in B𝑠d = {b ∈ B𝑠 | 𝜔(b) = d}. Then, the
mBS optimizes the ABS ratio as well as the ABS/NS resource
scheduling for each sBS, which is broadcast to each sBS. For
user scheduling, eachmBSb ∈ B𝑚 can select any users among
the associated user set Ub only in the NS period, while each
sBS b ∈ B𝑠 needs to select users among the associated user set
UNS

b (or UABS
b ) only in the NS period (or the ABS period).

3. Proposed Tessellation-Based Approach for
CRE and eICIC Scheme

In this section, a practical tessellation-based approach is
proposed. For this approach, the optimal tessellation of a
given system deployment is estimated over a long period, and
the cell-specific bias values are determined infrequently to
form cell coverage that is as similar to the optimal tessellation
as possible in an LTE-A HCN. The proposed approach
utilizes existing protocols for data collection and bias value
delivery so that it can be easily adopted in a practical LTE-A
system.The proposed algorithm consists of the following two
steps: (i) based on long-term accumulated user measurement
information, cell-specific bias values are updated by using the
proposed tessellation-based approach in the EPC-MME over
a long period and are delivered infrequently to small cells,
and (ii) the ABS ratio and ABS/NS resource scheduling are
optimized locally among each mBS and its associated sBSs
only.

3.1. Optimal Tessellation. Each BS can deliver its aperiodic
SNR measurement reports from its associated users to the
EPC-MME via the S1AP management messages [18] so that

the EPC-MME can observe and store the reported averaged
SNR information for many realizations of user locations.The
sample SNR realization at time instance 𝑖, denoted as Γ(𝑖) ={{u, 𝛾u} | u ∈ U}, is collected within each given time period.
Note that the location information is already available in
most smartphone devices, and it is assumed that each BS can
attach the location information of associated users to its SNR
measurement report.

For a given deployment B = B𝑚 ∪ B𝑠, each cell coverage
can be regarded as a tessellation for a given system coverage
R, which can be written as T = {Tb | b ∈ B} ∈ 𝜌(R),
where Tb denotes the cell coverage for BS b ∈ B and 𝜌(R)
denotes the collection of all partitions of R. Here, user u is
assumed to be associatedwith BSb ifu ∈ Tb.Then, for a given
deploymentB and system coverageR, the optimal tessellation
may be formulated as

T∗ (B) = argmax
T∈𝜌(R)

𝐸[ ∑
u∈U(𝑛)

log𝑅u (T) | B] , (2)

where 𝑅u(T) denotes the expected user rate of user u for
a given tessellation T. The expectation is taken over all
possible user realizations and channel realizations. However,
this expectation is difficult to compute for every candidate
tessellation in 𝜌(R). Thus, instead of solving direct opti-
mization using (2), T∗(B) is estimated from the collected
samples of the joint user association results, as summarized
in Algorithm 1. In this algorithm, jointly optimized user
association results for every SNR realization available at the
EPC-MME are obtained and stored. For SNR realization Γ(𝑛)
at time instance 𝑛, the expected user rate in the ABS and NS
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(1) Step 0: Initialize N.
(2) Step 1: For each 𝑛 ∈ N, solve the following joint UA problem by using Γ(𝑛):{X(𝑛), {𝜍b(𝑛) | b ∈ B𝑚}}

= argmax
{X,{𝜍b |b∈B𝑚}}

∑
u∈U(𝑛)

( ∑
b∈B𝑠

∑
𝜏∈{ABS,NS}

𝑥𝜏u,b log 𝜂𝜏b𝐼𝜏u,b(𝑛)∑u∈U(𝑛) 𝑥𝜏u ,b + ∑
b∈B𝑚

𝑥u,b log
(1 − 𝜍b) 𝐼NS

u,b (𝑛)
∑u∈U(𝑛) 𝑥u ,b

),

s.t. ∑
u∈U(𝑛)

( ∑
b∈B𝑠

∑
𝜏∈{ABS,NS}

𝑥𝜏u,b + ∑
b∈B𝑚

𝑥u,b) = 1,
𝑥u,b ∈ [0, 1], u ∈ U(𝑛), b ∈ B𝑚, 𝑥ABS

u,b , 𝑥NS
u,b ∈ [0, 1], u ∈ U(𝑛), b ∈ B𝑠,𝜍b ∈ [0, 1], b ∈ B𝑚,

where X(𝑛) = {𝑥𝜏u,b(𝑛) | 𝜏 ∈ {ABS,NS}, u ∈ U(𝑛), b ∈ B𝑠}∪{𝑥u,b(𝑛) | u ∈ U(𝑛), b ∈ B𝑚}.
(3) Step 2: For each b ∈ B, set

Ub (𝑛) = {u ∈ U (𝑛) | 𝑥u,b (𝑛) ≥ 𝑥u,b (𝑛) for ∀b ∈ B},
where 𝑥u,b(𝑛) = max

𝜏∈{ABS,NS}
𝑥𝜏u,b(𝑛).

(4) Step 3: Estimate the optimal tessellation as
T∗ (B) = {Tb = {t ∈ R | 𝑤 (t, b) ≥ 𝑤 (t, b) for ∀b ∈ B} | b ∈ B},

where 𝑤(t, b) = ∑u∈Ub(𝑛),𝑛∈N 𝑓(‖t − u‖) for a kernel function 𝑓(𝑥) = (1/√2𝜋𝜎)𝑒−𝑥2/2𝜎2 .
Algorithm 1: Proposed estimation method for optimal tessellation.

of user u if associated with BS b, 𝐼𝜏u,b(𝑛) for 𝜏 = {ABS,NS}, is
approximated as

𝐼𝜏u,b (𝑛) = log2 (1 + 𝐸𝑆 (b)𝐸𝜏𝐼 (b))

+ ( 𝐸2𝑆 (b) + 𝑉𝜏𝐼 (b)(𝐸𝑆 (b) + 𝐸𝜏𝐼 (b))2 −
𝑉𝜏𝐼 (b)(𝐸𝜏𝐼 (b))2) log2𝑒,

(3)

where 𝜂ABSb = 𝜍𝜔(b), 𝜂NS
b = 1 − 𝜍𝜔(b) for b ∈ B𝑠, 𝐸𝑆(b) ≜𝛾u,b, 𝐸𝜏𝐼(b) ≜ ∑b∈Bu−{b} 𝛾u,b − 1{𝜏=ABS}𝛾u,𝜔(b), and 𝑉𝜏𝐼 (b) ≜

∑b∈Bu−{b} 𝛾2u,b − 1{𝜏=ABS}𝛾2u,𝜔(b). Here, (3) adopts the Gamma
distribution approximation as in [19] with the assumption
that the total interference power can be approximated as the
sum of the average power from interfering BSs. Note that
the optimization problem in Step 1 is not convex but has a
special structure that lets the problem become convex in X
for a given {𝜍b | b ∈ B𝑚} and vice versa. Thus, X and{𝜍b | b ∈ B𝑚} can be found by fixing each other and using a
convex programming tool such as CVX [20] iteratively. From
the relaxed association result X(𝑛), the set of sample points{Ub(𝑛) | b ∈ B} for estimating the optimal tessellation is
obtained. Then, from the obtained sample point sets over
a long period N, the optimal tessellation is estimated as in
Step 3 by using a kernel function 𝑓(𝑥). Here, a Gaussian
kernel functionwithmean of 0 and variance of 𝜎2 = 4 is used,
but other kernel functions can also be applied.

3.2. Suboptimal Tessellation Formed by Using Cell-Specific Bias
Values. In this subsection, based on the estimated optimal
tessellation from the previous subsection, the cell-specific
bias values, denoted as 𝜅 = {𝜅b | b ∈ B𝑠}, are determined to
form cell coverage that is as similar to the estimated optimal
tessellation as possible. Here, 𝜅b = 0 for b ∈ B𝑚 is assumed.
Denote the tessellation formed by applying CRE with bias

values in 𝜅 for a given deployment B as T(𝜅,B), which can
be written as

T (𝜅,B) = {Tb (𝜅,B) = {t ∈ R | 10 log10𝛾t,b + 𝜅b
≥ 10 log10𝛾t,b + 𝜅b for ∀b ∈ B} | b ∈ B} , (4)

where 𝛾t,b denotes the SNR information of BSb ∈ Bmeasured
at t ∈ R.Then, the cell-specific bias valuesmay be determined
as

𝜅∗ = argmax
𝜅

∑
b∈B

T∗b (B) ∩ Tb (𝜅,B) . (5)

Since the optimal bias value set in (5) is difficult to compute
directly, a suboptimal algorithm using the hill-climbing
method with a random walk [21] is applied, which is sum-
marized in Algorithm 2. Here, the consistency value 𝜉b(𝜅𝑗),
defined as the cardinality (area) of the intersection between
the cell coverage of BS b in the optimal tessellation and that
formed by applying CRE with bias values in 𝜅, is utilized.
In each iteration, the BS with the lowest consistency value
is selected in Step 2, and the cell-specific bias value of the
selected BS is updated in a greedy manner. In Step 5, a new
bias value set is accepted if it is better than the currently best
bias value set. A random neighbor for the next iteration is
generated in Step 6. After a sufficient number of iterations,
the cell-specific bias values for the suboptimal tessellation are
determined and then are delivered to the corresponding cells.

3.3. Localized ABS Ratio and Resource Scheduling Optimiza-
tion. After receiving 𝜅b, each sBS b updates its bias value and
broadcasts it via the SI block mapped on the RRC SI message
over DL-SCH [22]. Then, each user chooses a serving BS as
in (1) by using the biased RSRP information of its neighbor
sBSs. Based on the user association results, the ABS ratio 𝜍d
of each mBS d ∈ B𝑚 is optimized by each mBS d locally. To
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(1) Step 0: Initialize 𝜅𝑗 = {𝜅𝑗b = 0 | b ∈ B𝑠} for 𝑗 = 1, . . . , |B𝑠|, 𝑙 = 0, 𝑙max ≥ 30, 𝜉best = 0, Δ bias(= 0.5).
(2) Step 1: Set 𝑗 = 0 and L1 = B𝑠.
(3) Step 2: Increase 𝑗 by 1 and select the sBS with the minimum value by calculating the degree

of consistency for each b ∈ L𝑗, 𝜉b(𝜅𝑗) = |T∗b(B) ∩ T𝑗b(𝜅𝑗,B)|, as
b̂ = argmin

b∈L𝑗
𝜉b(𝜅𝑗).

(4) Step 3: For b̂, repeat the following process until 𝜉(𝜅𝑗) = ∑b∈B 𝜉b(𝜅𝑗) cannot be further maximized.
If an increase in 𝜅𝑗

b̂
results in a better consistency value such that 𝜉(𝜅𝑗

b̂,+
) > 𝜉(𝜅𝑗), set 𝜅𝑗 = 𝜅𝑗

b̂,+
.

Otherwise, if a decrease in 𝜅𝑗
b̂
results in a better consistency value such that 𝜉(𝜅𝑗

b̂,−
) > 𝜉(𝜅𝑗), set 𝜅𝑗

= 𝜅𝑗
b̂,−
. Here 𝜅𝑗

b̂,+
= {𝜅𝑗b}b∈B𝑠/b̂ ∪ {𝜅𝑗

b̂
+ Δ bias} and 𝜅𝑗

b̂,−
= {𝜅𝑗b}b∈B𝑠/b̂ ∪ {𝜅𝑗

b̂
− Δ bias}.

(5) Step 4: If L𝑗 ̸= 0, set L𝑗+1 = L𝑗 − {b̂} and 𝜅𝑗+1 = 𝜅𝑗 and go back to Step 2.
(6) Step 5: If 𝜉(𝜅|B𝑠 |) > 𝜉best, set 𝜅∗ = 𝜅|B𝑠 | and 𝜉best = 𝜉(𝜅|B𝑠 |).
(7) Step 6: If 𝑙 < 𝑙max, go back to Step 1 by setting 𝜅1 = 𝜀(𝜅∗) and increasing 𝑙 by 1. Otherwise, terminate

the algorithm. Here, 𝜀(𝜅) generates a random neighbor around 𝜅.
Algorithm 2: Proposed algorithm for determining cell-specific bias values.

do that, each mBS d ∈ B𝑚 collects the SNR measurement
information Ξb = {𝛾u | u ∈ Ub} from its neighboring sBSs B𝑠d

via X2 interfaces.Then, based on {Ξb | b ∈ B𝑠d}, the following
optimization problem is solved periodically at mBS d:

{X∗d , 𝜍∗d} = argmax
{Xd,𝜍d}

∑
b∈B𝑠d

∑
u∈Ub

∑
𝜏∈{ABS,NS}

𝑥𝜏u,blog 𝜍d𝐼𝜏u,b∑u∈Ub
𝑥𝜏u ,b + ∑

u∈Ud

log
(1 − 𝜍d) 𝐼NS

u,dUd
 ,

s.t. 𝑥NS
u,b + 𝑥ABS

u,b = 1,
𝑥ABS
u,b , 𝑥NS

u,b ∈ [0, 1] ,
u ∈ Ub,
b ∈ B𝑠d,
𝜍d ∈ [0, 1] ,

(6)

where Xd = {𝑥𝜏u,b | 𝜏 ∈ {ABS,NS}, u ∈ Ub, b ∈ B𝑠d}. Note
that the above optimization problem is not convex, but it has
a special structure that lets the problem become convex inXd
for a given 𝜍d, and vice versa, so that Xd and 𝜍d can be found
by fixing each other and using a convex programming tool
such as CVX [20] iteratively. From the relaxed association
result Xd, UNS

b and UABS
b are obtained as UNS

b = {u ∈ Ub |𝑥NS
u,b ≥ 𝑥ABS

u,b } and UABS
b = Ub − UNS

b , respectively. Then, the
determined ABS ratio value and user association results are
delivered to the corresponding sBS.

For user scheduling, each mBS b ∈ B𝑚 can select any
users among the associated user setUb only in the NS period,
while each sBS b ∈ B𝑠 needs to select users among the
associated user set UNS

b (or UABS
b ) only in the NS period (or

the ABS period).

4. Simulation Results

For realistic LTE-A HCN deployment scenarios, the rural
[16], urban [17], and dense (or ultradense) urban [23]

scenarios are assumed. In the rural scenario, mBSs are
deployed regularly to cover a wide area with a long intersite
distance (ISD) [e.g., 1732 (m)] [24], and 5–30 sBSs per
mBS are sparsely deployed across the entire macrocell area
(excluding locations very close to the macrocells) [25]. For
the urban scenario, dense mBSs are deployed irregularly
with a minimum distance from other BSs [e.g., at least 2 ∗(cell radius) from sBSs] [26], and a single sBS or a few sBSs
are deployed to primarily serve as hotspots such as indoor
shopping malls or transportation hubs. For the dense urban
scenario, denser small-cell deployment (e.g., 10 or more sBSs
[27]) for each given localized hotspot region is considered
to support wireless traffic demand more aggressively in such
hotspots.

In order to obtain deployment realizations and various
SNR realizations per a given deployment for each scenario,
appropriate point process models [28] are used to model
the locations of mBSs, sBSs, and users on a given 4000-m ×4000-m area according to the statistical characteristics of
each scenario. For the rural scenario, since the rural mBS
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(b) Tessellation using cell-specific bias values
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Figure 2: Tessellation examples for urban scenario.

deployment is quite regular and the sBSs are typically sparse
and isolated, mBS locations are modeled as typical hexagonal
cells. Meanwhile, sBS locations are modeled by a Matérn
hardcore process of type 3 with a density of 𝜆𝑠 generated
from a homogeneous Poisson point process (HPPP). For the
urban or dense urban scenario, since mBSs are deployed
irregularly and sBSs are deployed to serve local hotspots, a
clustered HCN is considered as in [29], in which a set of
cluster center points C = {c1, c2, . . .} is modeled by a Matérn
hardcore process of type 3 with a density of 𝜆𝑐 generated
from an HPPP with the constraint that each cluster center is
not located within a predetermined distance from any other

cluster center or any mBS. In addition, sBSs for each cluster
c, denoted as B𝑠c, are generated from an HPPP with a density
of 𝜆𝑠(c) over a circular region of radius 𝑅𝑐 centered at c,
which results in B𝑠 = ⋃c∈C B

𝑠
c. The mBS location set B𝑚 is

also generated by a Matérn hardcore process of type 3 with a
density of 𝜆𝑚 generated from an HPPP with the constraint
that a macrocell BS is not located within a predetermined
distance from any cluster center. To evaluate the performance
of the proposed approach, for the rural scenario, the ISD for
the hexagonal cell model is set to 1732 (m), and 5 sBSs per
mBS in average are generated. For the urban and the dense
urban scenarios, 𝜆𝑚 = 4 × 10−6 (m−2), 𝜆𝑐 = 8 × 10−6 (m−2),
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Figure 4: Typical UA association examples for rural scenario.
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Figure 5: Typical UA association examples for urban scenario.

𝑅𝑐 = 65 (m), the minimum distance between a macrocell
BS and a cluster center and that between neighboring cluster
centers are set to 1.5𝑅𝑐 and 2𝑅𝑐, and 3 and 10 sBSs on average
for each small-cell cluster are deployed, that is, 𝜋𝑅𝑐2𝜆𝑠(c) =3 and 𝜋𝑅𝑐2𝜆𝑠(c) = 10, respectively. For user locations, in
the rural and urban scenarios, the set of user locations is
generated fromanHPPPwith density of 7.7×10−5 (users/m2)
and 4 × 10−4 (users/m2), respectively, while, in the dense
urban scenario, the set of user locations is generated from a
mixture point process Φ𝑢 ∪ ⋃c∈C Φ𝑢c , where Φ𝑢 is an HPPP
with a density of 𝜆𝑢 = 4×10−4 (m−2) andΦ𝑢c is anHPPP over
the circular region centered at c with a density of 𝜆ℎ = 10𝜆𝑢.
In [30], it is shown that a typical hotspot area size follows a
Weibull distribution with parameters 𝜆 = 8.14 and 𝑘 = 0.89
for hotspots having more than five times the mean traffic of a

normal area, by which a typical mean value of 10 for the user
density ratio and 𝑅𝑐 = 65 (m) corresponding to the upper
20% of the area sizes are picked for the simulation setup.
The transmit powers of the mBSs and sBSs are set to 46 dBm
and 23 dBm, respectively; the noise power spectral density is
set to −174 dBm/Hz; and the system bandwidth is assumed
to be 10MHz. In addition, 𝑁RB = 100 and the channel for
each RB between each BS and each user is assumed to be
an independent flat Rayleigh fading channel with a path-loss
exponent of 𝛼 = 4. For comparison, the centralized joint
scheme for UA and ABS ratios [8], denoted as “Joint,” is
considered to provide an upper bound on the performance, in
which all information is assumed to be available at the EPC-
MME and the joint optimization is performed by considering
the user locations jointly. In addition to the “Joint” scheme,
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Figure 6: Typical UA association examples for dense urban scenario.

a scheme using a common bias value and the maximum
RSRP scheme with no bias are also compared. They are
denoted as “Common” and “MAX,” respectively. Here, for
the common bias scheme, the common bias value is set to
a typical value of 6 dB [31], and the same localized ABS
and resource scheduling optimization are applied as in the
proposed scheme.

In Figure 2, some typical tessellation examples for the
urban scenario are illustrated. These examples exhibit an
improved similarity to the optimal tessellation of the pro-
posed scheme over the common and no-bias schemes.
To quantify such an improvement achieved by using the
proposed scheme, the normalized sum consistency value of
sBSs (by the total sBS area in the optimal tessellation) of the

proposed scheme is compared with that of the common bias
scheme in the three realistic scenarios, as shown in Figure 3.
From the results, it is confirmed that the proposed scheme
can provide cell-specific bias values that form a tessellation
highly consistent with the optimal one, while conventional
schemes are not sufficiently consistent.

In Figures 4–6, some typical UA association examples
of the joint UA scheme, the proposed scheme, and the
common bias scheme are illustrated for the three scenarios,
respectively. A comparison among the user association results
can be summarized as follows: (i) compared with the joint
UA scheme, a similar UA association can be achieved by
using the proposed scheme without considering the user
locations jointly, while the UA association obtained by using
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Figure 7: User rate distribution according to load-balancing capa-
bilities in urban scenario.

the common bias scheme deviates significantly, especially for
sBSs near an mBS as consistently seen in Figures 4–6; (ii)
although it seems that lightly loaded sBSs not close to an
mBS can expand aggressively even by using the common bias
scheme in the rural scenario, as seen in Figure 4, such lightly
loaded sBSs not close to anmBS begin to fail when expanding
their ranges successfully in the urban scenario, as seen in
Figure 5; and (iii) they are barely expanded in the dense urban
scenario, as seen in Figure 6. Especially in the dense urban
scenario, it is shown that the proposed scheme can provide
a flexible intratier offloading (between sBSs in a hotspot)
as well as an aggressive intertier offloading (from mBSs to
sBSs) similar to those achieved in the joint UA scheme, while
the common bias scheme suffers from almost no offloading
between sBSs and limited intertier offloading.

In Figure 7, the load-balancing capability of the proposed
scheme is evaluated and compared with the joint UA and
common bias schemes for the urban scenario in terms of the
cumulative distribution function (CDF) of the user average
rate. From the results, it is confirmed that the improved
consistency in the tessellation significantly enhances the user
rate distribution. Note that the user rate distribution achieved
by the load-balancing capability of the proposed scheme is
significantly better than that obtained from the common
bias scheme and is even indistinguishable from that of the
optimal joint UA scheme considering the user locations
jointly.

In Figure 8, the average performance gain of the proposed
scheme over the common bias scheme in terms of the ratio of
the bottom 5%, 10%, and 15% average user rates is evaluated
and compared for the three realistic HCN scenarios. This
analysis shows a significant improvement in network-wide
utilization, especially as the traffic demand and the corre-
sponding deployment become denser.
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Figure 8: Average performance gain of proposed scheme over
common bias scheme in various HCN scenarios.

5. Concluding Remark

In this paper, a practical tessellation-based approach for
optimizing cell-specific biases is proposed to improve the
performance of existing LTE-A HCNs. In this approach, (i)
based on long-term accumulated user measurement infor-
mation, cell-specific bias values are optimized and updated
globally by the EPC-MME to form a suboptimal tessellation
in a long-term manner and are infrequently delivered to
sBSs, and (ii) the ABS ratio and ABS/NS resource scheduling
of each mBS and its associated sBSs are determined locally
and independently. The proposed scheme does not require
major changes to existing protocol and can adopt legacy
UEs. Thus, the scheme is well suited for implementation
in existing LTE-A systems. From the simulation results in
realistic scenarios, it is shown that the proposed scheme is
very efficient in forming cell coverage that is as similar as
possible to the optimal tessellation so that the performance
in terms of the user rate distribution is almost identical to
that achievable from an ideal one. Thus, it is beneficial to
employ the proposed solution in existing LTE-A HCNs for
better network performance during system updates at low
cost.
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