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The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM).
PMSM equilibrium local stability condition and Hopf bifurcation condition, pitchfork bifurcation condition, and fold bifurcation
condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of
the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm
the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or
without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium
appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent

parameters should be designed in the region which has only one stable equilibrium.

1. Introduction

Permanent-magnet synchronous motor (PMSM) is one of the
most important development trends in a variety of driving
motors, due to its low inertia, low noise, high power density,
and high efficiency. It has both the advantages of reliable oper-
ation of AC motor and the advantages of excellent speed con-
trol performance of DC motor which is very suitable for engi-
neering application [1-4]. PMSM is a multivariable, strongly
nonlinear, and strongly coupled electromechanical system
[5, 6]. When PMSM is used in engineering, the parameters
are not fixed but fluctuate within a range according to the
changes of working environment, and the torque and speed
may irregularly oscillate in some parameter regions which
is not allowed for ensuring the stability and security. So the
dynamic behaviors of the PMSM within different parameter
regions as well as the condition of stability should be generally
discussed to provide theoretical basis for the use of PMSM.
Current domestic and foreign scholars have done a lot
of research on the dynamic characteristics and stability of
PMSM. For example, small-signal equations of the MC-
PMSM system, including both power stage and control stage,

are derived in [7] and stable region and its boundary are
obtained according to a Lyapunov-type stability analysis
based on these equations. Li et al. [8] deduced the small-
signal model of the open-loop control system of three-
phase PMSM, and the effect of speed, stator resistance, stator
inductance, excitation magnetic linkage, moment of inertia,
and load on the system stability is studied in detail by using
stability criterion of eigenvalues of the state transition matrix
in the linear system theory. Hinkkanen et al. [9] proposed a
reduced-order position observer with stator-resistance adap-
tation for motion sensorless permanent-magnet synchronous
motor drives and the effect of inaccurate model parameters
on the local stability of the position estimation is studied
by analyzing the small-signal stability of the nonlinear
estimation-error dynamics model. The stability of sensorless
control of PMSMs (assume the position and the electromag-
netic torque are known and the load is constant) are studied
by making a strict Lyapunov function for the error system
[10]. The stability of the PMSM-controller system with time
delay, as the mechanical time constant is significantly higher
than the electrical time constant in the PMSM-controller
system, is studied by root locus in the complex plane [11].
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With the large variation in inertia due to varying load
and parametric uncertainty, Yadav et al. [12] discussed the
relative robust stability of PMSM with parameter uncertainty
by using Kharitonov theorem and Routh stability criterion.
The transfer function of PMSM drives system with feed-
forward complete decoupling is developed based on the
small-signal model in [13], and the stable operation range
of system and PI parameter of flux weakening control are
analyzed by Routh stability criterion. In [14, 15], the unstable
dynamic behaviors of PMSM, used in EV, without external
inputs or load are observed over the entire range of single-
parameter values in the bifurcation diagram. The chaotic
motions (unstable) of the PMSM during the EV starting-
running process with and without large amplitude oscillation
load are discussed in [16], respectively. Analysis of the above
literature shows that current domestic and foreign scholars
have done a lot of research on the dynamic characteristics
of PMSM, but insufficiency still exists, such as limited work
on the variation regularity of the dynamics and stability with
multiple parameter variations and the relationship between
local and global dynamics of PMSM.

This paper aimed at exploring the dynamic characteristics
and stability of PMSM by nonlinear dynamics method. The
stability conditions and the bifurcation conditions of the
equilibrium points have been derived. The bifurcation curves
of the equilibrium with single and double parameters are
obtained by continuation method. The local dynamic char-
acteristics of the equilibrium points and the global dynamic
characteristics of PMSM are discussed by bifurcation set and
bifurcation diagram, respectively.

2. Dynamic Model of PMSM

The dynamic model of PMSM can be described as the
following three-dimensional nonlinear system [17, 18]:

diy (ug = Ryig + wL i)

dt L,
di, _ (uy = Ryiy — wLyig + wyy) "
dt L,

do _ [ siq + 1y (La = Ly) aig = Ty - Po]
dt )i

>

where iy, i;, and w represent the d-q axis stator current and
motor angular speed, respectively; u; and u, are the d-q axis
stator voltage components, respectively, L ; and L, are the d-q
axis stator inductors, respectively,and R,, v, f, J, n,,and
T} are the stator winding resistance, the permanent-magnet
flux, the viscous damping coeflicient, the polar moment of
inertia, the number of pole-pairs, and the external load
torque, respectively.

By applying an affine transformation and a time-scaling
transformation, system (1) can be transformed into the
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following dimensionless model:

d?d Lq’.~ ~7 ~
— = ——iy + Wi, + Uy,
& L4 e
d‘."
9 T ~ (2)
E ——zq—w1d+yw+uq,
d@

— o (7, - @)+ eigi, - Ty,

[V
=

where y = n, Y} /R, 0 = LoBIRJ; Gy = n,Laysu, /RIS
g = myLayeug/RiBs € = LoB*(Ly — L)/LyJnyps Ty =
LzTL/Rf].

3. Equilibrium Point and Bifurcations

(A) In order to study the inherent characteristics of the
smogth—air—gap PMSM, namely, Ly = L, tiy = 0,4, = 0,
and T, = 0, system (2) is written as

di, - -

-_— = + >

T ig + @i,

di, _

d—.t‘? =, — @iy + B, 3)
@

E =0 (lq - w) .

There are only two combined parameters, y and o, in
(3), and each parameter represents multiple parameters of
the actual PMSM. These two parameters are assumed to
be totally independent of each other for further discussing
the dynamic characteristics in the following text. The actual
dynamic behaviors can be obtained by substituting the actual
parameters into y and o.

By the analysis of the equilibrium points, @0,7%: @,), of
system (3), the equilibrium points equations are obtained:

2

—ig, + Woig =0

4 ldo = Wy

—ig, — Wgig + YWy =0 = iy

0(7% —(7)0) =0

Solving the equilibrium points equations, we obtain the
following:

(4)

@

S

@, (@," -y +1)=0.

(1) If y > 1, system (3) would have three equilibrium
points, including (0,0,0), (y —1,+/y — 1, 4/y — 1), and
()’ - 13_F1_\/m)'

(2) If y < 1, system (3) would only have one equilibrium
point, (0,0, 0).

The local stability of the equilibrium point is determined
by the roots of the characteristic equation, and the equilib-
rium point is stable if the all the roots of the characteristic
equation have negative real parts. The characteristic equation
can be expressed as det(AI — J) = 0, where A, I, and ] rep-
resent the eigenvalue, identity matrix, and Jacobian matrix,
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respectively. In fact, the stability of the equilibrium point is
usually judged using Routh-Hurwitz stability criterion [19]
as solving the characteristic equation is very difficult for high
dimensional dynamic system.

The Jacobian matrix at the equilibrium points of system
(3) is

-1 @ i
J=|-@ -1 <y +y|- )
0 o -0

Substituting the Jacobian matrix and equilibrium point,
((T)S, @y, @), into the characteristic equation, det(AI — J) = 0,
we obtain

/\3+(o+2)/\2+(1+o(bg—oy+6)g+20)l+3o(b§
(6)

—oy+0=0.

According to Routh-Hurwitz stability criterion, the sufficient
condition of the local stability of the equilibrium points is

o> -2,

~2
30w, —yo+0 >0,

7)

(o+2)(1+0c7)3—0y+@g+20)—(3(5§+}/—1)0
> 0.

By the bifurcation theory of the equilibrium points, the
equilibrium points may lose stability when the parameters
pass through the key values and the bifurcation behavior
occurs [20-23]. In order to obtain the conditions of Hopf
bifurcation, setting A = nj (n # 0) and substituting it into
characteristic equation (6), we obtain

—nsj—(G+2)n2+(1+a(7)§—ay+fi)(2)+2(r)nj
(8)

~2
+ 30w, —oy+0=0,

—ig, + Wolg =0

—ig, = Wolg, + Y0y =0 =

O(iQO _E)O) =0

According to the relationship between 7010540» and @,, the
equilibrium point of (11) can be written as (@; + u@,/o, @, +
u/o, ).

The Jacobian matrix at equilibrium point is

-1 @, i,
J=|-@ -1 —ig +y]|. (13)
0 o -0

equating real and imaginary parts of the equation

2 ~2 ~2
n =1+o0w,-0y+w,+20,

)

(30‘&')3 -0y + (7)
(0+2)

2
n =

Then, if Hopf bifurcation occurs at the equilibrium point of
(3), the following conditions must be satisfied:

o+2>0,
1+G&)§—Gy+c~u§+20>0, (10)

(-0*-2)wy +(y-2)0* +(y-4)o-2=0.

In addition, if y > 1, system (3) would have two stable
equilibrium points and one unstable equilibrium point and
if y < 1, system (3) would only have one stable equilibrium
point, and the pitchfork bifurcation occurs at y = 1.

(B) When considering the external load, namely, L; = L,
tiy; =0, ﬁq = 0, and TL # 0, this is a special case that the
control inputs of the system are removed after the motor runs
for a period of operation. Let u = T, and then system (2)
becomes

d’{d - T

— = -1yt wi,,

a4

di,

R S (1)
-— =—-1, — Wiy + yw,

di q aty

dw ~ -

— =0l1,—w)—U.

By analyzing the equilibrium points, (?do,?qo,d)o), of system
(11), we obtain

_o | U@,
i, =0+ —
d 0 o
=@ + — (12)
o
w0+—w§+(1—y)c7)0——=0

Substituting the Jacobian matrix and equilibrium into char-
acteristic equation, det(AI — J) = 0, we obtain

P rar+ad+a, =0, (14)
where

a,=0+2



ay = (1+0) @, +uidy +(2-y)o+1

as :3o&)§+uc7)0+(u—r+ 1)o.
(15)

According to the Routh-Hurwitz criteria, the local stability
condition of the equilibrium can be written as

g+2>0
300, +udy + (u—y+1)o>0  (16)
0(2+20+(a+2)c~og+uc~oo—y(a+1))+2>0.

If Fold bifurcation occurs at the equilibrium point of (11), the
following conditions must be satisfied:

a)3+5w§+(1—y)€o0+5=0
o o (17)
30w, + uy + (u—y+1)o = 0.

If Hopf bifurcation occurs at the equilibrium point of (11), the
following conditions must be satisfied:

og+2>0

(1+0)@, +u@y+(2-y)a+1>0

(18)
G)g+gwg+(1—y)wo+g=0

o(2+420+ (0 +2) @ +uidy—y(0+1))+2=0.

4. Simulation Results

This section presents some numerical simulation results to
verify the existences of bifurcation behaviors which have been
derived in the above section and the complicated dynamic
behaviors of the PMSM with/without external load. For the
sake of simplicity, let x = 7, y = 7q, and z = @.

(A) In this part, the inherent characteristics, namely, 7i; =
0, ﬁq = 0, and TL = 0, of the PMSM will be discussed
by numerical simulation. The double-parameter bifurcation
curves (see Figure 1) of system (3) in y-o plane are obtained
by continuation method, where “BP” and “subH” represent
pitchfork bifurcation line and subcritical Hopf bifurcation
line, respectively. The pitchfork bifurcation line together with
subcritical Hopf bifurcation line divides the equilibrium
parameter plane into three regions, namely, “A”; “B”; and
“C,” where the equilibrium has different characteristics in
different regions. There are only one stable equilibrium point
in “A” and two stable equilibrium points and one unstable
equilibrium point in “B” and three unstable equilibrium
points in “C.”

By fixing the parameter ¢ = 10 and letting parameter y
cross through the three regions (namely, v is the bifurcation
parameter which ranges from 0 to 20), the equilibrium line
is presented in Figure 2, where the solid and the dotted
curves represent the stable and unstable equilibrium points,

. ! .1 .
respectively. “E,”; “E,”; “E;”; “E',” represent equilibrium

Mathematical Problems in Engineering

15 T T T
10 | BP E
‘/ subH
7 A B C
5t ]
0 1 1 1
0 5 10 15 20
4
FIGURE 1: Bifurcation set in y-o plane.
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FIGURE 2: Equilibrium line for o = 10.

points, and “BP” (y = 1) represents pitchfork bifurcation
point, “subH1” and "subH2” (y = 17.59) represent subcritical
Hopf bifurcation and “LPCI” and "LPC2” represent the cor-
responding unstable limit cycle, respectively. From Figure 2,
we obtain the following:

(a) If 0 < y < 1, there is only one stable equilibrium point
for each y; see Figure 3.

(b) If1 < y < 17.59, there are one stable and two unstable
equilibrium points for each y; see Figure 4.

(c) If17.59 < y < 20, there are three unstable equilibrium
points for each y.

Fix the parameter 0 = 10 and let parameter y be the
bifurcation parameter which ranges from 0 to 20. Figure 5
shows the bifurcation diagram which describes the global
dynamic behaviors of the PMSM and the ordinate and the
abscissa represent the motor angular speed and parameter y
respectively. From Figure 5, we obtain the following.

(a) If 0 < y < 1, the trajectory eventually stabilized at

((El » .

(b) If 1 < y < 2.1, the trajectory eventually stabilized at
“E,”.

(c) If 2.1 < y < 5.4, the trajectory eventually stabilized at
“g,”.
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FIGURE 3: Stable equilibrium point for y = 0.5. (a) Phase diagram. (b) Time history.
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FIGURE 4: Multiequilibrium coexistence phenomenon for y = 10.

(d) If 5.4 < y < 15, the trajectory eventually stabilized at
(‘E3)’.

(e) If 15 < y < 20, the trajectory is attracted by the
chaotic attractor.

It should be noted that when parameter (y) is selected
between 13 and 15, the trajectory of the PMSM system is
still asymptotically stable at equilibrium point “E;,” but the
convergence speed is markedly slower than parameter (y)
selected between 5.4 and 13. Before the trajectory is projected
on the Z-y plane, 1000 points are deleted for each value of
parameter (y) to eliminate the effect of initial condition and
get steady-state numerical solution. As the PMSM system has

15

10 |

—10 }

=15

FIGURE 5: Bifurcation diagram of z versus y.

different convergence speed with the change of parameter (y),
the effect of the initial condition is not completely eliminated
between 13 and 15 even through 1000 points are deleted. In
order to explain this phenomenon, parameter (y) is selected
as 14 and the phase diagram and time history are obtained;
see Figure 6. As can be seen, the trajectory is stable at the
equilibrium point finally, but there exists long time transient
process. If more points are deleted before projecting the
trajectory on the Z-y plane, the transient process can be
eliminated.

In order to prove the chaotic motion, parameter (y) is
selected as 18 which falls into the chaotic region (15 < y <
20) and three Lyapunov exponents of the PMSM system are
calculated; see Figure 7(a). As can be seen, the maximum
Lyapunov exponent, labelled as “Le;,” is equal to 0.414 and the
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FIGURE 7: Lyapunov exponents and phase diagram for y = 18. (a) Lyapunov exponents. (b) Phase diagram.

other two Lyapunov exponents are —0.06 and —12.41, respec-
tively. Meanwhile, the trajectory of attractor (see Figure 7(b))
likes “Butterfly” in the phase diagram. So the attractor when
y is equal to 18 is chaotic motion and can be named as double-
scroll chaotic attractor.

It is easy to identify that the PMSM exhibits various
dynamic behaviors in different parameter regions and the
unstable dynamic behavior may occur when the parameter
passes through key values. If there is only one stable equilib-
rium in the parameters regions, the PMSM can work stably,
and if the stable equilibrium point and unstable equilibrium
point are coexistent in the parameters regions, the PMSM
trajectory may be attracted by one of the stable equilibrium
points; meanwhile, chaotic motion may happen, and if there
is no stable equilibrium points in the parameters regions, the
PMSM cannot work stably.

To verify the correctness of the above research, Table 1
lists a set of parameters of PMSM [24], and the multiequilib-
rium coexistence phenomenon (see Figure 8) is obtained by
simulation as the parameters of the PMSM fall in region “B.”

(B) In this part, the dynamic behaviors of the PMSM with
external load, namely, #; = 0, %, = 0, and TL =u + 0,
will be discussed by the bifurcation set and bifurcation line
as the PMSM may not be able to work stably when unstable
equilibrium point appears in the corresponding parameters
regions and the stability of the equilibrium point can be
judged by the bifurcation set and bifurcation line, which is
discussed in (A).

The bifurcation set of the equilibrium point of (11) (see
Figure 9) describes the bifurcation and stability character-
istics of the equilibrium point in u-o plane, where the
parameter y is fixed as 4.738 and the PMSM itself has one
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TABLE 1: Parameter values of the PMSM system model [24].
Parameter Value Unit Parameter Value Unit
L, -5 2
— 1.01 mH J 4.8 x10 Kgm
L,
Vr 0.06784 Nm/A P 4
R, 0.24 o) B 0.01619 N/rad/s
2l —— 3 ]
| 1916
1} i
y 0 4

FIGURE 8: Multiequilibrium coexistence phenomenon for y = 4.378
and o = 1.419.

4
B
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C
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w
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A
1 ]
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FIGURE 9: Bifurcation set in u-o plane.

unstable equilibrium point as Figure 1 shows. “BT” represents
the Bogdanov-Takens bifurcation of the equilibrium. The
fold bifurcation line, labelled as “LP,” together with subcrit-
ical Hopf bifurcation line, labelled as “subH,” divided the
equilibrium parameter plane into three regions, namely, “A”
to “C.” There is only one stable equilibrium point in “A,”
and the characteristics of this stable equilibrium point are
not changed and two unstable equilibrium points appear
when the parameters passes fold bifurcation line from “A”
to “B.” There are one stable and two unstable equilibrium
points in “B.” When the parameters pass through subcritical
Hopf bifurcation line from “B” to “C,” one of the unstable
equilibrium points becomes stable; namely, there are two
stable equilibriums and one unstable equilibrium in “C.”

FIGURE 10: Bifurcation line in u-y plane.

Obviously, the PMSM can work stably in “A” and may lose
its stability in other regions.

For the given parameters in Table 1, the bifurcation line
of PMSM with external load is drawn in Figure 10, which
shows that the PMSM has three equilibrium points, two stable
and one unstable, in 0 < u < 1.916 and only one stable
equilibrium point in u > 1.916. When the load u passes the
fold bifurcation point, the “Jump” behavior, which is unstable,
may happen. The PMSM can still work stably when u > 1.916
even though it has unstable inherent parameters.

5. Conclusion

The complicated dynamic behaviors of the PMSM with/
without external load are studied. The stability conditions
and bifurcation conditions of equilibrium points have been
derived by using Routh-Hurwitz stability criterion and bifur-
cation theory, respectively. The characteristics of equilibrium
points are analyzed by bifurcation set, and pitchfork bifurca-
tion, fold bifurcation, and subcritical Hopf bifurcation lines
are obtained by numerical simulation. The global dynamic
behaviors of the PMSM are studied by using bifurcation dia-
gram. It is shown that if there is only one stable equilibrium
in the parameters regions, the PMSM can work stably, and
if multiequilibrium coexistence phenomenon appears in the
parameters regions, the trajectory may be attracted by one of
the stable equilibriums; meanwhile, the PMSM may not be
able to work stably as chaotic motion happens in this region,
and if there is no stable equilibrium in the parameters regions,
the PMSM can not work stably. It is also shown that the
PMSM can still work stably in some load regions even though



it has unstable parameters. To ensure the PMSMs work stably,
the inherent parameters should be designed in the region
which has only one stable equilibrium.
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