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Contingent convertible bonds (CoCos) are typical form of contingent capital that converts into equity of issuing firmorwrites down
if a prespecified trigger occurs. This paper proposes a general Lévy framework for pricing CoCos. The Lévy framework indicates
that the difficulty in giving closed-form expression for CoCos price is the possible introduction of the Lévy process whose first-
passage time problem has not been solved. According to characteristics of new Lévy measure after the measure transform, three
specific Lévy models driven by drifted Brownian motion, spectrally negative Lévy process, and double exponential jump diffusion
process are proposed to give the solution keeping the form of the driving process unchanged under the measure transform. These
three Lévy models provide closed-form expressions for CoCos price while the latter two possess them up to Laplace transform,
whose pricing results are given by combining with numerical Fourier inversion and Laplace inversion. Numerical results show that
negative jumps have large influence on CoCos pricing and the Black-Scholes model would overestimate CoCos price by simply
compressing jumps information into volatility while the other two models would give more accurate CoCos price by taking jump
risk into consideration.

1. Introduction

Contingent convertible bonds (CoCos) are typical form of
contingent capital that converts into equity of issuing firm
or writes down if a prespecified trigger occurs. This financial
product can timely and efficiently improve capital structure
of the issuing firm through transforming debt burden into
equity capital on balance sheet when the issuing firm faces
financial distress. In the financial crisis of 2007–2009, many
banks in distress are rescued by their governmentswith lots of
taxpayers’ money, which causes loud public criticism. To pre-
vent government bailouts in the future, the regulatory insti-
tutions in many countries propose that market means should
be employed to solve too-big-to-fail problem and advocate
banks to establish emergency mechanism to improve their
loss absorption capacities. Since CoCos have strong capacity
of loss absorption, issuing CoCos becomes a good scheme
for establishing emergency mechanism of banks. For the
whole financial system, CoCos can play the role of capital
buffer to enhance stability of the whole financial system.
Basel III recommends CoCos as an important instrument of

banks capital management and emphasizes that banks should
hold adequate CoCos reserve to cope with possible crisis.
To satisfy the requirement of risk management in Basel III,
many banks have issued CoCos. Since Lloyds Banking Group
first issued CoCos in size of 7 bn GBP in December 2009,
many banks, including Rabobank, Credit Suisse, Bank of
Cyprus, UBS, and Macquarie, have issued CoCos. According
to the investigation of IMF, America, England, Canada, and
Netherland all have the intention to implement CoCos into
the regulation system. The S&P [1] estimates that the overall
potential issuance of CoCoswould amount to at least 1 trillion
dollars.

Flannery (2003) [2] proposes early form of CoCos called
reserve convertible debentures (RCD) to address too-big-
to-fail problem. Flannery (2010) [3] updates his proposal
and renames it as contingent capital certificates. Squam Lake
Working Group (2009) [4] proposes CoCos with a dual trig-
ger based on regulatory and accounting values. McDonald
(2013) [5] also proposes a dual trigger while the trigger is
based onmarket values including the issuing firm’s stock price
and a financial institutions index.These two designs of CoCos
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with a dual trigger can guarantee that issuing firm is only
protected during financial crisis. The trigger mechanism is
the key design for CoCos. So far accounting trigger, market
trigger, regulatory trigger, and their combinationmultivariate
trigger have been proposed. Most issued CoCos have an
accounting trigger and some have an additional regulatory
trigger; there are some arguments against accounting trig-
gers involving accounting manipulation and discontinuous
monitoring. Market trigger is advocated to use since mar-
ket information is updated continuously and transparently.
Thoughmarket trigger could also potentially be manipulated
to trigger conversion, the market manipulations could be
more easily and timely observed and intervened by regulation
institutions. However, hedging equity exposure by taking
short position in the underlying shares would result in the
death-spiral effect. In addition, Sundaresan and Wang (2015)
[6] point out that CoCos with a simple market trigger would
lead to multiplicity or absence of an equilibrium. Calomiris
and Herring (2013) [7] suggest using a market trigger based
on a 90-day moving average of the ratio of the market value
of equity to the sum of the market value of equity and the
face value of debt and prove that this design could preserve
a unique equilibrium. Pennacchi et al. (2014) [8] propose to
add buy-back clause for the converted shares into CoCos to
avoid problems of CoCos with market-based triggers such
as market manipulation. Corcuera et al. (2014) [9] analyze
Coupon Cancellable CoCos where coupons can be cancelled
due to their own triggers to alleviate the death-spiral effect. In
trigger mechanism, there are different conversion ways and
previous designs of CoCos are all-at-once conversion except
Flannery’s (2003) [2] original proposal. Glasserman and
Nouri (2012) [10] analyze the partial and ongoing conversion
of CoCos with an accounting trigger. Different designs of
CoCos take their own advantages, but the designs are far from
perfect and the arguments about the design of CoCos are still
going on.

The design of CoCos leads to the work on valuation.
The main proposed CoCos pricing models include intensity
model and first-passage time model. The intensity model is
also named as credit derivatives model in some papers and
the first-passage time model can be regarded as consisting of
structural model and equity derivatives model since they all
use barrier approach based on first-passage time distribution.
The intensity model has been studied by De Spiegeleer and
Schoutens (2012) [11] and Cheridito and Xu (2015) [12].
However, most studies concentrate on the first-passage time
model. In the first-passage timemodel, the trigger process can
be either an accounting ratio or amarket price. Several papers
employ structural models to obtain CoCos price, but their
focuses are more on CoCos role and behaviours. Pennacchi
(2010) [13] investigates the influence of contractual terms
and different risk source of issuing firm on the value of
CoCos by simulation in a jump diffusion structural model.
Koziol and Lawrenz (2012) [14] show that CoCos would
distort risk taking incentives and possibly create negative
externalities under some conditions. Berg and Kaserer (2015)
[15] show that CoCos would exacerbate risk taking incentives
of shareholders and debt overhang problem. Hilscher and
Raviv (2014) [16] point out that banks issuing CoCos would

have a lower default probability and appropriate design of
CoCos could entirely eliminate risk-shifting incentives of
shareholders. Himmelberg et al. (2014) [17] show that CoCos
can, if properly designed, make banks have an incentive to
pursue conservative capital structures to avoid dilution risk
from forced conversion andmitigate debt overhang problem.
Albul et al. (2015) [18] use structural model to determine the
CoCos role in optimal capital structure of issuing firm in an
infinite maturity setting and analyze CoCos behaviours in
different scenes. Metzler and Reesor (2015) [19] indicate that
terms of conversion fundamentally alter the nature of CoCos
through Merton-type structural model. Some more theoret-
ical works study equity derivatives models and Wilkens and
Bethke (2014) [20] show that the equity derivatives model is
the most practical model for pricing and risk management
of CoCos by comparing the credit derivatives model, the
structural model, and the equity derivatives model through
empirical study based upon largely fitting market price. De
Spiegeleer and Schoutens (2012) [11] approximate the event
breaching noncontinuously observable accounting trigger
level by an event where continuously observable stock price
process falls under an implied stock price barrier and they
model the issuing firm’s stock price process as a geometric
Brownian motion and derive closed-form expression for
CoCos price. Cheridito and Xu (2015) [12] develop a gen-
eral continuous model and obtain CoCos price by solving
parabolic partial differential equation with Dirichlet bound-
ary conditions. These equity derivatives models assume that
the trigger process moves in a continuous manner, which
amounts to neglecting the abrupt movements in which
most of the risk is concentrated. The discontinuous models
describing jump risk from exogenous shock worth studying
andDe Spiegeleer and Schoutens (2012) [11] also suggest their
Black-Scholes model to be extended to the model driven by
Lévy process to incorporate jumps and heavy tails to improve
accuracy for CoCos pricing. Corcuera et al. (2013) [21] pro-
pose the model driven by a family of Lévy processes called𝛽-process and exploit theWeiner-Hopf Monte Carlo method
to give the CoCos price. Corcuera and Valdivia (2016) [22]
propose one-sidedCGMYLévy process tomodel equity price
dynamics and give the CoCos price by combining the closed-
form expression for CoCos price up to Laplace transform
with numerical Fourier inversion. The present paper follows
these works and proposes three first-passage time models
driven by drifted Brownian motion, spectrally negative Lévy
process, and double exponential jump diffusion process to
price CoCos. Here the equity derivatives models are called
the first-passage time models since their results are easily
extended to structural models to study CoCos role and beha-
viours. Since pricing CoCos is our main concern and equity
derivatives model has proved to be more practical, only the
equity derivativesmodels driven by driftedBrownianmotion,
spectrally negative Lévy process, and double exponential
jump diffusion process will be discussed. To make the results
comprehensible in amore general way, these equity derivative
models would be called first-passage time models in the
whole paper. These models provide closed-form expressions
while the latter two possess them up to Laplace transforms,
whose pricing results are given by combining with numerical
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Fourier inversion and Laplace inversion. Though the model
driven by drifted Brownian motion has been given by De
Spiegeleer and Schoutens (2012) [11], the result given under
the general Lévy framework can provide different insight and
it would become more convenient to compare the Black-
Scholes model with the other two models under the general
Lévy framework. The model driven by one-sided CGMY
Lévy process is a specific and practical case of the model
driven by spectrally negative Lévy process. Since the design
and function of CoCos determines the financial products
are very sensitive to extreme events, the models driven by
spectrally negative Lévy process and double exponential
jump diffusion process are natural improvement in contrast
with the Black-Scholes models by incorporating jumps from
these extreme events.The closed formexpressionsmake these
models able to accomplish an accurate and fast pricing of
CoCos.

The present paper first develops a general Lévy frame-
work for the first-passage time model to price CoCos with
all-at-once conversion. The Lévy framework shows hybrid
nature of CoCos and reduces the pricing problem to the
first-passage time problem of two different Lévy processes,
in which one is the measure transform result of another one
where the measure transform is fixed and specific. Since rare
forms of Lévy process have solved first-passage time problem,
these two related Lévy processes under the Lévy framework
should be in these rare forms of Lévy process so that closed-
form expressions forCoCos price could be provided. To avoid
appearance of Lévy process whose first-passage time problem
has not been solved, one simple solution is to keep this form
of Lévy process unchanged under themeasure transform and
moreover this form of Lévy process should have solved first-
passage time problem. Taking great uncertainty about form
change under the measure transform into consideration, this
solution is much simpler than another solution that the
form changes under the measure transform while requiring
that both of these two forms of Lévy process have solved
first-passage time problem. According to characteristics of
new Lévy measure after the measure transform, this paper
provides three specific Lévy models keeping the form of the
driving Lévy process unchanged under the measure trans-
form. Numerical results show that themodels driven by spec-
trally negative Lévy process and double exponential jump
diffusion process give more accurate CoCos price by taking
jumps phenomenon in financial market into consideration.

The rest of this paper is organized as follows. Section 2
will show the general Lévy framework of the first-passage
timemodel. Section 3 will discuss themotivation and specific
expressions for these three Lévymodels. Section 4will discuss
related numerical results.

2. General Lévy Framework for CoCos Pricing

We consider a financial institution issuing CoCos with an
accounting trigger and all-at-once conversion. We follow the
same assumption as in De Spiegeleer and Schoutens (2012)
[11] and Corcuera et al. (2013) [21] and assume that the non-
continuously observable accounting trigger is breached when

the continuous observable stock price process falls under an
implied stock price barrier, which changes the trigger process
from accounting index process into stock price process and
transforms pricing of CoCos with an accounting trigger into
pricing of CoCos with a simple market trigger. Then the
trigger process becomes the stock price process of issuing
firm.The trigger process is assumed to follow the exponential
Lévy process under risk neutral probability measure 𝑄 as

𝑆𝑡 = 𝑆0𝑒𝑋𝑡 , 𝑡 ≥ 0, (1)

where 𝑆0 is the initial value and 𝑋𝑡 is a general Lévy process.
According to the Lévy-Itô decomposition, 𝑋𝑡 can be written
in a general form:

𝑋𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡 + ∫𝑡
0
∫
|𝑥|≥1

𝑥𝑁 (d𝑠, d𝑥)
+ ∫𝑡

0
∫
|𝑥|<1

𝑥 (𝑁 (d𝑠, d𝑥) − V (d𝑥) d𝑠) ,
(2)

where𝜇 ∈ R,𝜎2 ≥ 0,𝑊 is a standardBrownianmotion,𝑁 is a
Poisson randommeasure on ([0,∞)×R,B([0,∞))⊗B(R)),
and V is a measure on R \ {0} with ∫∞

−∞
(1 ∧ 𝑥2)V(d𝑥) < ∞.(𝜇, 𝜎, V(d𝑥)) fully determining the Lévy process𝑋𝑡 is termed

as Lévy triplet and the measure V is called the Lévy measure
of 𝑋𝑡. If the Lévy process 𝑋𝑡 satisfies ∫|𝑥|<1 |𝑥|V(d𝑥) < ∞,

∫𝑡
0
∫
|𝑥|<1

𝑥𝑁(d𝑠, d𝑥) < ∞ and 𝜇 and −∫
|𝑥|<1

𝑥V(d𝑥) can be
combined as 𝑑 = 𝜇 − ∫

|𝑥|<1
𝑥V(d𝑥). In this case the Lévy

process𝑋𝑡 can be expressed as

𝑋𝑡 = 𝑑𝑡 + 𝜎𝑊𝑡 + ∫𝑡
0
∫
R

𝑥𝑁 (d𝑠, d𝑥) . (3)

For more about Lévy process one can refer to Tankov (2003)
[23], Kyprianou (2006) [24], and Applebaum (2009) [25].

Since (𝑒−𝑟𝑡𝑆𝑡)𝑡≥0 is a martingale under the probability
measure𝑄, the additional restrictions on the Lévy triplet can
be given by Itô formula for semimartingales or Proposition3.18 in Tankov (2003) [23] as

∫
|𝑥|≥1

𝑒𝑥V (d𝑥) < +∞, (4)

𝜇 = 𝑟 − 12𝜎2
− ∫∞

−∞
(𝑒𝑦 − 1 − 𝑦𝐼|𝑦|≤1) V (d𝑦) .

(5)

The implied stock price barrier is assumed as 𝑏 where 𝑏 <𝑆0 and the accounting trigger is breached when the trigger
process 𝑆𝑡 crosses the boundary 𝑏. The trigger event occurs
at the first-passage time 𝜏𝑏 where 𝑋𝑡 crosses the boundary
log(𝑏/𝑆0) and 𝜏𝑏 can be expressed as 𝜏𝑏 = inf{𝑡: 𝑋𝑡 ≤
log(𝑏/𝑆0)}. If triggered, the CoCos per share convert into𝐶 shares of equity. Denote the maturity as 𝑇, the principal
payment at maturity as 𝐵, the stream of fixed coupon
payments at times 0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 = 𝑇 as 𝑐𝑖, and the riskless
interest rate as 𝑟. Assuming that there are no dividends after
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the conversion time 𝜏𝑏, receiving 𝐶𝑆𝜏𝑏 at time 𝜏𝑏 is equivalent
to receiving𝐶𝑆𝑇 at time𝑇.Then the discounted payoffs of the
components of the CoCos can be given as follows:

(i) principal payment at maturity:

𝑒−𝑟𝑇𝐵𝐼𝜏𝑏>𝑇; (6)

(ii) coupon payment:

𝑚∑
𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖𝐼𝜏𝑏>𝑡𝑖 ; (7)

(iii) equity value through conversion:

𝐶𝑒−𝑟𝑇𝑆𝑇𝐼𝜏𝑏≤𝑇. (8)

The value of CoCos can be expressed as

𝑉
= 𝐸𝑄(𝑒−𝑟𝑇𝐵𝐼𝜏𝑏>𝑇 +

𝑚∑
𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖𝐼𝜏𝑏>𝑡𝑖 + 𝐶𝑒−𝑟𝑇𝑆𝑇𝐼𝜏𝑏≤𝑇)

= 𝑒−𝑟𝑇𝐵𝑄 (𝜏𝑏 > 𝑇) + 𝑚∑
𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖𝑄 (𝜏𝑏 > 𝑡𝑖)
+ 𝐶𝑒−𝑟𝑇𝐸𝑄 (𝑆𝑇𝐼𝜏𝑏≤𝑇) .

(9)

Let 𝜓(𝑥, 𝑡; 𝜇, 𝜎, V) = 𝑄(min0≤𝑠≤𝑡𝑋(𝑠) ≤ 𝑥). Then

𝑉 = 𝑒−𝑟𝑇𝐵𝑄 (𝜏𝑏 > 𝑇) + 𝑚∑
𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖𝑄 (𝜏𝑏 > 𝑡𝑖)
+ 𝐶𝑒−𝑟𝑇𝐸𝑄 (𝑆𝑇𝐼𝜏𝑏≤𝑇)

= 𝑒−𝑟𝑇𝐵(1 − 𝜓(log 𝑏𝑆0 , 𝑇; 𝜇, 𝜎, V))
+ 𝑚∑

𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖 (1 − 𝜓(log 𝑏𝑆0 , 𝑡𝑖; 𝜇, 𝜎, V))
+ 𝐶𝑒−𝑟𝑇𝐸𝑄 (𝑆𝑇𝐼𝜏𝑏≤𝑇) = 𝐴1 + 𝐴2 + 𝐴3,

(10)

where 𝐴1, 𝐴2, 𝐴3 represent first, second, and third items,
respectively.

Define new probability measure 𝑄∗ as d𝑄∗/d𝑄 =𝑒−𝑟𝑇(𝑆𝑇/𝑆0) = 𝑒𝑋𝑇−𝑟𝑇. According to Proposition 9.8 in
Tankov (2003) [23] about the general result of equivalence of
measures for Lévy processes,𝑋𝑡 is a new Lévy process under
probability measure 𝑄∗. The measure transform mentioned
in the whole paper refers in particular to this measure
transform. Denote𝑋𝑡 under 𝑄∗ as

𝑋𝑡 = 𝜇∗𝑡 + 𝜎∗𝑊∗
𝑡 + ∫𝑡

0
∫
|𝑥|≥1

𝑥𝑁∗ (d𝑠, d𝑥)
+ ∫𝑡

0
∫
|𝑥|<1

𝑥 (𝑁∗ (d𝑠, d𝑥) − V∗ (d𝑥) d𝑠) .
(11)

Then fromProposition 9.8 in Tankov (2003) [23] the elements
of new Lévy triplet can be given as

𝜇∗ = 𝜇 + 𝜎2 + ∫1
−1
𝑥 (𝑒𝑥 − 1) V (d𝑥) ,

𝜎∗ = 𝜎,
V∗ (d𝑥) = 𝑒𝑥V (d𝑥) .

(12)

If ∫
|𝑥|<1

|𝑥|V∗(d𝑥) < ∞, denote 𝑑∗ = 𝜇∗ − ∫
|𝑥|<1

𝑥V∗(d𝑥) and
the relation expression between 𝜇∗ and 𝜇 can be simplified as

𝑑∗ = 𝑑 + 𝜎2. (13)

Then

𝐴3 = 𝐶𝑒−𝑟𝑇𝐸𝑄 (𝑆𝑇𝐼𝜏𝑏≤𝑇)
= 𝐶𝑒−𝑟𝑇𝐸𝑄∗ (𝑆𝑇𝐼𝜏𝑏≤𝑇𝑒𝑟𝑇 𝑆0𝑆𝑇) = 𝐶𝑆0𝑄

∗ (𝜏𝑏 ≤ 𝑇)
= 𝐶𝑆0𝜓(log 𝑏𝑆0 , 𝑇; 𝜇

∗, 𝜎∗, V∗) .
(14)

The value of CoCos can be finally given as

𝑉 = 𝑒−𝑟𝑇𝐵(1 − 𝜓(log 𝑏𝑆0 , 𝑇; 𝜇, 𝜎, V))
+ 𝑚∑

𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖 (1 − 𝜓(log 𝑏𝑆0 , 𝑡𝑖; 𝜇, 𝜎, V))
+ 𝐶𝑆0𝜓(log 𝑏𝑆0 , 𝑇; 𝜇

∗, 𝜎∗, V∗) .
(15)

Equation (15) reflects hybrid nature of CoCos. If 𝐴1 +𝐴2

is termed as debt part and𝐴3 is termed as equity part in (10),
the trigger level 𝑏 has a favorable effect on equity part but an
adverse effect on debt part. The CoCos pricing result is the
trade-off between these two effects.

Equation (15) also shows that the CoCos pricing problem
is the first-passage time problem of two different Lévy
processes (2) and (11). The access to giving closed-form
expression for CoCos price is to make the Lévy processes (2)
and (11) have closed-form expressions for their first-passage
time distributions. Since rare forms of Lévy process have
solved first-passage time problem, it is not easy to give closed-
form expression for CoCos price if these two Lévy processes
have different forms. Taking the connection between these
two Lévy processes into consideration, one simple solution is
to keep this form of Lévy process unchanged under the mea-
sure transform while requiring that this from of Lévy process
should have solved the first-passage time problem. According
to the characteristics of new Lévy measure after the measure
transform, we will propose three Lévy models whose driving
Lévy processes keep the form unchanged under the measure
transform and have closed-form expression for the first-
passage time distribution while two of them possess closed-
form expressions up to Laplace transform.The specific results
will be discussed in Section 3.
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Remark 1. The model covers the pricing of write-down
CoCos. If conversion into 𝐶 shares of equity is replaced by
payment of 𝐶 units of currency, it is convenient to obtain the
CoCos price by replacing𝐶𝑒−𝑟𝑇𝑆𝑇𝐼𝜏𝑏≤𝑇 by𝐶𝑒−𝑟𝑇𝐼𝜏𝑏≤𝑇 without
considering themeasure transform. If theCoCos are assumed
to have a continuous coupon rate of 𝑐 as in Glasserman and
Nouri (2012) [10] for simple treatment, the coupon payment
will turn into ∫𝑇

0
𝑐𝐵𝑒−𝑟𝑡𝐼𝜏𝑏>𝑡d𝑡. Then 𝐸𝑄(∫𝑇0 𝑐𝐵𝑒−𝑟𝑡𝐼𝜏𝑏>𝑡d𝑡) =∫𝑇

0
𝑐𝐵𝑒−𝑟𝑡𝑄(𝜏𝑏 > 𝑡)d𝑡. The easy evaluation of 𝑐𝐵𝑒−𝑟𝑡𝑄(𝜏𝑏 > 𝑡)

makes the time integral ∫𝑇
0
𝑐𝐵𝑒−𝑟𝑡𝑄(𝜏𝑏 > 𝑡)d𝑡 can be easily

and accurately evaluated by numerical integration formulas,
such as Newton-Cotes formula.

Remark 2. The price of CoCos whose trigger process is
described by exponential Lévy process can be evaluated
through some other numerical techniques such as Monte
Carlo simulation and solving integrodifferential equations.
However, the Monte Carlo simulation is biased and slow.
When the Monte Carlo simulation is applied to estimate the
distribution of first-passage time of Lévy process, the sys-
tematic discretization bias resulting from approximating a
continuous time process by a discrete time process in sim-
ulation is serious due to the presence of the boundary and
jumps, both theoretically and numerically. Kou and Wang
(2003) [26] have discussed the situation about double expo-
nential jump diffusion process. Comparing to get the solution
from solving integrodifferential equations, the probabilistic
approach given in this paper can provide more insights into
the CoCos pricing problem.

3. Discussion and Result

To keep the form of Lévy process unchanged under the
measure transform, only the new Lévy measure V∗ in Lévy
triplet (𝜇∗, 𝜎∗, V∗) needs be considered. Observing the Lévy
measure V∗(d𝑥) = 𝑒𝑥V(d𝑥), the simplest case to make (2) and
(11) have the same form is V = 0. In this case, both (2) and
(11) becomedriftedBrownianmotion. Since driftedBrownian
motion has closed-form expression for first-passage time
distribution, the closed-form expression for CoCos price can
be provided through (15). Based on sample space of Lévy
measure unchanged under the measure transform, a large
family of Lévy processes called spectrally one-side Lévy
process can come to mind. Assuming that V ̸= 0 and 𝜎 ̸= 0,
spectrally one-side Lévy process can be defined as V(0,∞) =0 or V(−∞, 0) = 0. After the measure transform, V∗ ̸= 0,𝜎∗ ̸= 0 and V∗ still satisfies V∗(0,∞) = 0 or V∗(−∞, 0) = 0.
In this case, both (2) and (11) become spectrally one-side
Lévy process. The closed-form expression for Laplace trans-
form of the first-passage time distribution for spectrally one-
side Lévy process has been obtained by Rogers (2000) [27].
Then the CoCos price can be given by combining the result
with Laplace inverse algorithm and (15). Since downward risk
of trigger process is more worthy to be considered in CoCos
pricing, only the spectrally negative Lévy process will be
discussed in this case. Since V(R) < ∞ can lead to V∗(R) <∞, the Lévy process in jump diffusion form with two-sided

jumps is considered and the jump diffusion form keeps
unchanged under the measure transform. Since not all the
jump diffusion processes solve the first-passage time prob-
lems, the jump diffusion form should be more specific and
the scope of this form should be smaller. Since specification of
jump form could reduce the scope of jumpdiffusion form and
the only difference between Lévy measure V and V∗ is a mul-
tiplier in the exponential form, jump distribution of the Lévy
process in jumpdiffusion form should be limited to the family
of exponential type distribution to possibly make (2) and (11)
have the same form when the form becomes more specific. A
simple case is the double exponential jump diffusion process
whose first-passage time problemhas been solved byKou and
Wang (2003) [26] by means of the conditional memoryless
of exponential distribution. The property keeping the double
exponential jump diffusion form unchanged under the mea-
sure transform will be proved below.Then the corresponding
CoCos price can also be given through (15). The detailed
results of these three cases will be discussed below.

3.1. Drifted Brownian Motion. Let V = 0; then𝑋𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡,
whose first-passage time distribution is given as

𝑃 (𝛾𝑥 ≤ 𝑡) = 𝜙(𝑥 − 𝜇𝑡𝜎√𝑡 ) + 𝑒2𝑥𝜇/𝜎
2𝜙(𝑥 + 𝜇𝑡𝜎√𝑡 ) , (16)

where 𝜙 is the cumulative function of standard normal
distribution and 𝛾𝑥 = inf{𝑡: 𝑋𝑡 ≤ 𝑥}. Since V = 0 leads to V∗ =0, (11) is still a drifted Brownianmotion.The CoCos price has
closed-form expression summarized as in Proposition 3.

Proposition 3. The first-passage time model driven by drifted
Brownian motion gives CoCos price as

𝑉 = 𝑒−𝑟𝑇𝐵(1 − 𝜓(log 𝑏𝑆0 , 𝑇; 𝜇, 𝜎, V))
+ 𝑚∑

𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖 (1 − 𝜓(log 𝑏𝑆0 , 𝑡𝑖; 𝜇, 𝜎, V))
+ 𝐶𝑆0𝜓(log 𝑏𝑆0 , 𝑇; 𝜇

∗, 𝜎∗, V∗) ,
(17)

where 𝑏 is a prespecified trigger level, 𝜇∗ = 𝜇+𝜎2, 𝜎∗ = 𝜎, and
𝜓(𝑥, 𝑡; 𝜇, 𝜎, V) = 𝜙((𝑥 − 𝜇𝑡)/𝜎√𝑡) + 𝑒2𝑥𝜇/𝜎2𝜙((𝑥 + 𝜇𝑡)/𝜎√𝑡)
where 𝜙 is the cumulative function of standard normal dis-
tribution.

Remark 4. Though this result has been given byDe Spiegeleer
and Schoutens (2012) [11], this result given under the Lévy
framework can provide different insight and more impor-
tantly the expression in Proposition 3makes themodels com-
parison under the Lévy framework become more intuitive
and convenient.

3.2. Spectrally Negative Lévy Process. Let V ̸= 0, 𝜎 ̸= 0,
and V(0,∞) = 0; then 𝑋𝑡 becomes spectrally negative Lévy
process. Since these conditions lead to V∗ ̸= 0, 𝜎∗ ̸= 0, and
V∗(0,∞) = 0, (11) is still a spectrally negative Lévy process.
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The closed-form expression for Laplace transform of first-
passage time distribution of spectrally negative Lévy process
has been given by Rogers (2000) [27] through Wiener-Hopf
factorisation. Rogers (2000) [27] gives the first-passage time
distribution through approximating the standard Fourier
inversion transform, which exploits suitable integration con-
tour change to sidestep the difficulty in directly solving the
equation of Laplace exponent. The related result is given
below. For Details and proofs of the following result one can
refer to Rogers (2000) [27].

Let 𝛾𝑥 = inf{𝑡: 𝑋𝑡 ≤ 𝑥}, 𝑓(𝑡, 𝑥) = 𝑃(𝛾−𝑥 > 𝑡),𝑋𝑡 = sup𝑠≤𝑡𝑋𝑠, and let 𝑒𝜃 be an exponential distribution with
parameter 𝜃. Based on the exponential lawof𝑋𝑒𝜃

andWiener-
Hopf factorisation, the Laplace transform of 𝑓(𝑡, 𝑥) can be
expressed as

𝑓̃ (𝜃, 𝑧) = ∫∞
0
∫∞
0
𝑒−𝜃𝑡−𝑧𝑥𝑓 (𝑡, 𝑥) d𝑡 d𝑥

= 𝛽∗ (𝜃) − 𝑧(𝜃 − 𝜑 (𝑧)) 𝛽∗ (𝜃) 𝑧 ,
(18)

where 𝜑(𝑧) is Laplace exponent of spectrally negative Lévy
process characterized by 𝐸(𝑒𝑧𝑋𝑡) = 𝑒𝑡𝜑(𝑧) and represented as

𝜑 (𝑧) = 𝜇𝑧 + 12𝜎2𝑧2

+ ∫0
−∞

{𝑒𝑧𝑥 − 1 − 𝑧𝑥𝐼|𝑥|≤1} V (d𝑥) ,
(19)

𝛽∗(𝜃) a solution to 𝜑(𝛽) = 𝜃. Since 𝜎 ̸= 0, the difficulty
in directly evaluating 𝛽∗(𝜃) when the numerical Fourier
inversion is implemented to obtain 𝑓(𝑡, 𝑥) can be overcome
by replacing 𝛽∗(𝜃) by 𝜑0−1(𝜃) where 𝜑0(𝑧) = 𝜇𝑧 + (1/2)𝜎2𝑧2
and 𝜑0(𝑧) approximates 𝜑(𝑧) and has available closed-form
inverse function. This replacement can be through the sub-
stitution of suitable integration contour in Fourier inversion.
The algorithm to evaluate the first-passage time distribution
of spectrally negative Lévy process can be summarized as the
following lemma.

Lemma 5. For fixed 𝑡 and 𝑥 and given the parameter set(𝐴1, 𝐴2, 𝑙1, 𝑙2, 𝑁), define 𝛾𝑥 = inf{𝑡: 𝑋𝑡 ≤ 𝑥}. 𝑃(𝛾𝑥 ≤ 𝑡) can be
given as

𝑃 (𝛾𝑥 ≤ 𝑡) = 1 − 𝑓 (𝑡, −𝑥) , (20)

where

𝑓 (𝑡, 𝑥) ≈ 𝑀∑
𝑘=0

2−𝑀(𝑀𝑘 )𝑆𝑁+𝑘, (21)

where

𝑆𝑁 = ℎ1ℎ24𝜋2
𝑁∑

𝑛=−𝑁

𝑁∑
𝑚=−𝑁

𝑔󸀠 (𝑎1 + 𝑖𝑛ℎ1)
⋅ 𝑓̃ (𝑔 (𝑎1 + 𝑖𝑛ℎ1) , 𝑎2 + 𝑖𝑚ℎ2)
× exp {𝑡𝑔 (𝑎1 + 𝑖𝑛ℎ1) + 𝑥 (𝑎2 + 𝑖𝑚ℎ2)} ,

(22)

𝑎1 = 𝐴1/(2𝑡𝑙1), 𝑎2 = 𝐴2/(2𝑥𝑙2), ℎ1 = 𝜋/(𝑡𝑙1), ℎ2 = 𝜋/(𝑥𝑙2),𝑔 = 𝜑 ∘ 𝜑−10 , and

𝑓̃ (𝑔 (𝜍) , 𝑧) = 𝜑−10 (𝜍) − 𝑧
(𝑔 (𝜍) − 𝜑 (𝑧)) 𝜑−10 (𝜍) 𝑧 , (23)

where 𝜑(𝑧) = 𝜇𝑧 + (1/2)𝜎2𝑧2 + ∫0
−∞
{𝑒𝑧𝑥 − 1 − 𝑧𝑥𝐼|𝑥|≤1}V(d𝑥),

𝜑−10 (𝑧) = (√𝜇2 + 2𝜎2𝑧 − 𝜇)/𝜎2.
Here 𝑙1 and 𝑙2 are positive integers, and 𝐴1 and 𝐴2 are

positive reals chosen large enough to control the aliasing
error.They are suggested to take𝐴1 = 𝐴2 = 22 and 𝑙1 = 𝑙2 = 1
to give satisfactory results. For further details one can refer
to Rogers (2000) [27] and the references therein. Given the
expression to evaluate the first-passage time distribution of
spectrally negative Lévy process, the expression to evaluate
CoCos price can be given through (15) as in Proposition 6.

Proposition 6. The first-passage time model driven by spec-
trally negative Lévy Process gives CoCos price as

𝑉 = 𝑒−𝑟𝑇𝐵(1 − 𝜓(log 𝑏𝑆0 , 𝑇; 𝜇, 𝜎, V))
+ 𝑚∑

𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖 (1 − 𝜓(log 𝑏𝑆0 , 𝑡𝑖; 𝜇, 𝜎, V))
+ 𝐶𝑆0𝜓(log 𝑏𝑆0 , 𝑇; 𝜇

∗, 𝜎∗, V∗) ,
(24)

where 𝜓(𝑥, 𝑡; 𝜇, 𝜎, V) = 1 − 𝑓(𝑡, −𝑥) and 𝑏 is a prespecified
trigger level:

𝜇∗ = 𝜇 + 𝜎2 + ∫0
−1
𝑥 (𝑒𝑥 − 1) V (d𝑥) ,

𝜎∗ = 𝜎,
V∗ (d𝑥) = 𝑒𝑥V (d𝑥) ,

(25)

𝑓 (𝑡, 𝑥) ≈ 𝑀∑
𝑘=0

2−𝑀(𝑀𝑘 )𝑆𝑁+𝑘 (26)

where 𝑆𝑁 is the same notation as in Lemma 5.

Spectrally negative Lévy process is a large family of Lévy
processes including various jump forms. To evaluate CoCos
price through Proposition 6, the jump form of spectrally
negative Lévy process need not keep unchanged under the
measure transform. Two simple examples are given below.
The jump form in Example 7 does not change under the
measure transform while the jump form in Example 8
changes. Both of them can evaluate CoCos price through
Proposition 6.

Example 7. This example uses jumps that have an exponential
distribution with parameter 𝜂, arriving at rate 𝜆. The Laplace
exponent can be expressed as

𝜑 (𝑧) = (𝜇 + 𝜆(1 − 𝑒−𝜂𝜂 − 𝑒−𝜂))𝑧 + 12𝜎2𝑧2 − 𝜆𝑧𝜂 + 𝑧 . (27)
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After the measure transform, the jumps have an exponential
distribution with density function 𝐹∗(d𝑥) = (𝜂 + 1)𝑒(𝜂+1)𝑥,
arriving at rate 𝜆∗ = 𝜆𝜂/(𝜂+1) under the probabilitymeasure𝑄∗. The jump distribution is still an exponential distribution
after the measure transform. The Laplace exponent can be
expressed as

𝜑∗ (𝑧) = (𝜇 + 𝜎2 + 𝜆(1 − 𝑒−𝜂𝜂 − 𝑒−𝜂))𝑧 + 12𝜎2𝑧2

− 𝜆𝜂𝑧(𝜂 + 1) (𝜂 + 𝑧 + 1) .
(28)

The CoCos price can be evaluated through Proposition 6.

Example 8. The jumps of spectrally negative Lévy process are
assumed to be uniformly distributed on the interval [−𝑐, 0],
where 𝑐 ≥ 1, arriving at rate 𝜆. The Laplace exponent can be
expressed as

𝜑 (𝑧) = (𝜇 + 𝜆2𝑐) 𝑧 + 12𝜎2𝑧2 +
𝜆 (1 − 𝑒−𝑐𝑧 − 𝑐𝑧)

𝑐𝑧 . (29)

After the measure transform, the jump distribution has
density function𝐹∗(d𝑥) = 𝑒𝑥/(1−𝑒−𝑐) defined on the interval[−𝑐, 0], arriving at rate 𝜆∗ = 𝜆(1−𝑒−𝑐)/𝑐 under the probability
measure 𝑄∗. The Laplace exponent can be expressed as

𝜑∗ (𝑧) = (𝜇 + 𝜎2 + 𝜆2𝑐) 𝑧 + 12𝜎2𝑧2

+ 𝜆𝑐 [1 − 𝑒
−𝑐(𝑧+1)

𝑧 + 1 + 𝑒−𝑐 − 1] .
(30)

The form of jump distribution has changed under the mea-
sure transform, but the CoCos price still can be evaluated
through Proposition 6 since both (2) and (11) are still
spectrally negative Lévy processes in this case.

Remark 9. The one-sided CGMY Lévy model proposed by
Corcuera and Valdivia (2016) [22] is a practical and specific
case of Proposition 6. Since downward risk always needs to
be considered in financial market, spectrally negative Lévy
process has been widely applied in finance. From this point
Proposition 6 enriches the finance applications of spectrally
negative Lévy process.

3.3. Double Exponential Jump Diffusion Process. Double
exponential jump diffusion process is a Lévy process of jump
diffusion form

𝑋𝑡 = 𝑑𝑡 + 𝜎𝑊𝑡 + 𝑁(𝑡)∑
𝑖=1

𝑌𝑖 (31)

where {𝑊𝑡; 𝑡 ≥ 0}, 𝑑, and 𝜎 are the same notations as in (3),𝑁𝑡

is a Poisson process with rate𝜆, and the jump sizes {𝑌1, 𝑌2, . . .}
independent and identically distributed random variables
have an asymmetric double exponential distribution with the
density function:

𝑓𝑌 (𝑦) = 𝑝𝜂1𝑒−𝜂1𝑦𝐼{𝑦≥0} + 𝑞𝜂2𝑒𝜂2𝑦𝐼{𝑦<0} (32)

where 𝜂1 > 1, 𝜂2 > 0, 𝑝 ≥ 0, 𝑞 ≥ 0, and 𝑝 + 𝑞 =1. The random processes {𝑊𝑡; 𝑡 ≥ 0}, {𝑁𝑡; 𝑡 ≥ 0} and
random variables {𝑌1, 𝑌2, . . .} are independent. The double
exponential jump diffusion process is a special Lévy process
whose Lévy measure V satisfies V(R) < ∞. The Laplace
exponent can be given as

𝜓 (𝑧) = 𝑑𝑧 + 12𝜎2𝑧2 + 𝜆( 𝑝𝜂1𝜂1 − 𝑧 +
𝑞𝜂2𝜂2 + 𝑧 − 1) . (33)

Lévy measure of double exponential jump diffusion
process can be expressed as

V (𝑑𝑦) = 𝜆𝑓𝑌 (𝑦) 𝑑𝑦. (34)

Since V(R) < ∞ leads to V∗(R) < ∞, the double exponential
jump diffusion process (31) under the probabilitymeasure𝑄∗

is a new Lévy process in jump diffusion form

𝑋𝑡 = 𝑑∗𝑡 + 𝜎∗𝑊∗
𝑡 +

𝑁∗(𝑡)∑
𝑖=1

𝑌∗𝑖 , (35)

where 𝑑∗ is the same notation as in (13). From (12) and (13)𝑑∗ and 𝜎∗ here still satisfy 𝑑∗ = 𝑑 + 𝜎2, 𝜎∗ = 𝜎. Denoting𝜔 = 𝐸𝑄(𝑒𝑌) = 𝑝𝜂1/(𝜂1 − 1) + 𝑞𝜂2/(𝜂2 + 1), the new Poisson
process 𝑁∗(𝑡) under the new probability measure 𝑄∗ has a
new rate 𝜆∗ = 𝜆𝐸𝑄(𝑒𝑌) = 𝜆𝜔 and the density of the new
jump size 𝑌∗ is given by

𝑓𝑌∗ (𝑦) = 𝑒𝑦𝑓𝑌 (𝑦)𝐸𝑄 (𝑒𝑌) =
1𝜔 (𝑝𝜂1𝑒−(𝜂1−1)𝑦𝐼{𝑦≥0}

+ 𝑞𝜂2𝑒(𝜂2+1)𝑦𝐼{𝑦<0})
= 1𝜔 ( 𝑝𝜂1𝜂1 − 1 (𝜂1 − 1) 𝑒

−(𝜂1−1)𝑦𝐼{𝑦≥0}
+ 𝑞𝜂2𝜂2 + 1 (𝜂2 + 1) 𝑒

(𝜂2+1)𝑦𝐼{𝑦<0}) .

(36)

The jump distribution under the probability measure 𝑄∗ is
still a double exponential distribution with parameters 𝜂∗1 =𝜂1 − 1, 𝜂∗2 = 𝜂2 + 1, 𝑝∗ = (1/𝜔)(𝑝𝜂1/(𝜂1 − 1)), and 𝑞∗ =(1/𝜔)(𝑞𝜂2/(𝜂2+1)), which proves that the double exponential
jump diffusion process under the measure transform is still a
double exponential jump diffusion process; that is, both (31)
and (35) are double exponential jump diffusion processes.
TheLaplace transformof the first-passage timedistribution of
double exponential jump diffusion process has been obtained
byKou andWang (2003) [26].They exploit numerical Laplace
inversion called Gaver-Stehfest algorithm to evaluate the
first-passage time distribution. The related result is given
below. For details and proofs of the related results one can
refer to Kou and Wang (2003) [26].

Denote 𝑓(𝑡) = 𝑃(𝛾𝑥 ≤ 𝑡) where 𝛾𝑥 is still defined as 𝛾𝑥 =
inf{𝑡: 𝑋𝑡 ≤ 𝑥}. The Laplace transform of 𝑓(𝑡) can be given
through integration by part as

𝑓̂ (𝛼) = ∫∞
0
𝑒−𝛼𝑡𝑃 (𝛾𝑥 ≤ 𝑡) d𝑡

= 1𝛼 ∫
∞

0
𝑒−𝛼𝑡d𝑃 (𝛾𝑥 ≤ 𝑡) = 1𝛼𝐸 (𝑒−𝛼𝛾𝑥) .

(37)



8 Mathematical Problems in Engineering

If given 𝐸(𝑒−𝛼𝛾𝑥), the Laplace transform of 𝑓(𝑡) can be
obtained through (37). 𝐸(𝑒−𝛼𝛾𝑥) will be given below through
Theorem 3.1 in Kou and Wang (2003) [26].

Denote 𝛽1,𝛼, 𝛽2,𝛼, −𝛽3,𝛼, −𝛽4,𝛼 as four roots of the Laplace
exponent equation 𝜓(𝑧) = 𝛼 satisfying

0 < 𝛽1,𝛼 < 𝜂1 < 𝛽2,𝛼 < ∞,
0 < 𝛽3,𝛼 < 𝜂2 < 𝛽4,𝛼 < ∞. (38)

Denoting 𝜉𝑥 = inf{𝑡: 𝑋𝑡 ≥ 𝑥}, Theorem 3.1 in Kou andWang
(2003) [26] gives the Laplace transform of 𝜉𝑥 as

𝐸 (𝑒−𝛼𝜉𝑥) = 𝜂1 − 𝛽1,𝛼𝜂1
𝛽2,𝛼𝛽2,𝛼 − 𝛽1,𝛼 𝑒

−𝑥𝛽1,𝛼

+ 𝛽2,𝛼 − 𝜂1𝜂1
𝛽1,𝛼𝛽2,𝛼 − 𝛽1,𝛼 𝑒

−𝑥𝛽2,𝛼 .
(39)

Denote 𝑋̃𝑡 = −𝑋𝑡.The parameters in 𝑋̃𝑡 satisfy

𝜇̃ = −𝜇,
𝑝̃ = 𝑞,
𝑞̃ = 𝑝,
𝜂̃1 = 𝜂2,
𝜂̃2 = 𝜂1.

(40)

Denote Laplace exponent of 𝑋̃(𝑡) as 𝜓̃(𝑥). According to the
equation 𝜓̃(𝑥) = 𝜓(−𝑥), the roots between 𝜓̃(𝑥) = 𝛼 and𝜓(𝑥) = 𝛼 are only different in sign. Since 𝛾𝑥 = inf{𝑡: 𝑋̃𝑡 ≥−𝑥}, through substituting the parameters in (39) as 𝑥 → −𝑥,𝜂1 → 𝜂2, 𝜂2 → 𝜂1, 𝛽1,𝛼 → 𝛽3,𝛼, and 𝛽2,𝛼 → 𝛽4,𝛼, the Laplace
transform of 𝛾𝑥 is given as

𝐸 (𝑒−𝛼𝛾𝑥) = 𝜂2 − 𝛽3,𝛼𝜂2
𝛽4,𝛼𝛽4,𝛼 − 𝛽3,𝛼 𝑒

𝑥𝛽3,𝛼

+ 𝛽4,𝛼 − 𝜂2𝜂2
𝛽3,𝛼𝛽4,𝛼 − 𝛽3,𝛼 𝑒

𝑥𝛽4,𝛼 .
(41)

Combining (37) with (41), the Laplace transform of 𝑓(𝑡)
is given. Kou and Wang (2003) [26] exploit the numerical
Laplace inversion called Gaver-Stehfest algorithm to evaluate
the first-passage time distribution with Richardson extrapo-
lation technique to speed up the convergence. The Laplace
transformof𝑓(𝑡) andGaver-Stehfest algorithm are combined
and the evaluation of𝑓(𝑡) can be summarized as the following
Lemma.

Lemma 10. For fixed 𝑡 and 𝑥 and given the parameter set(𝑛, 𝐵), defining 𝛾𝑥 = inf{𝑡: 𝑋𝑡 ≤ 𝑥}. 𝑃(𝛾𝑥 ≤ 𝑡) can be given
as

𝑃 (𝛾𝑥 ≤ 𝑡) ≈ 𝑛∑
𝑘=1

𝑤 (𝑘, 𝑛) 𝑓̃𝑘+𝐵 (𝑡, 𝑥) , (42)

where

𝑤 (𝑘, 𝑛) = (−1)𝑛−𝑘 𝑘𝑛𝑘! (𝑛 − 𝑘)! ,
𝑓̃𝑚 (𝑡, 𝑥) = ln (2)𝑡 (2𝑚)!𝑚! (𝑚 − 1)!

𝑚∑
𝑘=0

(−1)𝑘

⋅ (𝑚𝑘) 𝑓̂ ((𝑚 + 𝑘) ln (2)𝑡 , 𝑥) ,
(43)

where

𝑓̂ (𝛼, 𝑥) = 1𝛼 (
𝜂2 − 𝛽3,𝛼𝜂2

𝛽4,𝛼𝛽4,𝛼 − 𝛽3,𝛼 𝑒
𝑥𝛽3,𝛼

+ 𝛽4,𝛼 − 𝜂2𝜂2
𝛽3,𝛼𝛽4,𝛼 − 𝛽3,𝛼 𝑒

𝑥𝛽4,𝛼) ,
(44)

where −𝛽3,𝛼, −𝛽4,𝛼 are the only two negative roots of the equa-
tion 𝜓(𝑧) = 𝛼 satisfying

0 < 𝛽3,𝛼 < 𝜂2 < 𝛽4,𝛼 < ∞, (45)

where 𝜓(𝑧) is the Laplace exponent of 𝑋𝑡.

Here𝐵 ≥ 0 is the initial burning out number and typically
equals 2 or 3. The algorithm typically converges nicely even
for 𝑛 between 5 and 10. Given the expression to evaluate the
first-passage time distribution of double exponential jump
diffusion process, the expression forCoCos price can be given
through (15) as in Proposition 11.

Proposition 11. The first-passage time model driven by double
exponential jump diffusion process gives CoCos price as

𝑉 = 𝑒−𝑟𝑇𝐵(1 − 𝜓(log 𝑏𝑆0 , 𝑇; 𝜇, 𝜎, V))
+ 𝑚∑

𝑖=1

𝑐𝑖𝐵𝑒−𝑟𝑡𝑖 (1 − 𝜓(log 𝑏𝑆0 , 𝑡𝑖; 𝜇, 𝜎, V))
+ 𝐶𝑆0𝜓(log 𝑏𝑆0 , 𝑇; 𝜇

∗, 𝜎∗, V∗) ,
(46)

where 𝜓(𝑥, 𝑡; 𝜇, 𝜎, V) = 𝑓(𝑡, 𝑥) and 𝑏 is a prespecified trigger
level:

𝜇∗ = 𝜇 + 𝜎2 + 𝜆𝑝𝜂1(1 − 𝜂1𝑒1−𝜂1(1 − 𝜂1)2
+ (𝜂1 + 1) 𝑒−𝜂1 − 1𝜂12 )

+ 𝜆𝑞𝜂2((2 + 𝜂2) 𝑒−(1+𝜂2) − 1(1 + 𝜂2)2
+ 1 − (𝜂2 + 1) 𝑒−𝜂2𝜂22 ) .

(47)
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𝜎∗ = 𝜎, V∗(d𝑥) = 𝑒𝑥V(d𝑥), where
𝑓 (𝑡, 𝑥) ≈ 𝑛∑

𝑘=1

𝑤 (𝑘, 𝑛) 𝑓̃𝑘+𝐵 (𝑡, 𝑥) , (48)

where 𝑤(𝑘, 𝑛) and 𝑓̃𝑚(𝑡, 𝑥) are the same notations as in
Lemma 10.

Remark 12. If 𝜓 is denoted as 𝜓(𝑡, 𝑥; 𝑑, 𝜎, 𝜆, 𝑝, 𝜂1, 𝜂2), it is
more concise to express the parameters’ change in 𝜓 under
the measure transform as

𝑑∗ = 𝑑 + 𝜎2,
𝜎∗ = 𝜎,
𝜆∗ = 𝜆𝜔,
𝑝∗ = 1𝜔 𝑝𝜂1𝜂1 − 1 ,
𝑞∗ = 1𝜔 𝑞𝜂2𝜂2 + 1 ,
𝜂∗1 = 𝜂1 − 1,
𝜂∗2 = 𝜂2 + 1

(49)

and the evaluation for CoCos price becomes more direct
and convenient. However, 𝜓 expressed by the Lévy triplet in
Proposition 11 can make models’ comparison under the Lévy
framework become more simple and intuitive.

Remark 13. Though double exponential jump diffusion pro-
cess possesses two-sided jumps, it cannot claim that the
model driven by double exponential jump diffusion process
is more superior to the model driven by spectrally negative
Lévy process. The jumps of the driving process in the former
are finite activity and the corresponding jump distribution is
limited to the double exponential formwhile that in the latter
can be of infinite activity and the jump form can be various.
These two models take their own advantages in CoCos
pricing. However, without doubt, themodel driven by double
exponential jump diffusion process will perform better than
the model driven by spectrally negative Lévy process only
with exponential jumps. This fact is used in numerical
experiment.

4. Numerical Experiment

We exploit numerical experiment to compare these three
Lévy models. Numerical experiment investigates the differ-
ence in CoCos price among the Lévy models and how the
CoCos price changes with the parameters in the models.
For simple statement, the models driven by drifted Brow-
nian motion, spectrally negative Lévy process, and double
exponential jump diffusion process are abbreviated as BS,
SNP, andKou, respectively. Tomake comparison resultsmore
explainable, jumps of spectrally negative Lévy process are
chosen to arrive at a limited rate and have an exponential
distribution whose parameters are set as the same as that in

negative jumps of double exponential jump diffusion process.
The parameters are chosen to reflect those in typical finance
application and primarily refer to Rogers (2000) [27] and
Kou and Wang (2003) [26]. They are listed in Table 1. Since
these Lévy models all satisfy ∫

|𝑥|<1
|𝑥|V(d𝑥) < ∞ under the

assumptions, 𝑋𝑡 can be expressed as (3) in the Lévy models.𝜇 is chosen to satisfy martingale condition as in (5) and
the corresponding 𝑑 is listed in Table 1. 𝜎 is chosen to keep
second-order moment of 𝑋𝑡 equal all the time in the Lévy
models and the relation expressions for 𝜎 parameters are also
listed in Table 1. The parameters listed in Table 1 make the
first and second order of the𝑋𝑡 equal in these Lévymodels all
the time and these parameters can be treated as an estimation
result from generalized method of moments. The parameter
sets provide an intuitive explanation that BS compresses all
the jumps information into volatility and SNP compresses
positive jumps information into volatility. The riskless rate 𝑟
is assumed as 0.03. The CoCos are assumed with a maturity
of 10 years and fixed coupon 𝑐 of 0.08 paid every half year. Let
the principal 𝐵 of the CoCos be 100, the initial stock price 𝑆0
10, and the implied stock price barrier 𝑏 8.5. Once the trigger
event occurs, the CoCos per share convert into 20 shares of
equity (i.e., 𝐶 = 20). The parameters in numerical Fourier
inverse for SNP are chosen as 𝑙1 = 𝑙2 = 1, 𝐴1 = 𝐴2 = 22,𝑁 = 6, and 𝑀 = 9. The parameters in numerical Laplace
inverse for Kou are chosen as 𝑛 = 8, 𝐵 = 2. Table 2 lists the
parameters change under the measure transform in the Lévy
models.

Figure 1(a) shows CoCos price at different 𝑏 values when𝜆 = 0.01. Since 𝜆 is small enough, jumps in SNP and Kou are
so few that the price evaluated from thembecomes almost the
same as that from BS. The graphs are nonmonotonic, which
reflects hybrid nature of theCoCos.The variation is the trade-
off between the opposite effects from debt part and equity
part. The CoCos price decreases when 𝑏 increases from 0
to 4.8, which illustrates that the debt part dominates CoCos
pricing in (0, 4.8).The same is true for dominant role of equity
part in (4.8, 10).

Figure 1(b) reproduces Figure 1(a) but now with 𝜆 = 30.
The SNP curve and the Kou curve almost overlap. This result
shows that positive jumps have limited influence on CoCos
pricing since the only difference between these two models
is the positive jumps information that is compressed into
volatility in SNP. In contrast with Figure 1(a), the number
of jumps increases largely in SNP and Kou. If 0.5 is taken
as the criterion of significant difference, the CoCos price in
SNP and Kou is significantly different from that in BS when𝑏 ∈ (5.9, 10). Equity part dominates the CoCos price in this
region and its value becomes more and more sensitive to 𝑏
when 𝑏 increases, which makes the difference in CoCos price
between BS and the other two models become bigger and
bigger for their different accuracies. SNP and Kou are natural
improvement in contrast with the BS since they incorporate
jumps structure into BS for the characterization of jumps
phenomenon in financial market. The difference between BS
and the other two models shows the value and significance
of introducing the SNP and Kou models. SNP and Kou have
lower CoCos price than BS, which illustrates that BS would
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Table 1: The parameters for the three Lévy models.

Parameter BS SNP Kou

𝑑 𝑟 − 12𝜎2BS 𝑟 − 12𝜎2SNP + 𝜆SNP𝜂2 + 1 𝑟 − 12𝜎2Kou + 𝜆Kou𝑝1 − 𝜂1 +
𝜆Kou (1 − 𝑝)𝜂2 + 1

𝜎 √𝜎2Kou + 2𝜆Kou ( 𝑝𝜂21 +
1 − 𝑝𝜂22 ) √𝜎2Kou + 2𝜆Kou𝑝𝜂21 0.2

𝜆 𝜆Kou (1 − 𝑝) 8𝜂1 1/0.02𝜂2 1/0.03 1/0.03𝑝 0.5
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Figure 1: (a) The sensitivity of CoCos price to trigger barrier level 𝑏 when 𝜆 = 0.01. (b)The sensitivity of CoCos price to trigger barrier level𝑏 when 𝜆 = 30.

Table 2: The parameters’ change under the measure transform.

Parameter BS SNP Kou
𝑑∗ 𝑑 + 𝜎2 𝑑 + 𝜎2 𝑑 + 𝜎2𝜎∗ 𝜎 𝜎 𝜎
𝜆∗ 𝜆𝜂2𝜂2 + 1

𝜆𝑝𝜂1𝜂1 − 1 +
𝜆𝑞𝜂2𝜂2 + 1𝜂∗1 𝜂1 − 1𝜂∗2 𝜂2 + 1 𝜂2 + 1

𝑝∗ 𝑝𝜂1𝜂2 + 𝑝𝜂1𝜂1𝜂2 + 𝑝𝜂1 − 𝑞𝜂2
overestimate the CoCos price for compressing jumps infor-
mation into volatility. The result about overestimation for
BS goes against the intuitive understanding that BS would
underestimate the CoCos price without taking jump risk into
consideration, which is due to the dual characteristics of
CoCos.When 𝑏 ∈ (0, 5.9), the small difference in trigger like-
lihood among these models leads to small difference in their

CoCos price. The trigger barrier level 𝑏 chosen as 8.5 is large
enough for studying the difference in parameters’ sensitivity
analysis among these models.

Figure 2(a) shows that the CoCos price rises in all the
models when 𝜆 increases and the CoCos price in SNP and
Kou increases slower than that in BS. The big difference in
CoCos price between BS and the other two models and the
small difference betweenKou and SNP illustrate that negative
jumps play far more important role than positive jumps in
CoCos pricing, which shows practical value of SNP. Fig-
ure 2(b) shows the CoCos price increases in all the models
when 𝜎 in Kou increases. The increasing speed decreases in
all the models for upper limit of the trigger probability. The
increase of 𝜎 makes 𝜎 play more and more critical role in
CoCos pricing, which alleviates the influence from jumps and
makes the difference in CoCos price among these models
decrease.

Figure 2(c) shows that the CoCos price decreases in all
the models and the difference between BS and the other two
models increases when 𝜂1 increases. Since the average jump
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Figure 2: (a) The sensitivity of CoCos price to 𝜆. (b) The sensitivity of CoCos price to 𝜎. (c) The sensitivity of CoCos price to 𝜂1. (d) The
sensitivity of CoCos price to 𝜂2.

size of positive jumps decreases, the effect of positive jumps
becomes limited and negative jumps takes the leading role.
Since the negative jumps have larger influence on the differ-
ence between BS and the other two models in CoCos price,
the difference increases when 𝜂1 increases. Figure 2(d) shows
the CoCos price decreases in BS while that increases in Kou
and SNP when 𝜂2 increases. The difference between BS and
the other two models in CoCos price decreases and the price
in the models approximately converges to the same level.
The decrease of average size of negative jumps weakens the
influence of negative jumps, which reduces the difference
in CoCos price between BS and the other two models.

From Figure 2(c), some difference exists in the CoCos price
between SNP and Kou when average size of positive jumps
is considerably larger than that of negative jumps, but this
difference is not big when compared with the difference
resulting from the influence of negative jumps. The com-
parison between Figures 2(c) and 2(d) also shows the more
important role of negative jumps.

5. Conclusion

This paper develops a general Lévy framework for pricing
CoCos with all-at-once conversion. The Lévy framework
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shows hybrid nature of CoCos intuitively and reduces the
CoCos pricing problem to the first-passage time problem
of trigger process. According to characteristics of new Lévy
measure after the measure transform, three Lévy models
driven by drifted Brownian motion, spectrally negative Lévy
process, and double exponential jump diffusion process are
proposed.These three Lévymodels keep the form of the driv-
ing Lévy process unchanged under the measure transform,
which sidesteps the difficulty that only rare forms of Lévy pro-
cess have solved the first-passage time problem. These Lévy
models provide closed-form expressions for CoCos price
while two of them possess them up to Laplace transform,
whose pricing results are given by combining with numerical
Fourier inversion and Laplace inversion.

The numerical results show that the CoCos price is the
trade-off between the opposite effects from debt part and
equity part. Negative jumps play far more critical role than
positive jumps in CoCos pricing. The Black-Scholes model
compresses all the jumps information into volatility, which
makes large difference in CoCos price between the Black-
Scholes model and the other two models. The model driven
by spectrally negative Lévy process only compresses posi-
tive jumps information into volatility, which leads to small
difference between the models driven by spectrally negative
Lévy process and double exponential jump diffusion process.
When the trigger barrier level is high, the difference between
the Black-Scholes model and the other two models in CoCos
price is significant.Without jumps characterization in trigger
process, the Black-Scholes model would overestimate the
CoCos price. The models driven by spectrally negative Lévy
process anddouble exponential jumpdiffusion processwould
provide more accurate CoCos price by taking jumps phe-
nomenon in financial market into consideration.

The Lévy models proposed in this paper can capture the
short-run behaviour of trigger process. However, the long-
run phenomenon such as the volatility clustering is not char-
acterized. The stochastic volatility Lévy models and regime
switching Lévy models, which can capture the long-run
behaviour, deserve further study. Some special regime switch-
ing Lévy models have solved first-passage time problem and
the next step can extend the Lévymodels to regime switching
Lévy models. Since different CoCos designs turn to different
pricing models, the Lévy models for more complicated
CoCos designs with characteristics such as multivariate trig-
ger, the trigger based on moving average of easily observed
and continuously updating indicators, and incorporation of
contingent claims, such as buy-back option for converted
shares and cancellable options for coupons, also need further
study.
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