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When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic
programming (DHP) technique, which is based on the BP neural network algorithm (BP-DHP), has difficulty in prediction
accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning
Machine (ELM) algorithm (ELM-DHP) was proposed. Through constructing three kinds of network structures, the paper gives
the detailed realization process of theDHP technique in the ELM.The controller designed upon the ELM-DHPalgorithmcontrolled
a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the
effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural
network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.

1. Introduction

With the increase of the dynamic complexity of controlled
objects and their widespread application, some dynamic
models of controlled objects can be obtained bymathematical
methods. But some of the controlled objects are too complex
to establish an accurate mathematical model, such as a robot
system and a chemical generation process. Even though the
mathematical model of complex systems has been estab-
lished, it will be usually a high-order nonlinear time-varying
complex differential equation. So, it could not describe the
system accurately, and it is too difficult to analyze and process
the data, and hence the unknown model must be learned by
the observational data [1]. This is because of the great fault
tolerance, self-adaptation, self-organization, and learning
andmemory ability of neural networks, which provides a new
method for themodeling of complex systems [2–5]. However,
BP networks, RBF networks, and SVM have some defects
such as slow convergence, which causes a big gap between
the approximation ability and the actual demand of complex
systems [6, 7]. In order to solve this problem, Huang GB
proposed single hidden layer feedforward network (SLFN)

training—Extreme learning Machine (ELM)—in 2006 [8].
The ELM gives the weights and thresholds of the weights
randomly and then calculates the output weights by the regu-
larization principle, which can still approach any continuous
system [6, 7]. It has been proved that the SLFN hidden
layer node parameter randomly accessed does not affect the
convergence ability, and it also makes the speed of learning
the ELM thousands of times faster than the traditional BP
network and SVM.

In recent years, dynamic programming has been used to
solve the optimal control problem, the “curse of dimension-
ality” problem, so no optimal solution could be obtained [9].
In 1977, Werbos proposed a heuristic dynamic programming
(HDP) and dual heuristic programming (DHP) concept
and proposed a method of approximate dynamic program-
ming (adaptive/approximate dynamic programming, ADP)
to solve the “curse of dimensionality” problem [10]. Werbos
defines “intelligence” as the brain’s ability to learn a util-
ity function maximally in a complex, unknown, nonlinear
environment [11]. ADP is the general scheme for learning
approximate optimal action strategies. Therefore, ADP can
be regarded as a key method which is able to design the
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Figure 1: The structural diagram of the DHP algorithm.

intelligent system of a brain. According to the basic principle,
realization structure, and current development of the ADP
method, Lewis and others gave a summary and prospect of
the research and pointed out that ADP is an effective data-
driven method [12–15]. ADP can realize the optimization
control of the nonlinear system by using neural networks
based on online data and control information to approximate
the performance index function of the optimal control
law, without a mathematical model of a nonlinear control
system [16]. To develop neural dynamic programming results
and relax the system dynamic requirements, Zhong et al.
proposed a new goal representationADPonline optimization
control structure for nonlinear systems. But the network
could not output the derivative function information of the
cost function directly based on the implementation structure
of HDP, and the control effect of the HDP structure needed
improvement [17]. In fact, some studies show that DHP and
GDHP can be controlled better than HDP in the structure of
ADP method to some extent [18, 19].

In general, the study on the optimal control of nonlinear
systems of ADP based on the traditional neural network has
made great progress. But the ADP still has problems of slow
response and poor stability. In this paper, ELM algorithm
gives random input weights and thresholds to improve the
response speed of the DHP algorithm and the stability of the
DHP algorithm is improved by calculating the output weights
by the regularization principle. In order to verify the validity
of the algorithm, the ELM-DHP was designed to control the
molecular distillation system with multivariability, nonlin-
earity, strong coupling, and large delay.

2. Algorithm Principle

2.1. DHP Algorithm Principle. The discrete-time nonlinear
dynamic system is described as follows:

𝑥 (𝑘 + 1) = 𝐹 [x (𝑘) , u (𝑘) , 𝑘] , 𝑘 = 0, 1, . . . . (1)

In formula (1), x(𝑘) ∈ R𝑛 represents the state vector of
the system, u(𝑘) ∈ R𝑛 represents control variables, and 𝐹
represents the system function.

The performance index function (also called the cost
function) corresponding to the system is

𝐽 [x (𝑘) , 𝑘] = ∞∑
𝑖=𝑘

𝛾𝑖−𝑘𝜂 [x (𝑖) , u (𝑖) , 𝑖] , (2)

where 𝜂 is the utility function, 𝛾 is the discount factor (0 < 𝛾 ≤1), 𝐽 is the cost function of state x(𝑘), and 𝐽 depends on the
initial time 𝑘 and the initial state x(𝑘). For DHP, the purpose
of dynamic programming is to select a control sequence
u(𝑖), 𝑖 = 𝑘, 𝑘 + 1, . . . , 𝑙, which minimizes the function𝜕𝐽[x(𝑘)]/𝜕x(𝑘).

The DHP structure is shown in Figure 1, which contains
three neural networks: model network, critic network, and
action network. The neural network has a powerful function
of universal approximation, so the model network can be
used to model the unknown nonlinear or complex nonlinear
system and make the DHP method widely used. The input
of the critic network is a state variable. The output of the
critic network is approximation performance index function
J on the state x derivative, which is also known as the costate.
The action network, also known as “Actor,” represents the
mapping between system state variables and control variables
[20–22].𝜕𝐽[x(𝑘)]/𝜕x(𝑘) is based on the iteration of the derivative
for performance index function and utility function to state.

𝜕𝐽 [x (𝑘)]𝜕x (𝑘) = 𝜕𝜂 {x (𝑘) , u [x (𝑘)]}𝜕x (𝑘) + 𝛾𝜕𝐽 [x (𝑘 + 1)]𝜕x (𝑘) . (3)

In (3), u[x(𝑘)] is a feedback control variable, and costates𝜕𝐽[x(𝑘)]/𝜕x(𝑘) and 𝜕𝐽[x(𝑘 + 1)]/𝜕x(𝑘) are the outputs of the
critic network. If the weight of the critic network is set to 𝜔,
the right type of formula (1) is set to

𝑒 [x (𝑘) , 𝜔] = 𝜕𝜂 {x (𝑘) , u [x (𝑘)]}𝜕x (𝑘) + 𝛾𝜕𝐽 [x (𝑘 + 1)]𝜕x (𝑘) . (4)

At the same time, the left type of formula (1) can be
written as 𝜕𝐽[x(𝑘), 𝜔]/𝜕x(𝑘). By adjusting the weights 𝜔 of
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the critic network, the least-mean-square-error function is as
follows:

𝜔∗ = argmin
𝜔

{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝐽 [x (𝑘) , 𝜔]𝜕x (𝑘) − 𝑒 [x (𝑘) , 𝜔]󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2} . (5)

According to the principle of optimality, the optimal
control should satisfy the first-order differential necessary
condition.𝜕𝐽∗ [x (𝑘)]𝜕u (𝑘) = 𝜕𝜂 [x (𝑘) , u (𝑘)]𝜕u (𝑘) + 𝜕𝐽∗ [x (𝑘 + 1)]𝜕u (𝑘)

= 𝜕𝜂 [x (𝑘) , u (𝑘)]𝜕u (𝑘)
+ 𝜕𝐽∗ [x (𝑘 + 1)]𝜕x (𝑘 + 1) 𝜕𝐹 [x (𝑘) , u (𝑘)]𝜕u (𝑘) .

(6)

So, the optimal quantity is obtained:

𝑢∗ = argmin
𝑢

{󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝐽 [x (𝑘)]𝜕u (𝑘) − 𝜕𝜂 [x (𝑘) , u (𝑘)]𝜕u (𝑘)
− 𝜕𝐽∗ [x (𝑘 + 1)]𝜕x (𝑘 + 1) 𝜕𝐹 [x (𝑘) , u (𝑘)]𝜕u (𝑘) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} . (7)

In formula (7), 𝜕𝐽∗[x(𝑘 + 1)]/𝜕x(𝑘 + 1) is the optimal
costate, satisfying formula (5).

From (1) to (7), we can conclude that the optimal control
quantity of the DHP method can be obtained directly by the
costate. Comparedwith theHDPmethodwhich obtained the
optimal control by the relationship between theweights (𝜔) of
the critic network and the input–output, the method of DHP
has more computational efforts, but better control effect [9].

2.2. ELM Algorithm Principle. For a standard SLFN with 𝐿
hidden layer neurons learning 𝑁 arbitrary distinct samples(x𝑗, t𝑗), x𝑗 = [𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑛]𝑇 ∈ 𝑅𝑛, t𝑗 = [𝑡𝑗1, 𝑡𝑗2, . . . , 𝑡𝑗𝑚]𝑇∈ 𝑅𝑚 and activation function 𝑔(⋅) are mathematically
modeled as [23]

𝐿∑
𝑖=1

𝛽𝑖𝑔 (w𝑖 ⋅ x𝑗 + 𝑏𝑖) = o𝑗,
𝑗 = 1, 2, . . . 𝑁, 𝑏𝑖, 𝛽𝑖 ∈ 𝑅, 𝑎𝑖 ∈ 𝑅, (8)

where o𝑗 = [𝑜𝑗1, 𝑜𝑗2, . . . , 𝑜𝑗𝑚]𝑇 ∈ 𝑅𝑚 is the model output
of the network, w𝑖 = [𝑤𝑖1, 𝑤𝑖2, . . . , 𝑤𝑖𝑛]𝑇 is the input weight
matrix between the input layer neuron and the 𝑖th hidden
layer neuron, 𝛽𝑖 is the output weight matrix between the 𝑖th
hidden layer neuron and the output layer neurons, 𝑏𝑖 is the
threshold of the 𝑖th neuron in the hidden layer, and w𝑖 ⋅ x𝑗 is
the inner product of w𝑖 and x𝑗.

The learning objective of the SLFN is to minimize the
output error. Error can be expressed as

𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩t𝑗 − o𝑗
󵄩󵄩󵄩󵄩󵄩 = 0. (9)

The presence of w𝑖, x𝑗, and 𝑏𝑖 makes

𝐿∑
𝑖=1

𝛽𝑖𝑔 (w𝑖 ⋅ x𝑗 + 𝑏𝑖) = t𝑗, 𝑗 = 1, 2, . . . , 𝑁. (10)

So, (10) can be written asH𝛽 = T, where

H (w1, . . . ,w𝐿, 𝑏1, . . . , 𝑏𝑁, x1, . . . , x𝑁)
= [[[

𝑔 (w1 ⋅ x1 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (w𝐿 ⋅ x1 + 𝑏𝐿)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑔 (w1 ⋅ x𝑁 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (w𝐿 ⋅ x𝑁 + 𝑏𝐿)
]]]𝑁×𝐿

,

𝛽 = [[[[[
𝛽𝑇1...𝛽𝑇𝐿

]]]]]𝐿×𝑚
,

T = [[[[[
t𝑇1...
t𝑇𝑁

]]]]]𝑁×𝑚
.

(11)

H is a hidden layer outputmatrix of ELM. So, the training
of ELM is equivalent to the least-squares solution 𝛽̂ of linear
systemH𝛽 = T.󵄩󵄩󵄩󵄩󵄩H (ŵ𝑖, 𝑏̂𝑖) 𝛽̂ − T󵄩󵄩󵄩󵄩󵄩 = min

w,𝑏,𝛽

󵄩󵄩󵄩󵄩󵄩H (ŵ𝑖, 𝑏̂𝑖) ⋅ 𝛽 − T󵄩󵄩󵄩󵄩󵄩 . (12)

In (12), 𝑖 = 1, 2, . . . , 𝐿, (12) is equivalent tominimizing the
loss function

𝐸 = 𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐿∑
𝑖=1

𝛽𝑖 ⋅ 𝑔 (w𝑖 ⋅ x𝑗 + 𝑏𝑖) − t𝑗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2. (13)

Huang et al. [23] proved that the minimum value of
the least-squares solution of the linear system satisfies the
following.

(1) Minimum Training Error. The special solution 𝛽̂ = H−1T
is one of the least-squares solutions of a general linear system
H𝛽 = T,H−1 which is a generalized inverse matrix ofH.

(2) Smallest Norm of Weights and Best Generalization Capa-
bility. Further, the special solution 𝛽̂ = H−1T has the smallest
norm among all of the least-squares solutions of H𝛽 = T :‖𝛽̂‖ = ‖H−1T‖ ≤ ‖𝛽‖, ∀𝛽 ∈ {𝛽 : ‖H𝛽 − T‖ ≤ ‖Hz − T‖, ∀z ∈
R𝑁×𝑁}. The generalization ability of SLFN with minimum
weight is independent of the number of parameters [24]. The
smaller the weight, the stronger the generalization ability of
SLFN.

(3) Special Solution. The least-squares solution of H𝛽 = T is
unique.

2.3. Proof the Stability of ELM-DHP. The stability of the
ELM-DHP algorithm is proved (i.e., the output error of the
system is 0). The discrete nonlinear system is controlled
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Figure 2: The structure of the model network.

by the ELM-DHP algorithm, and the three networks of
the ELM-DHP algorithm are all based on the fixed ELM
implementation. Therefore, it just needs to be proved that
ELM can approximate the discrete nonlinear system by 0
error.

The ELM learning algorithm is chosen as a SLFN with𝐿 hidden layer neurons. The 𝑁 arbitrary distinct samples(x𝑗, t𝑗), where 𝐿 ≤ 𝑁, x𝑗 = [𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑛]𝑇 ∈ 𝑅𝑛, and
t𝑗 = [𝑡𝑗1, 𝑡𝑗2, . . . , 𝑡𝑗𝑚]𝑇 ∈ 𝑅𝑚 of the nonlinear discrete system
and nonlinear activation function 𝑔(⋅), are mathematically
modeled as formula (8).

ELM learns a large number of samples generally, and the
number of neurons in the hidden layer is far less than the
number of samples, 𝐿 ≪ 𝑁. So, we only need to prove that
the learning error of ELM was 0 when 𝐿 ≤ 𝑁. Huang et al.
[7, 23, 25] proved in detail that the SLFN with 𝐿 neurons can
approximate any arbitrary sample (x𝑗, t𝑗) at any small error;
that is,

𝑒 = 𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩t𝑗 − o𝑗
󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩H𝛽 − T󵄩󵄩󵄩󵄩 = 0. (14)

The work above proves that the learning error of ELM is
0 (i.e., the stability of the ELM-DHP algorithm).

3. Implementation of the ELM-DHP Algorithm

The ELM-DHP algorithm includes three networks: model
network, critic network, and action network. The hidden
layer of the three networks is a sigmoidal bipolar function and
the output layer is a purelin linear function. The realization
process of the ELM-DHP algorithm is studied by using
the discrete-time nonlinear dynamic programming of 𝑛-
dimensional state vector and 𝑚-dimensional control vector
as the research object.

3.1. NetworkModel. Themodel network adopts (𝑚+𝑛)−𝑙𝑚−𝑛
structure. The 𝑚 + 𝑛 inputs are the 𝑛 components of the
state vector x(𝑘) in the 𝑘 moments and the 𝑚 components
of the predicted output u(𝑘) of the action network to state
x(𝑘) in the system of (𝑘 − 1) moments. The 𝑛 output is the𝑛 components of the prediction vector x̂(𝑘 + 1) to the state
vector x(𝑘 + 1) in the system of (𝑘 + 1) moments. The model
network has 𝑙𝑚 hidden layer neurons. The structure of the
model network is shown in Figure 2.

The model network is trained offline, and the calculation
process is as follows.

The input layer to the hidden layer weight matrix W𝑚1
and the hidden layer threshold matrix B = [𝑏1, 𝑏2 . . . , 𝑏𝑙𝑚]
are randomly generated. Define the input vector M(𝑘) and
the expected output vector x̂(𝑘) of the model network in 𝑘
moments:

M (k)
= [𝑢1 (𝑘) , 𝑢2 (𝑘) , . . . , 𝑢𝑚 (𝑘) , 𝑥1 (𝑘) , 𝑥2 (𝑘) , . . . , 𝑥𝑛 (𝑘)] ,

x̂ (𝑘) = [𝑥1 (𝑘) , 𝑥2 (𝑘) , . . . , 𝑥𝑛 (𝑘)] .
(15)

Calculate the output matrixmℎ2(𝑘) of the hidden layer in
the model network

𝑚ℎ1𝑗 (𝑘) = 𝑛+𝑚∑
𝑖=1

𝑀𝑖 (𝑘) ⋅ 𝑊𝑚1𝑖𝑗 (𝑘) + 𝑏𝑗 (𝑘) ,
𝑗 = 1, 2, . . . , 𝑙𝑚,

𝑚ℎ2𝑗 (𝑘) = 1 − 𝑒−𝑚ℎ1𝑗(𝑘)1 + 𝑒−𝑚ℎ1𝑗(𝑘) , 𝑗 = 1, 2, . . . , 𝑙𝑚,
(16)

where 𝑚ℎ1𝑗(𝑘) is the input of the 𝑗th node in the model
network hidden layer, 𝑚ℎ2𝑗(𝑘) is the output of the 𝑗th
node in the model network hidden layer, and mℎ2 =[𝑚ℎ21, 𝑚ℎ22, . . . , 𝑚ℎ2𝑙𝑚] ∈ 𝑅𝑚.

Calculate the weights W𝑚2(𝑘) from the hidden layer to
the output layer:

x̂ (𝑘 + 1) = mℎ2 (𝑘) ×W𝑚2 (𝑘) . (17)

According to the idea of the ELM, the error is minimized
as

𝐸𝑚 (𝑘 + 1) = 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑘 + 1) − 𝑥𝑖 (𝑘 + 1)󵄩󵄩󵄩󵄩2 = 0. (18)

In equality (18), 𝑥𝑖(𝑘+1) is the expected output 𝑖th output
layer neurons of the model network.

W𝑚2(𝑘) is equivalent to solving the least-squares solution
Ŵ𝑚2(𝑘) of the linear systemmℎ2(𝑘) ×W𝑚2(𝑘) = x̂(𝑘 + 1):󵄩󵄩󵄩󵄩󵄩mℎ2 (𝑘) × Ŵ𝑚2 − x̂ (𝑘 + 1)󵄩󵄩󵄩󵄩󵄩= min

W𝑚2

󵄩󵄩󵄩󵄩mℎ2 (𝑘) ×W𝑚2 − x̂ (𝑘 + 1)󵄩󵄩󵄩󵄩 . (19)

The special solution Ŵ𝑚2(𝑘) of the weight matrix of the
hidden layer and output layer in the model network is as
follows:

Ŵ𝑚2 (𝑘) = m−1ℎ2 (𝑘) × x̂ (𝑘 + 1) , (20)

where m−1ℎ2 (𝑘) is a generalized inverse matrix of mℎ2(𝑘) in 𝑘
moments.

3.2. Critic Network. The critic network is composed of 𝑛 −𝑙𝑐 − 𝑛. The 𝑛 inputs are the 𝑛 components of the state
vector x̂(𝑘), and the output is the estimation of the state



Mathematical Problems in Engineering 5

x1(k)

xn(k)

1(k)

n(k)

Wc1 Wc2

··
·

··
·

··
·

··
·

Input Hidden Output
layer layer layer

Figure 3: The structure of the critic network.

𝜆(𝑘) = 𝜕𝐽(𝑘)/𝜕x(𝑘), 𝐽(𝑘) = 𝛾𝐽(𝑘 + 1) + 𝜂(𝑘). 𝑙𝑐 is the number
of hidden layer neurons in the critic network. In the critic
network, the weightmatrix from the input layer to the hidden
layer, the weight matrix from the hidden layer to the output
layer, and the hidden layer threshold matrix of 𝑘 time are,
respectively, defined as W𝑐1, W𝑐2, C(𝑘) = [𝑐1(𝑘), . . . , 𝑐𝑙𝑐(𝑘)].
Figure 3 shows the structure of the critic network.

The critic network uses the least-squares method of ELM,
whose forward calculation process is

𝑐ℎ1𝑗 (𝑘) = 𝑛∑
𝑖=1

𝑥𝑖 (𝑘)𝑊𝑐1𝑖𝑗 (𝑘) + 𝑐𝑗 (𝑘) , 𝑗 = 1, 2, . . . , 𝑙𝑐,
𝑐ℎ2𝑗 (𝑘) = 1 − 𝑒−𝑐ℎ1𝑗(𝑘)1 + 𝑒−𝑐ℎ1𝑗(𝑘) , 𝑗 = 1, 2, . . . , 𝑙𝑐,
𝜆 (𝑘) = cℎ2 (𝑘) ×W𝑐2 (𝑘) ,

(21)

where 𝑐ℎ1𝑗 is the input of the 𝑗th node in the critic network
hidden layer, 𝑐ℎ2𝑗 is the output of the 𝑗th node in the critic
network hidden layer, cℎ2(𝑘) = [𝑐ℎ21, 𝑐ℎ22, . . . , 𝑐ℎ2𝑙𝑐], and 𝜆(𝑘)
is the output of the critic network output layer. The inputs𝑥𝑖(𝑘) of the critic network come from the output of themodel
network and the outputs of the critic network are costate
function 𝜕J(𝑘)/𝜕x(𝑘) in the DHP. 𝜆𝑎(𝑘) is expressed to the
expected output of the critic network, which can be written
as

𝜆𝑎 (𝑘) = 𝜕𝐽 (𝑘)𝜕x (𝑘) . (22)

The training error of DHP critic network is minimized
based on the idea of ELM.

󵄩󵄩󵄩󵄩𝐸𝑐󵄩󵄩󵄩󵄩 = ∑
𝑘

𝐸𝑐 (𝑘) = 12∑
𝑘

𝑛∑
𝑗=1

𝐸2𝑗 (𝑘) = 0,
𝐸𝑐 (𝑘) = 12 𝑛∑

𝑗=1

𝐸2𝑗 (𝑘) = 12E (𝑘) × E𝑇 (𝑘) = 0, (23)

where 𝐸𝑐(𝑘) is the error of the critic network in 𝑘 moments
and ‖𝐸𝑐‖ is the error of all the time points in the critic
network.

According to the DHP structure and the definition of the
expected outputs 𝜆𝑎(𝑘) of the critic network, we can obtain

𝐸 (𝑘) = 𝜆 (𝑘) − 𝜕+𝜂 (𝑘)𝜕x (𝑘) − 𝛾𝜕+𝐽 (𝑘 + 1)𝜕x (𝑘) . (24)

In formula (24), 𝜕+𝜂(𝑘)/𝜕x(𝑘) and 𝜕+𝐽(𝑘 + 1)/𝜕x(𝑘)
represent the notion that 𝜂(𝑘) and 𝐽(𝑘+ 1) take the derivative
of composite function x(𝑘).

Based on (23) and (24), we can acquire

𝜆 (𝑘) = 𝜕+𝜂 (𝑘)𝜕x (𝑘) + 𝛾𝜕+𝐽 (𝑘 + 1)𝜕x (𝑘) . (25)

According to Cℎ2(𝑘) × W𝑐2 = 𝜆(𝑘), the weightW𝑐2 from
the hidden layer to the output layer is equal to the least-
squares solution Ŵ𝑐2 of the linear systemCℎ2(𝑘)×W𝑐2 = 𝜆(𝑘),
and hence we get Ŵ𝑐2:󵄩󵄩󵄩󵄩󵄩Cℎ2 (𝑘) × Ŵ𝑐2 − 𝜆 (𝑘)󵄩󵄩󵄩󵄩󵄩= min

W𝑐2

󵄩󵄩󵄩󵄩Cℎ2 (𝑘) ×W𝑐2 − 𝜆 (𝑘)󵄩󵄩󵄩󵄩 ,
Ŵ𝑐2 = C−1ℎ2 (𝑘) × 𝜆 (𝑘) .

(26)

In formula (26), C−1ℎ2 (𝑘) is a generalized inverse matrix of
Cℎ2(𝑘). Based on the DHP structure and the chain rule [9],
we can obtain

𝜕+𝐽 (𝑘 + 1)𝜕x (𝑘) = 12 ⋅ 𝜆 (𝑘 + 1) ×W𝑇𝑚2 × {{{Wm1x (𝑘)
⊗ [1 −mℎ2 (𝑘) ⊗mℎ2 (𝑘) ; 1 −mℎ2 (𝑘) ⊗mhℎ2 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

total 𝑛

}}}
𝑇

+ (14𝜆 (𝑘 + 1) × {{{W𝑇𝑚2 (𝑘)
⊗ [1 −mℎ2 (𝑘) ⊗mℎ2 (𝑘) ; 1 −mℎ2 (𝑘) ⊗mℎ2 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

total 𝑛

}}}
×W𝑇𝑚1𝑢 (𝑘) ×W𝑇𝑎2 (𝑘) × {{{W𝑎1 (𝑘)
⊗ [1 − aℎ2 (𝑘) ⊗ aℎ2 (𝑘) ; 1 − aℎ2 (𝑘) ⊗ aℎ2 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

total 𝑛

}}}
𝑇).

(27)

In (27),W𝑚1𝑢 = W𝑚1(1 : 𝑚, :) represents front𝑚 lines of
the weight matrix W𝑚1, and W𝑚1𝑥 = W𝑚1(𝑚 + 1 : 𝑚 + 𝑛, :)
represents from (𝑚+1)th to (𝑚+𝑛)th line of theweightmatrix
W𝑚1.

𝜕+𝜂 (𝑘)𝜕x (𝑘) = 2x (𝑘) + u (𝑘) ×W𝑇𝑎2 (𝑘) × {{{W𝑎1 (𝑘)
⊗ [1 − aℎ2 (𝑘) ⊗ aℎ2 (𝑘) ; 1 − aℎ2 (𝑘) ⊗ aℎ2 (𝑘)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

total 𝑛

}}}
𝑇 .

(28)
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Figure 4: The structure of the action network.

3.3. ActionNetwork. Theaction network uses the structure of𝑛−𝑙𝑑−𝑚. 𝑛 inputs are the 𝑛 components of the state vector x(𝑘)
of the system at 𝑘moments.𝑚 outputs are the𝑚 components
of the control vector u(𝑘) corresponding to the input state
vector x(𝑘). 𝑙𝑑 represents the number of neurons in the action
network hidden layer. W𝑎1 and W𝑎2 are, respectively, the
weight matrix from the input layer to the hidden layer and
the weight matrix from the hidden layer to the output layer
in the action network. d(𝑘) = [𝑑1(𝑘), . . . , 𝑑𝑙𝑑(𝑘)] is the hidden
layer threshold matrix of the action network. Figure 4 is the
structure of the action network.

The calculation process of the actionnetwork is as follows:

𝑎ℎ1𝑗 (𝑘) = 𝑛∑
𝑖=1

𝑥𝑖 (𝑘) ⋅ 𝑊𝑎1𝑖𝑗 (𝑘) + 𝑑𝑗 (𝑘) ,
𝑗 = 1, 2, . . . , 𝑙𝑑,

𝑎ℎ2𝑗 (𝑘) = 1 − 𝑒−𝑎ℎ1𝑗(𝑘)1 + 𝑒−𝑎ℎ1𝑗(𝑘) , 𝑗 = 1, 2, . . . , 𝑙𝑑,
u (𝑘) = aℎ2 (𝑘) ⋅W𝑎2 (𝑘) ,

(29)

where 𝑎ℎ1𝑗(𝑘) is the input of the 𝑗th node and 𝑎ℎ2𝑗(𝑘) is the
output of the 𝑗th node in the action network hidden layer and
aℎ2(𝑘) = [𝑎ℎ21, 𝑎ℎ22, . . . , 𝑎ℎ2𝑙𝑑]. According to the idea of weight
adjustment of ELM, the weight matrixW𝑎2 from the hidden
layer to the output layer is obtained:

W𝑎2 = a−1ℎ2 (𝑘) × u (𝑘) . (30)

In (30), a−1ℎ2 (𝑘) is a generalized inversematrix of aℎ2(𝑘) and
u(𝑘) is the expected output of the action network.Theweights
of the networkwill be corrected if u(𝑘) can be got.The inverse
sigmoidal function is defined as 𝑔(⋅). The calculation process
of u(𝑘) is as follows:

A = [𝜕+𝑈 (𝑘)𝜕x (𝑘) + 𝛾𝜕+𝐽 (𝑘 + 1)𝜕x (𝑘) ] ×W−1𝑐2 , (31)

B = 𝑔 (A) ×W−1𝑐1 ×W−1𝑚2, (32)

[u (𝑘)
x (𝑘)] = 𝑔 (B) ×W−1𝑚1. (33)

In (33), u(𝑘) is the first𝑚 rows of matrix 𝑔(B) ×W−1𝑚1.
Define u𝑥 = 𝑔(B) ∗W−1𝑚1; we have

u (𝑘) = u𝑥 (1 : 𝑚, :) . (34)

So,W𝑎2 can be got:

W𝑎2 = a−1ℎ2 (𝑘) × u (𝑘) . (35)

3.4. Training Strategy. In this paper, the model network
of the DHP algorithm is trained by an offline method at
first to obtain the weight matrix of the model network.
Then, the action network and the critic network are trained
simultaneously. Training strategies are as follows:

(1) First, the model is trained by an offline method and
the weight matrix of the model network is obtained.

(2) Taking x(𝑘) into the action network, u(𝑘) can be
obtained.

(3) Taking u(𝑘) and x(𝑘) into the model network, x̂(𝑘+1)
will be obtained.

(4) Taking x̂(𝑘+1) into the critic network, 𝜆̂[x(𝑘+1)] can
be obtained.

(5) Calculate the expected output value of the critic
network 𝜕+𝜂(𝑘)/𝜕x(𝑘).

(6) Next, calculate the value of 𝜕+𝜂(𝑘)/𝜕x(𝑘).
(7) Next, calculate and update the weights of the critic

network.
(8) Last, make 𝑘 = 𝑘 + 1 and go back to the second step

until 𝜆(𝑘) = 𝛾 ∗ 𝜆̂(𝑘 + 1) + 𝜕+𝜂(𝑘)/𝜕x(𝑘).
4. Simulation Analysis

4.1. Simulation Example Analysis. The molecular distillation
technology was also called short films. When enough energy
is obtained, the average free path that escapes from the surface
of a liquid of light molecules differs from that of heavy
molecules, which achieve the nonequilibrium liquid–liquid
separation process under high vacuum conditions [26].
The molecular distillation technology has advantages of
low temperature distillation, short heating time, and high
separation efficiency, and it is conducive to separate the
material, that is, high boiling point, heat sensitivity, and
high viscosity material separation. This technology is widely
used in food, medicine, oil processing, and petrochemical
industry [27–29]. Molecular distillation equipment can be
divided into four types: stationary, falling film, scraped film,
and centrifugal type [30]. At present, wiped film molecular
distillation is the most widely used technology in scientific
research and industrial production. The evaporation effect
of the molecular distillation system is not only related to
the size and shape of the evaporator and space, the distance
to the surface evaporation condensation, the manufacturing
process, and other types of equipment, but also connected
with the pressure within the parameters of the feed flow
rate, temperature of the evaporator, scraping, and other
devices running the motor speed film process parameters
[31]. In order to enhance the purification effect of molecular
distillation, Wang et al. found that the head wave has an
effect on the separation efficiency of molecular distillation
by the study of the head wave [32]. Micov et al. studied the
separation factors of the wiped film molecular distillation
process and established a one-dimensional mathematical
model [30]. Cvengros and Tkac established a mathematical
equation which can be used to calculate the one-dimensional
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Figure 5: BP network model fitting ability test.
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Figure 6: ELM network model fitting ability test.

analysis mathematical equation of micro unit movement
velocity in distillation equipment through theDSMCmethod
and summarized the effects of evaporation temperature,
distance, and vacuum degree and other related factors on
the separation results [33]. Wu studied the simulation of the
temperature, pressure, and reflux ratio on yield and purity
by using the central response surface method combined with
thin film evaporation and rectification coupling technology
[34]. Although much research has been made, there are still
many problems in molecular distillation system with mul-
tivariability, nonlinearity, strong coupling, and large delay.
Therefore, the effectiveness of the ELM-DHP algorithm was
verified by controlling the scraping filmmolecular distillation
system.

The current state variables of the molecular distillation
system are determined by the amount of state variables in the
preceding section of the system and the control variables in
the previous stage. So, distillation temperature, evaporation
pressure, wiper motor speed, feeding speed, and Schisandra
yield and purity of the front section were used as the input
of the ELM-DHP controller, and the current Schisandra
yield and purity were used as the output of the ELM-DHP
controller.

4.2. Simulation Comparison. The structures of the model
network, critic network, and action network were set as 6-
20-2, 2-14-2, and 2-5-4 through experiment, respectively. In
the process of system identification, the weight values of the
three networks between the input layer and the hidden layer
are selected in the range [−0.1, 01]. 600 groups of data are
collected to study, and 150 groups of data were used as the test
set. Firstly, we need to train the model network offline; the
least-squares solutions were calculated as the weight matrix
between the hidden layer and the output layer. Then, we
complete the training of the model network and keep its
weight unchanged. The 50 time steps of the model network
are shown in Figures 5 and 6.

Figures 5 and 6 show that the predicted values of the BP
network and the ELM algorithm are in good agreement with
the expected values. Figures 7 and 8 show that the maximum
error of the BP network in the prediction of the state is 0.4,
but the maximum error of ELM for the state prediction is
about 0.06. Thus, it can be concluded that ELM has higher
prediction accuracy and better generalization ability.

Parameter setting will affect the convergence speed of
the algorithm to a certain extent. After the experiment, the
discount factor was chosen as 𝛾 = 0.9. Next, the weights of
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Figure 7: BP network model prediction error.
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Figure 8: ELM network model prediction error.

the critic network and the action network from the hidden
layer to the output layer are calculated. Then, the training of
the critic network and action network is set to 150 steps with
100 training epochs for each step.

In addition, in order to compare with the HDP and DHP
technology based on BP neural network, controllers designed
by BP-HDP, BP-DHP, and ELM-DHP were proposed. Four
controllers are used to control the wiped film molecular
distillation system, respectively, and the 50 time steps of the
simulation results are shown in Figures 9–14. Figures 9–12
show that the control quantities of BP-HDP, BP-DHP, ELM-
HDP, and ELM-DHP controllers achieve stable control in
45 steps, 35 steps, 18 steps, and 7 steps individually. Thus,
it can be concluded that the HDP and DHP algorithms
based on ELM can achieve faster response speed. There will
be a larger fluctuation when the controlled variables of the
HDP controller achieve stability. So, it can be concluded
that the DHP algorithm has a higher stability. The results
of Figures 13 and 14 are shown in Table 1. The purification
effect increases with yield and purity and the best purification
effect is 100%, but it is impossible to achieve. It can be seen
in Table 1 that the optimal state quantities derived by ELM-
HDP and ELM-DHP were 5% higher than BP-HDP and BP-
DHP, and the optimal state of ELM-DHP is slightly higher
than that of ELM-HDP. In the above analysis, the superiority
and effectiveness of the ELM algorithm can be demonstrated
clearly.
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Figure 9: The molecular distillation temperature of optimum
control quantity.

5. Summary

For those problemswhich the BP-DHP algorithmhas, such as
poor prediction accuracy, slow convergence speed, and poor
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Figure 11:Thewiped filmmotor speed of optimum control quantity.

Table 1: Optimal state of controller.

BP-HDP BP-DHP ELM-HDP ELM-DHP
Yield (%) 91.95 92.39 96.58 97.35
Purity (%) 89.25 91.11 97.12 97.18

stability, the ELM-DHP algorithm was studied in this paper
to solve the datamodeling and optimal control problemof the
wiped film molecular distillation system with complex fea-
tures such as multivariability, strong coupling, nonlinearity,
and large time delay as an example.The ELM-DHP controller
was designed to control the molecular distillation system and
a simulation verification was carried out. When compared
with the ELM-HDP, BP-HDP, and BP-DHP algorithms, the
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Figure 12: The molecular distillation pressure of optimum control
quantity.
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Figure 13: The yield of optimum state.

prediction accuracy of ELM is higher than that of the
BP neural network, and the response speed and stability
of the ELM- HDP and ELM-DHP algorithms are higher
than those achieved by the BP network, which shows the
superiority of ELM. Compared with other algorithms, the
response speed of ELM-DHP is more than two times that
of the other algorithms, and the optimal state achieved by
ELM-DHP is closer to the ideal result. Thus, the ELM-DHP
algorithm is better than BP-HDP, BP-DHP, and ELM-HDP
algorithms. The ELM-DHP algorithm does not depend on
the specific mechanism model and is only in accordance
with the relevant experimental data, so the algorithm can
also solve the optimal control problem of similar complex
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systemswhich have features such asmultiple variables, strong
coupling, nonlinearity, and large time delay.
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