
Research Article
An Interval of No-Arbitrage Prices in Financial Markets with
Volatility Uncertainty

Hanlei Hu, Zheng Yin, andWeipeng Yuan

School of Economic and Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China

Correspondence should be addressed to Weipeng Yuan; yuan_weipeng@sina.com

Received 21 February 2017; Accepted 11 May 2017; Published 19 June 2017

Academic Editor: Honglei Xu

Copyright © 2017 Hanlei Hu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In financial markets with volatility uncertainty, we assume that their risks are caused by uncertain volatilities and their assets are
effectively allocated in the risk-free asset and a risky stock, whose price process is supposed to follow a geometric 𝐺-Brownian
motion rather than a classical Brownian motion. The concept of arbitrage is used to deal with this complex situation and we
consider stock price dynamics with no-arbitrage opportunities. For general European contingent claims, we deduce the interval
of no-arbitrage price and the clear results are derived in the Markovian case.

1. Introduction

Though many choice situations show uncertainty, owing
to the Ellsberg Parasox, the impacts of ambiguity aversion
on economic decisions are established and Beissner [1]
considered general equilibrium economies with a primitive
uncertainty model that features ambiguity about continuous-
time volatility. Under uncertainty,multiple priors can be used
to model decisions. Recently, these multiple priors mod-
els have attracted much attention. The decision theoretical
setting of multiple priors was introduced by Gilboa and
Schmeidler [2] and Artzner et al. [3] adapted it to monetary
risk measures. Afterwards, Maccheroni et al. [4] generalized
multiple priors to preferences. In diffusionmodels, Girsanov’s
theorem was employed to consider stochastic processes by
Chen and Epstein [5], but these multiple priors can only
lead to uncertainty. When these multiple priors are used in
finance areas, they result in drift uncertainty for stock prices.
In the risk-neutral world, whenwe assess financial claims, the
uncertainty of this drift will disappear.

Under the assumption of no arbitrage and volatility
uncertainty, Fernholz and Karatzas [6] considered to out-
perform the market. Compared with this, our paper is to
model volatility uncertain financial markets which have no
arbitrage. Epstein and Ji [7] or Vorbrink [8] used a specific
example to illustrate an uncertain volatility model. On the

basis of our predecessors, our paper solves a few basic prob-
lems of the volatility uncertainty in finance markets. Our aim
is to analyze the volatility uncertain financial markets and we
take advantage of the framework of sublinear expectation and
𝐺-Brownian motion which is introduced by Peng [9] to deal
with themodel in financial markets.The𝐺-Brownianmotion
is no longer a classical Brownianmotion.The construction of
stochastic integration, 𝐼𝑡𝑜’s lemma, and martingale theory is
utilized to the framework of 𝐺-Brownian motion. In order to
control the model risk, the 𝐺-Brownian motion is employed
to concern the model and evaluate claims by means of 𝐺-
expectation which is a sublinear expectation.

In our financial markets with volatility uncertainty, the
wealth is invested in risk-free asset and risky asset, in which
the risky asset, that is, stock 𝑆𝑡 and its price process 𝑆𝑡, is given
by the following geometric 𝐺-Brownian motion:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + ]𝑡𝑆𝑡𝑑𝐵𝑡, 𝑆0 = 𝑥0 > 0, (1)

where constant interest rate 𝑟 ⩾ 0 is an expected instanta-
neous return of the stock and ]𝑡 is the volatility of 𝑆 which
is associated with 𝑡. The canonical process 𝐵 = (𝐵𝑡) is a
𝐺-Brownian motion relating to a sublinear expectation 𝐸𝐺,
called 𝐺-expectation (see [9, 10] for a detailed construction).
The stochastic calculus with respect to 𝐺-Brownian motion
can also be established, especially 𝐼𝑡𝑜 integral [9]. The
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ordinarymartingales are replaced by𝐺-martingales. Denis et
al. [11] developed the 𝐺-framework of Peng [10] (see [12]) in
the framework of quasi-sure analysis. An upper expectation
of classical expectations is used to represent the sublinear
expectation 𝐸𝐺 established by Denis et al. [11]; that is to say,
there exists a set of probability measures P such that 𝐸𝐺[𝑋] =
sup𝑃∈P E

𝑃[𝑋].
In this paper, we prove that the considered financial

market does not admit any arbitrage opportunity, but it
allows for uncertain volatility. In our analysis, the notion
of 𝐺-martingale which replaces the notion of martingale in
classical probability theory plays a major role.

One of our aims is to solve

sup
𝑃∈P

E
𝑃 (𝐷𝑇𝑉𝑇) ,

sup
𝑃∈P

E
𝑃 (−𝐷𝑇𝑉𝑇) ,

(2)

where 𝑉𝑇 denotes the payoff of contingent claims at maturity
𝑇 and 𝐷𝑇 is a discounting. P presents a series of different
probability measures.

The stochastic environment can bring about a set of prob-
ability measures that are not equivalent but even mutually
singular. To illustrate this, let 𝐵 be a Brownian motion under
a measure 𝑃 and think about the processes 𝑆𝜎 fl (𝜎𝐵𝑡) and𝑆𝜎 fl (𝜎𝐵𝑡). Using 𝑃𝜎 = 𝑃 ∘ (𝑆𝜎)−1 and 𝑃𝜎 = 𝑃 ∘ (𝑆𝜎)−1, we
describe the distributions over continuous trajectories which
are induced by the two processes. These measures describe
two possible hypotheses of real probability measure which
drives the volatility uncertainty by (1). Therefore, we have

𝑃𝜎 ({⟨𝐵⟩𝑇 = 𝜎2𝑇}) = 1 = 𝑃𝜎 ({⟨𝐵⟩𝑇 = 𝜎2𝑇}) , (3)

where both priors are mutually singular.
The definition of trading strategy and portfolio process is

applied to obtain thewealth equation.Defining the concept of
no-arbitrage in financial markets and the hedging classes, we
gain the interval of no-arbitrage price for general European
contingent claims. Finally, the connection of the lower and
upper arbitrage prices is presented.

In such an ambiguous financial market, our subject
is to analyze the European contingent claim concerning
pricing and hedging. The asset pricing is extended to the
financial markets with volatility uncertainty. The notion of
no-arbitrage plays an important role in our analysis. Owing
to the fact that the volatility uncertainty leads to additional
source of risk, the classical definition of arbitrage will no
longer be adequate. For this reason, a new arbitrage definition
is presented to adjust ourmultiple priorsmodelwithmutually
singular priors which are shown in (3). In thismodified sense,
we confirm that our volatility uncertain financial markets do
not admit any arbitrage opportunity.

Utilizing the notion of no-arbitrage, we have obtained
several results, which provide us with a better economic
understanding of financial markets under volatility uncer-
tainty. For general contingent claims, we determine an inter-
val of no-arbitrage prices. The bounds of this interval are
the upper and lower arbitrage prices Vup and Vlow, which

are obtained as the expected value of the claim’s discounted
payoff with respect to 𝐺-expectation (see (2)). They specify
the lowest initial capital. We use the capital to hedge a short
position in the claim or long position, respectively. Generally
speaking, because 𝐸𝐺 is a sublinear expectation, we have
Vlow ̸= Vup. This verifies the market’s incompleteness. In
a few words, no arbitrage will be generated when price is
in the interval (Vlow, Vup) for a European contingent claim.
In Section 4, when the contingent claim’s payoff is only
determined by the current stock price, we deduce a more
clear structure about the upper and lower arbitrage prices by
a partial differential equation (PDE for short). We derive an
explicit representation for the corresponding supper-hedging
strategies and consumption plans. Given the special situation
when the payoff function shows convexity (concavity), the
upper arbitrage price solves the classical Black-Scholes PDE
with a volatility equal to 𝜎(𝜎), and vice versa concerning the
lower arbitrage price.

The novelties of this paper are that the volatility of 𝑆 in our
model is a variable which is related to 𝑡. This is different from
works of Vorbrink [8] in which the volatility of 𝑆 is a constant.
We employ the 𝐺-framework including 𝐺-expectation, 𝐺-
Brownian motion, and the concept of arbitrage to study the
financial markets with volatility uncertainty; we gain the
interval of no arbitrage, which is different from that in Denis
and Martini [12].

This paper is organized as follows. Section 2 introduces
the financial markets. We focus on and extend the terminol-
ogy from mathematical finance. Section 3 applies a series of
definitions and lemmas to derive the interval of no arbitrage.
Section 4 restricts us to the Markovian case and derives
results which are analogy to those in Avellaneda et al. [13] or
Vorbrink [8]. Conclusions are given in Section 5.

2. The Market Model and
the Mathematical Setting

2.1. 𝐺-Brownian Motion and the Multiple Priors Setting. In
the whole paper, the one-dimensional case is considered and
we fix an interval [𝜎, 𝜎] with 𝜎 > 0. This interval describes
the volatility uncertainty. 𝜎 and 𝜎 denote a lower and upper
bound for volatility, respectively.

Definition 1 (see [9]). Let Ω ̸= 0 be a given set. Let H be a
linear space of real valued functions defined onΩwith 𝑐 ∈ H

for all constants 𝑐, and |𝑋| ∈ H if 𝑋 ∈ H. (H is considered
as the space of random variables.) A sublinear expectation 𝐸
on H is a functional 𝐸 : H → R satisfying the following
properties: for any𝑋,𝑌 ∈ H, it has

(1) Monotonicity: if 𝑋 ⩾ 𝑌 then 𝐸(𝑋) ⩾ 𝐸(𝑌).
(2) Constant preserving: 𝐸(𝑐) = 𝑐.
(3) Subadditivity: 𝐸(𝑋 + 𝑌) ⩽ 𝐸(𝑋) + 𝐸(𝑌).
(4) Positive homogeneity: 𝐸(𝜇𝑋) = 𝜇𝐸(𝑋) ∀𝜇 ⩾ 0.

The triple (Ω,H, 𝐸) is called a sublinear expectation space.
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Definition 2 (see [10] (𝐺-normal distribution)). In a sublinear
expectation space (Ω,H, 𝐸), a random variable 𝑋 is called
(centralized) 𝐺-normal distributed if for any 𝑎, 𝑏 ⩾ 0

𝑎𝑋 + 𝑏𝑋 ∼ √𝑎2 + 𝑏2𝑋, (4)

where 𝑋 is an independent copy of 𝑋. Here the letter 𝐺
denotes the function

𝐺 (𝑎) fl 1
2𝐸 (𝑎𝑋2) : R → R. (5)

Note that 𝑋 has no mean-uncertainty; that is, it has
𝐸(𝑋) = 𝐸(−𝑋) = 0. Moreover, the following important
identity holds:

𝐺 (𝑎) = 1
2𝜎

2𝑎+ − 1
2𝜎

2𝑎− (6)

with 𝜎2 fl −𝐸(−𝑋2) and 𝜎2 fl 𝐸(𝑋2). We write that 𝑋 is
𝑁({0}×[𝜎2, 𝜎2]) distributed.Therefore, we say that𝐺-normal
distribution is characterized by the parameters 0 < 𝜎 ⩽ 𝜎.
Remark 3 (see [10]). The random variable𝑋which is defined
in (4) is generated by the following parabolic PDE defined in
[0, 𝑇] ×R.

For any 𝐶𝑙,𝐿𝑖𝑝(R), define 𝑢(𝑡, 𝑥) fl 𝐸[𝜑(𝑥 +√𝑡𝑋)]; then 𝑢
is the unique (viscosity) solution of

𝜕𝑡𝑢 − 𝐺 (𝜕𝑥𝑥𝑢) = 0, 𝑢|𝑡=0 = 𝜑. (7)

Equation (7) is called a 𝐺-equation.
Definition 4 (see [10] (𝐺-Brownian motion)). A process
(𝐵𝑡)𝑡⩾0 in a sublinear expectation space (Ω,H, 𝐸) is called a
𝐺-Brownian motion if the following properties are satisfied:

(i) 𝐵0 = 0.
(ii) For each 𝑡, 𝑠 ⩾ 0 the increment 𝐵𝑡+𝑠 − 𝐵𝑡 is

𝑁({0} × [𝜎2𝑠, 𝜎2𝑠]) distributed and independent from
(𝐵𝑡1 , 𝐵𝑡2 , . . . , 𝐵𝑡𝑛) for each 𝑛 ∈ N, 0 ⩽ 𝑡1 ⩽ ⋅ ⋅ ⋅ 𝑡𝑛 ⩽ 𝑡.

Condition (ii) can be replaced by the following three condi-
tions giving a characterization of 𝐺-Brownian motion:

(i) For each 𝑡, 𝑠 ⩾ 0 : 𝐵𝑡+𝑠 − 𝐵𝑡 ∼ 𝐵𝑡 and 𝐸(|𝐵𝑡|3)/𝑡 → 0
as 𝑡 → 0.

(ii) The increment 𝐵𝑡+𝑠 − 𝐵𝑡 is independent from
(𝐵𝑡1 , 𝐵𝑡2 , . . . , 𝐵𝑡𝑛) for each 𝑛 ∈ N, 0 ⩽ 𝑡1 ⩽ ⋅ ⋅ ⋅ 𝑡𝑛 ⩽ 𝑡.

(iii) 𝐸(𝐵𝑡) = −𝐸(−𝐵𝑡) = 0, ∀𝑡 ⩾ 0.
For each 𝑡0 > 0, it has that (𝐵𝑡+𝑡0 −𝐵𝑡0)𝑡⩾0 is a𝐺-Brownian

motion.
Let us briefly depict the construction of 𝐺-expectation

and its corresponding 𝐺-Brownian motion. As in the pre-
vious sections, we fix a time horizon 𝑇 > 0 and set Ω𝑇 =
𝐶0([0, 𝑇],R)-the space of all real valued continuous paths
starting at zero. Considering the canonical process 𝐵𝑡(𝜔) fl
𝜔𝑡, 𝑡 ⩽ 𝑇, 𝜔 ∈ Ω, we define

𝐿 𝑖𝑝 (Ω𝑇) fl {𝜑 (𝐵𝑡1 , . . . , 𝐵𝑡𝑛) | 𝑛 ∈ N, 𝑡1, . . . , 𝑡𝑛
∈ [0, 𝑇] , 𝜑 ∈ 𝐶𝑙,𝐿𝑖𝑝 (R𝑛)} .

(8)

A 𝐺-Brownian motion is firstly constructed in 𝐿 𝑖𝑝(Ω𝑇). For
this purpose, let (𝜉𝑖)𝑖∈N be a sequence of random variables
in a sublinear expectation space (Ω̃, H̃, 𝐸) such that 𝜉𝑖 is 𝐺-
normal distributed and 𝜉𝑖+1 is independent of (𝜉1, . . . , 𝜉𝑖) for
each integer 𝑖 ⩾ 1. Then a sublinear expectation in 𝐿 𝑖𝑝(Ω𝑇)
is constructed by the following procedure: for each 𝑋 ∈
𝐿 𝑖𝑝(Ω𝑇) with 𝑋 = 𝜑(𝐵𝑡1 − 𝐵𝑡0 , 𝐵𝑡2 − 𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1) for
some 𝜑 ∈ 𝐶𝑙,𝐿𝑖𝑝(R𝑛), 0 ⩽ 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 ⩽ 𝑇, set
𝐸𝐺 [𝜑 (𝐵𝑡1 − 𝐵𝑡0 , 𝐵𝑡2 − 𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1)]

fl 𝐸 [𝜑 (√𝑡1 − 𝑡0𝜉1, √𝑡2 − 𝑡1𝜉2, . . . , √𝑡𝑛 − 𝑡𝑛−1𝜉𝑛)] .
(9)

The related conditional expectation of 𝑋 ∈ 𝐿 𝑖𝑝(Ω𝑇) as
above under Ω𝑡𝑖 , 𝑖 ∈ N, is defined by

𝐸𝐺 [𝜑 (𝐵𝑡1 − 𝐵𝑡0 , 𝐵𝑡2 − 𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1) | Ω𝑡𝑖]
fl 𝜓 (𝐵𝑡1 − 𝐵𝑡0 , . . . , 𝐵𝑡𝑖 − 𝐵𝑡𝑖−1) ,

(10)

where 𝜓(𝑥1, . . . , 𝑥𝑖) fl 𝐸[𝜑(𝑥1, . . . , 𝑥𝑖, √𝑡𝑖+1 − 𝑡𝑖𝜉𝑖+1, . . . ,
√𝑡𝑛 − 𝑡𝑛−1𝜉𝑛)]. One checks that 𝐸𝐺 consistently defines a
sublinear expectation in 𝐿 𝑖𝑝(Ω𝑇) and the canonical process
𝐵 represents a 𝐺-Brownian motion.

Let Θ fl [𝜎, 𝜎] andAΘ
0,𝑇 be the collection of all Θ-valued

(F𝑡)-adapted processes on [0, 𝑇]. We write

𝐵0,𝜎
𝑡 fl ∫𝑡

0
𝜎𝑠𝑑𝐵𝑠, (11)

and 𝑃𝜎 as the law of 𝐵0,𝜎 = ∫⋅
0 𝜎𝑠𝑑𝐵𝑠; that is, 𝑃𝜎 = 𝑃0 ∘ (𝐵0,𝜎)−1

is distribution over trajectories. Let the set of multiple priors
P be the closure of {𝑃𝜎 | 𝜎 ∈ AΘ

0,𝑇} under the topology of
weak convergence.

Theorem 5 (see [8]). For any 𝜑 ∈ 𝐶𝑙,𝐿𝑖𝑝(R𝑛), 𝑛 ∈ N, 0 ⩽ 𝑡1 ⩽
⋅ ⋅ ⋅ ⩽ 𝑡𝑛 ⩽ 𝑇, it holds that

𝐸𝐺 [𝜑 (𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1)]
= sup

𝜃∈AΘ0,𝑇

E
𝑃 [𝜑 (𝐵0,𝜃

𝑡1
, . . . , 𝐵𝑡𝑛−1 ,𝜃

𝑡𝑛 )]

= sup
𝜃∈AΘ0,𝑇

𝐸𝑃𝜃 [𝜑 (𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1)]

= sup
𝑃𝜃∈P

𝐸𝑃𝜃 [𝜑 (𝐵𝑡1 , . . . , 𝐵𝑡𝑛 − 𝐵𝑡𝑛−1)] .

(12)

Furthermore,

𝐸𝐺 (𝑋) = sup
𝑃𝜃∈P

E
𝑃 (𝑋) , ∀𝑋 ∈ 𝐿1

𝐺 (Ω𝑇) . (13)

We use the set of priors P to define the𝐺-expectation 𝐸𝐺.
It is given by

𝐸𝐺 (𝑋) = sup
𝑃∈P

E
𝑃 (𝑋) , (14)
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where𝑋 is any random variable. So the𝐺-expectation can be
defined. Relative to the 𝐺-expectation, the space of random
variable is denoted by 𝐿1

𝐺(Ω𝑇).
In this paper, we consider the tuple as (Ω𝑇,F, (F𝑡),P)

and the canonical process 𝐵 = (𝐵𝑡) is a𝐺-expectationmotion
with respect to P as given in the previous. The 𝐺-framework
enables the analysis of stochastic processes for all priors of P.
The terminology of “𝑞𝑢𝑎𝑠𝑖-𝑠𝑢𝑟𝑒𝑙𝑦” (q.s.) is proved to be very
useful.

Unless there are special instructions, all equations should
also be understood as “quasi-sure.” This means a property
almost surely for all conceivable scenarios.

As mentioned in the preceding, 𝐺-expectation can be
defined in the space 𝐿𝑝

𝐺(Ω𝑇), 𝑝 ⩾ 1. It is the completion
of C𝑏(Ω𝑇), the set of bounded continuous functions on Ω𝑇
under the norm ‖𝜉‖ fl (𝐸𝐺[|𝜉|2])1/2 < ∞. Because the
stochastic integrals are required to define trading strategies
in the next sections, we briefly introduce the basic concepts
about stochastic calculus and the construction of Itô integral
with respect to 𝐺-Brownian motion.

For 𝑝 ⩾ 1, let 𝑀𝑝,0
𝐺 (0, 𝑇) be the collection of simple

processes 𝜂 of the following form: for a given partition [0, 𝑇],
{𝑡0, 𝑡1, . . . , 𝑡𝑁}, 𝑁 ∈ N, for any 𝑡 ∈ [0, 𝑇] the process 𝜂 is
defined by

𝜂𝑡 (𝜔) fl
𝑁−1

∑
𝑗=0

𝜉𝑖 (𝜔) 1[𝑡𝑗 ,𝑡𝑗+1) (𝑡) , (15)

where 𝜉𝑖(𝜔) ∈ 𝐿𝑝
𝐺(Ω𝑡𝑖), 𝑖 = 0, 1, . . . , 𝑁 − 1. For each 𝜂 ∈

𝑀𝑝,0
𝐺 (0, 𝑇), let

𝜂𝑀𝑝𝐺 fl (𝐸𝐺 ∫𝑇

0

𝜂𝑠𝑝 𝑑𝑠)
1/𝑝

. (16)

We denote by𝑀𝑝,0
𝐺 (0, 𝑇) the completion of𝑀𝑝,0

𝐺 (0, 𝑇) under
the norm ‖ ⋅ ‖𝑀𝑝𝐺 .
Definition 6 (see [14]). For 𝜂 ∈ 𝑀2,0

𝐺 (0, 𝑇) with the pre-
sentation in (15), the integral mapping is defined by 𝐼 :
𝑀2,0

𝐺 (0, 𝑇) → 𝐿2
𝐺(Ω𝑇) and

𝐼 (𝜂) = ∫𝑇

0
𝜂 (𝑠) 𝑑𝐵𝑠 fl

𝑁−1

∑
𝑗=0

𝜉𝑖 (𝐵𝑡𝑗+1 − 𝐵𝑡𝑗) . (17)

We consider the quadratic variation process (⟨𝐵⟩𝑡) of 𝐺-
Brownian motion. It has

⟨𝐵⟩𝑡 = 𝐵2
𝑡 − 2∫𝑡

0
𝐵𝑠𝑑𝐵𝑠, ∀𝑡 ⩽ 𝑇. (18)

It is a continuous, increasing process, absolutely continuous
with respect to 𝑑𝑡. It contains all the statistical uncertainty of
the 𝐺-Brownian motion. For 𝑠, 𝑡 ⩾ 0 we have ⟨𝐵⟩s+𝑡 − ⟨𝐵⟩𝑠 ∼
⟨𝐵⟩𝑡 and it is independent ofΩ𝑠.

Definition 7 (see [9]). Let 𝑥 ∈ R, 𝑧 ∈ 𝑀2
𝐺(0, 𝑇) and 𝜂 ∈

𝑀1
𝐺(0, 𝑇). Then the process

𝑀𝑡 fl 𝑥 + ∫𝑡

0
𝑧𝑠𝑑𝐵𝑠 + ∫𝑡

0
𝜂𝑠𝑑 ⟨𝐵⟩𝑠 − ∫𝑡

0
2𝐺 (𝜂𝑠) 𝑑𝑠,

𝑡 ⩽ 𝑇,
(19)

is a 𝐺-martingale.

Specially, the nonsymmetric part −𝐾𝑡 fl ∫𝑡
0 𝜂𝑠𝑑⟨𝐵⟩𝑠 −

∫𝑡
0 2𝐺(𝜂𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇], is a 𝐺-martingale, which is quite a
surprising result because (−𝐾𝑡) is continuous, nonincreasing
with quadratic variation equal to zero.

Remark 8 (see [15]). 𝑀 is a symmetric 𝐺-martingale if and
only if 𝐾 ≡ 0.
Theorem 9 (see [15] (martingale representation)). Let 𝛼 ⩾ 0
and 𝜉 ∈ 𝐿𝛼

𝐺(Ω𝑇). Then the 𝐺-martingale 𝑋 with 𝑋𝑡 fl 𝐸𝐺(𝜉 |
F𝑡), 𝑡 ∈ [0, 𝑇], has the following unique representation:

𝑋𝑡 = 𝑋0 + ∫𝑡

0
𝑧𝑠𝑑𝐵𝑠 − 𝐾𝑡, (20)

where𝐾 is a continuous, increasing process with𝐾0 = 0,𝐾𝑇 ∈
𝐿𝛽

𝐺(Ω𝑇), 𝑧 ∈ 𝐻𝛽
𝐺(0, 𝑇), ∀𝛽 ∈ [1, 𝛼), and −𝐾 a 𝐺-martingale.

If 𝛼 = 2 and 𝜉 bounded from above, 𝑧 ∈ 𝑀2
𝐺(0, 𝑇) and

𝐾𝑇 ∈ 𝐿2
𝐺(Ω𝑇) (see [14]).

A construction of the stochastic integral for the domain
𝐻𝑝

𝐺(0, 𝑇), 𝑝 ⩾ 1 is established by Song [15]. Although the
structure of these spaces is similar as before, the norm for
completion is different and the random variables 𝜉𝑖(𝜔) in
(15) are elements of a subset of 𝐿𝑝

𝐺(Ω𝑡𝑖). We will also use
the domain 𝐻1

𝐺(0, 𝑇) which is necessary for the martingale
representation in the 𝐺-framework (see Theorem 9). For
𝑝 = 2, both domains coincide (see Song [15]). As a
consequence, we can define the stochastic integral since
𝑀2

𝐺(0, 𝑇) is contained in 𝐻1
𝐺(0, 𝑇). In financial fields, more

trading strategies will be feasible.

2.2. The Financial Market Model. We consider the following
financial market M which includes a risk-free asset and a
single risky asset and two assets are traded continuously over
[0, 𝑇]. Assume that the risk-free asset is a bond and its interest
rate is 𝑟. So the discount process 𝐷𝑡 can be defined to satisfy
the following formula:

𝑑𝐷𝑡 = −𝑟𝐷𝑡𝑑𝑡, 𝐷0 = 1, (21)

where constant 𝑟 ⩾ 0 is the interest rate of the riskless bond
as in the classical theory.

Assume that the risky asset is a stock with price 𝑆𝑡 at time
𝑡, whose price process 𝑆𝑡 is given by the following equation:

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + ]𝑡𝑆𝑡𝑑𝐵𝑡, 𝑆0 = 𝑥0 > 0, (22)

where 𝐵 = (𝐵𝑡) denotes the canonical process which is
a 𝐺-Brownian motion under 𝐸𝐺 or P, respectively, with
parameters 𝜎 > 𝜎 > 0.
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Since 𝐵 = (𝐵𝑡) is a 𝐺-Brownian motion, the volatility
of 𝑆 is related to 𝑡 which is different from that of Vorbrink
[8], where the volatility of stock price is a constant 1.
Consequently, the stock price evolution involves not only risk
modeled by the noise part but also ambiguity about the risk
due to the unknown deviation of the process𝐵 from its mean.
According to financial fields, this ambiguity is called volatility
uncertainty.

Comparedwith the classical stock price process, (22) does
not contain any volatility parameter 𝜎. This is due to the
characteristics of the 𝐺-Brownian motion 𝐵. Apparently, if
we choose 𝜎 = 𝜎 = 𝜎, then we will be in the classical Black-
Scholes model.

Remark 10. Take notice of the discounted stock price process
(𝐷𝑡𝑆𝑡) which is a symmetric 𝐺-martingale relative to the
corresponding 𝐺-expectation 𝐸𝐺. As everyone knows, both
the pricing and hedging of contingent claims are treated
under a risk-neutral measure. This leads to a favorable
situation in which the discounted stock price process is a
(local) martingale [16]. In our ambiguous setting, this is
also allowed. In order to model (𝐷𝑡𝑆𝑡) as a symmetric 𝐺-
martingale (see Definition 7), we do not need to change the
sublinear expectation. A symmetric𝐺-martingale is required
to make sure that the stock is the same for all participants,
whether they sell or buy.

Definition 11 (see [17]). In the marketM, a trading strategy is
an (F𝑡)-adapted vector process (𝛼, 𝛽) = (𝛼𝑡, 𝛽𝑡), 𝛽 a member
of 𝐻1

𝐺(0, 𝑇) such that (𝛽𝑡𝑆𝑡) ∈ 𝐻1
𝐺(0, 𝑇), and 𝛼𝑡 ∈ R for all

𝑡 ⩽ 𝑇.
A cumulative consumption process {𝐶 = (𝐶𝑡), 0 ⩽

𝑡 ⩽ 𝑇} is a nonnegative (F𝑡)-adapted process with values in
𝐿1

𝐺(Ω𝑇), and with increasing, right-continuous, and 𝐶0 = 0,
𝐶𝑇 < ∞ q.s.

A basic assumption in the market M is that the stock
price process 𝑆𝑡 defined by (22) is an element of 𝑀2

𝐺(0, 𝑇) =
𝐻2

𝐺(0, 𝑇). We impose the so-called self-financing condition.
In other words, consumption and trading inM satisfy

𝐻𝑡 fl 𝐷−1
𝑡 𝛼𝑡 + 𝛽𝑡𝑆𝑡

= 𝛼0𝐷−1
0 + 𝛽0𝑆0 + ∫𝑡

0
𝛼𝑢𝑑𝐷−1

𝑢 + ∫𝑡

0
𝛽𝑢𝑑𝑆𝑢 − 𝐶𝑡,

∀𝑡 ⩽ 𝑇 q.s.,

(23)

where 𝐻𝑡 denotes the value of the trading strategy at time 𝑡.
The meaning of (23) is that, starting with an initial amount
𝐷−1

0 𝛼0+𝛽0𝑆0 of wealth, all changes in wealth are due to capital
gains (appreciation of stocks and interest from the bond),
minus the amount consumed. The q.s. means quasi-surely,
which is the same as before.

For economic and mathematical considerations, it is
more appropriate to introduce wealth and a portfolio process
which presents the proportions of wealth invested in the risky
stock.

Remark 12 (see [17]). A portfolio process 𝜋 represents pro-
portions of a wealth 𝑋 which is invested in the stock. If we
define

𝛽𝑡 fl
𝑋𝑡𝜋𝑡

𝑆𝑡 ,
𝛼𝑡 fl 𝑋𝑡𝐷𝑡 (1 − 𝜋𝑡) ,

∀𝑡 ⩽ 𝑇,
(24)

then we have 𝑋𝑡 = 𝐻𝑡. As long as 𝜋 constitutes a portfolio
process with corresponding wealth process 𝑋, the (𝛼, 𝛽) is a
trading strategy in the sense of (23).

Definition 13 (see [8]). A portfolio process is an (F𝑡)-adapted
real valued process if 𝜋 = 𝜋𝑡 with values in 𝐿1

𝐺(Ω𝑇).
Definition 14. For a given initial capital𝑚, a portfolio process
𝜋, and a cumulative consumption process 𝐶, consider the
wealth equation

𝑑𝑋𝑡 = 𝑋𝑡 (1 − 𝜋𝑡)𝐷𝑡𝑑𝐷−1
𝑡 + 𝑋𝑡𝜋𝑡

𝑑𝑆𝑡
𝑆𝑡 − 𝑑𝐶𝑡

= 𝑋𝑡𝑟𝑑𝑡 + 𝑋𝑡𝜋𝑡]𝑡𝑑𝐵𝑡 − 𝑑𝐶𝑡

(25)

with initial wealth𝑋0 = 𝑚. Or equivalently,

𝐷𝑡𝑋𝑡 = 𝑚 − ∫𝑡

0
𝐷𝑢𝑑𝐶𝑢 + ∫𝑡

0
𝐷𝑢𝑋𝑢𝜋𝑢]𝑢𝑑𝐵𝑢,

∀𝑡 ⩽ 𝑇.
(26)

If this equation has a unique solution 𝑋 = (𝑋𝑡) fl 𝑋𝑚,𝜋,𝐶,
then it is called the wealth process corresponding to the triple
(𝑚, 𝜋, 𝐶).

In the setup of Definition 14, notice that the
∫𝑇
0 𝑋𝑡

2𝜋𝑡
2]𝑡

2𝑑𝑡 < ∞ must hold quasi-surely. Thus, we
need to impose requirements (𝜋𝑡𝑋𝑡]𝑡) ∈ 𝐻𝑝

𝐺(0, 𝑇) 𝑝 ⩾ 1, or
(𝜋𝑡𝑋𝑡]𝑡) ∈ 𝑀𝑝

𝐺(0, 𝑇), 𝑝 ⩾ 2.
Definition 15. A portfolio/consumption process pair (𝜋, 𝐶) is
called admissible for an initial capital𝑚 ∈ R if

(i) the pair obeys the conditions of Definitions 11, 13, and
14,

(ii) (𝜋𝑡𝑋𝑚,𝜋,𝐶
𝑡 ]𝑡) ∈ 𝐻1

𝐺(0, 𝑇),
(iii) the solution𝑋𝑚,𝜋,𝐶

𝑡 satisfies

𝑋𝑚,𝜋,𝐶
𝑡 ⩾ −𝐽, ∀𝑡 ⩽ 𝑇, q.s., (27)

where 𝐽 is a nonnegative random variable in 𝐿2
𝐺(Ω𝑇).

We then have (𝜋, 𝐶) ∈ A(𝑚).
In the above Definitions 11 and 13–15, it is necessary

to guarantee that the financial fields and related stochastic
analysis can be well defined. In particular, condition (ii) of
Definition 15 makes sure that the mathematical framework
does not collapse by allowing for many portfolio processes.
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3. Arbitrage and Contingent Claims

Definition 16 (see [8] (arbitrage in M)). We say that there is
an arbitrage opportunity inM if there exist an initial wealth
𝑚 ⩽ 0 and an admissible pair (𝜋, 𝐶) ∈ A(𝑚) with 𝐶 ≡ 0 such
that, at some time 𝑇 > 0,

𝑋𝑚,𝜋,0
𝑇 ⩾ 0 q.s.,

𝑃 (𝑋𝑚,𝜋,0
𝑇 > 0) > 0 for at least one 𝑃 ∈ P. (28)

Lemma 17 (no arbitrage). In the financial market M, there
does not exist any arbitrage opportunity.

Proof. Assume that there exists an arbitrage opportunity; that
is to say, there exist 𝑚 ⩽ 0 and a pair (𝜋, 𝐶) ∈ A(𝑚) with
𝐶 ≡ 0 such that𝑋𝑚,𝜋,0

𝑇 ⩾ 0 quasi-surely for some 𝑇 > 0. Then
we have 𝐸𝐺(𝑋𝑚,𝜋,0

𝑇 ) ⩾ 0. By definition of the wealth process,
it has

0 ⩽ 𝐸𝐺 (𝐷𝑇𝑋𝑚,𝜋,0
𝑇 )

⩽ 𝑚 + 𝐸𝐺 (∫𝑇

0
𝐷𝑡𝑋𝑚,𝜋,0

𝑡 𝜋𝑡]𝑡𝑑𝐵𝑡) = 𝑚.
(29)

Since the 𝐺-expectation of an integral with respect to 𝐺-
Brownian motion is zero, we have 𝐸𝐺(𝐷𝑇𝑋𝑚,𝜋,0

𝑇 ) = 0.
This implies 𝐷𝑇𝑋𝑚,𝜋,0

𝑇 = 0 q.s. Therefore, (𝑚, 𝜋, 0) cannot
constitute an arbitrage.

In the financial market M, we consider a European
contingent claim 𝑉 and assume that its payoff at maturity
time 𝑇 is 𝑉𝑇. Here, 𝑉𝑇 represents a nonnegative,F𝑡-adapted
random variable. Regardless of any time, we impose the
assumption 𝑉𝑇 ∈ 𝐿2

𝐺(Ω𝑇). The price of the claim at time 0
is denoted by𝑉0. For the sake of finding reasonable prices for𝑉, we need to utilize the concept of arbitrage. Considering
that the financial market (M, 𝑉) contains the original market
M and the contingent claim 𝑉. Similar to the above, an
arbitrage opportunity needs to be defined in the financial
market (M, 𝑉).
Definition 18 (see [17] (arbitrage in (M, 𝑉))). We say that
there is an arbitrage opportunity in (M, 𝑉) if there exist an
initial wealth 𝑚 ⩾ 0 (𝑚 ⩽ 0, resp.), an admissible pair
(𝜋, 𝐶) ∈ A(𝑚), and a constant 𝑎 = −1 (𝑎 = 1, resp.), such
that

𝑚 + 𝑎 ⋅ 𝑉0 ⩽ 0 (30)

at time 0, and

𝑋𝑚,𝜋,𝐶
𝑇 + 𝑎 ⋅ 𝑉𝑇 ⩾ 0 q.s.,

𝑃 (𝑋𝑚,𝜋,𝐶
𝑇 + 𝑎 ⋅ 𝑉𝑇 > 0) > 0 for at least one 𝑃 ∈ P

(31)

at time 𝑇.
The values 𝑎 = ±1 in Definition 18 indicate short or

long positions in the claims 𝑉, respectively. This definition
of arbitrage is standard in the literature [17]. For the same

reasons as before, we again require quasi-sure dominance for
the wealth at time 𝑇 and again with positive probability for
only one possible scenario.

In the following, we show that there exist no-arbitrage
prices for a claim 𝑉. Under these prices, there is no-
arbitrage opportunity. Because the uncertainty caused by the
quadratic variation cannot be dispelled, generally speaking,
there is no self-financing portfolio strategy which replicates
the European claim or a risk-free hedge for the claim in our
ambiguous marketM.

Roughly stated, since there is only one kind of situation
where stocks will be traded, the measures induced by the 𝐺-
framework result in market’s incompleteness.

Definition 19 (see [17]). Given a European contingent claim
𝑉, the upper hedging class is defined by

U fl {𝑚 ⩾ 0 | ∃ (𝜋, 𝐶) ∈ A (𝑚) : 𝑋𝑚,𝜋,𝐶
𝑇 ⩾ 𝑉𝑇 q.s.} (32)

and the lower hedging class is defined by

L fl {𝑚 ⩾ 0 | ∃ (𝜋, 𝐶) ∈ A (−𝑚) : 𝑋−𝑚,𝜋,𝐶
𝑇

⩾ −𝑉𝑇 q.s.} .
(33)

In addition, the upper arbitrage price is defined by

Vup fl inf {𝑚 | 𝑚 ∈ U} (34)

and the lower arbitrage price is defined by

Vlow fl sup {𝑚 | 𝑚 ∈ L} . (35)

Lemma 20 (see [17]). 𝑚1 ∈ L and 0 ⩽ 𝑛1 ⩽ 𝑚1 implies
𝑛1 ∈ L. Analogously, 𝑚2 ∈ U and 𝑛2 ⩾ 𝑚2 implies 𝑛2 ∈ U.

The proof uses the idea that one “just consumes immedi-
ately the difference between the two initial wealth” (see [17]
for the complete proof process).

For any 𝜎 ∈ [𝜎, 𝜎], we define the Black-Scholes price of a
European contingent claim 𝑉 as follows:

𝑢𝜎
0 = 𝐸𝑃𝜎 (𝐷𝑇𝑉𝑇) . (36)

Similar to the constrained circumstances [17], we prove
the next three lemmas which are related to the European
contingent claim 𝑉.
Lemma 21. For any 𝜎 ∈ [𝜎, 𝜎], it holds that 𝑢𝜎

0 belongs to the
interval [V𝑙𝑜𝑤, V𝑢𝑝].
Proof. Let 𝑚 ∈ U. From the definition of U, we know that
there exists a pair (𝜋, 𝐶) ∈ A(𝑚) such that 𝑋𝑚,𝜋,𝐶

𝑇 ⩾ 𝑉𝑇
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q.s. Employing the properties of 𝐺-expectation as stated in
Definition 1, we obtain for any 𝜎 ∈ [𝜎, 𝜎] that

𝑚 = 𝐸𝐺 (𝑚 + ∫𝑇

0
𝐷𝑡𝑋𝑚,𝜋,𝐶

𝑡 𝜋𝑡]𝑡𝑑𝐵𝑡)

⩾ 𝐸𝐺 (𝑚 + ∫𝑇

0
𝐷𝑡𝑋𝑚,𝜋,𝐶

𝑡 𝜋𝑡]𝑡𝑑𝐵𝑡 − ∫𝑇

0
𝐷𝑡𝑑𝐶𝑡)

= 𝐸𝐺 (𝐷𝑇𝑋𝑚,𝜋,𝐶
𝑇 ) ⩾ 𝐸𝐺 (𝐷𝑇𝑉𝑇) = sup

𝑃∈P
E

𝑃 (D𝑇𝑉𝑇)
⩾ 𝑢𝜎

0 .

(37)

Therefore, 𝑢𝜎
0 ⩽ 𝑚. We know Vup fl inf{𝑚 | 𝑚 ∈ U}; hence,

𝑢𝜎
0 ⩽ Vup.
Analogously, let 𝑚 ∈ L. By definition of L, there exists

a pair (𝜋, 𝐶) ∈ A(−𝑚) such that 𝑋−𝑚,𝜋,𝐶
𝑇 ⩾ −𝑉𝑇 q.s. For the

same reason, we obtain for any 𝜎 ∈ [𝜎, 𝜎] that
−𝑚 = 𝐸𝐺 (−𝑚 + ∫𝑇

0
𝐷𝑡𝑋−𝑚,𝜋,𝐶

𝑡 𝜋𝑡]𝑡𝑑𝐵𝑡)

⩾ 𝐸𝐺 (−𝑚 + ∫𝑇

0
𝐷𝑡𝑋−𝑚,𝜋,𝐶

𝑡 𝜋𝑡]𝑡𝑑𝐵𝑡 − ∫𝑇

0
𝐷𝑡𝑑𝐶𝑡)

= 𝐸𝐺 (𝐷𝑇𝑋−𝑚,𝜋,𝐶
𝑇 ) ⩾ 𝐸𝐺 (−𝐷𝑇𝑉𝑇)

⩾ −𝐸𝑃𝜎 (−𝐷𝑇𝑉𝑇) = −𝑢𝜎
0 .

(38)

Therefore, 𝑚 ⩽ 𝑢𝜎
0 . We know Vlow fl sup{𝑚 | 𝑚 ∈ L}; hence,

Vlow ⩽ 𝑢𝜎
0 .

Lemma 22. For any price 𝑉0 > V𝑢𝑝, there exists an arbitrage
opportunity. Also for any price 𝑉0 < V𝑙𝑜𝑤, there exists an
arbitrage opportunity.

Proof. The idea of proving this lemma comes from [8]. We
only consider the case𝑉0 < Vlow since the argument is similar.
Assume 𝑉0 < Vlow, 𝑚 ⩽ 0 and let −𝑚 ∈ (𝑉0, Vlow). By
definition of Vlow and Lemma 20, we deduce that −𝑚 ∈ L.
Hence, there exists a pair (𝜋, 𝐶) ∈ A(−𝑚) with

𝑋−𝑚,𝜋,𝐶
𝑇 ⩾ −𝑉𝑇 q.s.,

−𝑚 − 𝑉0 > 0. (39)

This implies the existence of arbitrage in the sense of Defi-
nition 18. If ∃0 < 𝑎 < 1 with −𝑎𝑚 = 𝑉0, then (𝜋, 𝑎𝐶) ∈
A(−𝑎𝑚) and 𝑋−𝑎𝑚,𝜋,𝑎𝐶

𝑇 = 𝑎𝑋−𝑚,𝜋,𝐶
𝑇 . Let 𝑃 ∈ P; without loss

of generality, we may assume 𝑃(𝑉𝑇 > 0) > 0. Due to
1 = 𝑃 (𝑋−𝑚,𝜋,𝐶

𝑇 ⩾ −𝑉𝑇)
⩽ 𝑃 (𝑋−𝑚,𝜋,𝐶

𝑇 = −𝑉𝑇) + 𝑃 (𝑎𝑋−𝑚,𝜋,𝐶
𝑇 > −𝑉𝑇) ⩽ 1,

(40)

we deduce

𝑃 (𝑋−𝑚,𝜋,𝐶
𝑇 = −𝑉𝑇) + 𝑃 (𝑎𝑋−𝑚,𝜋,𝐶

𝑇 > −𝑉𝑇) = 1. (41)

Assume 𝑃(𝑋−𝑚,𝜋,𝐶
𝑇 = −𝑉𝑇) = 1 and we deduce 𝑋−𝑚,𝜋,𝐶

𝑇 =
−𝑉𝑇, q.s. This contradicts 𝑋−𝑚,𝜋,𝐶

𝑇 ⩾ −𝑉𝑇 q.s. Hence,

𝑃(𝑋−𝑎𝑚,𝜋,𝑎𝐶
𝑇 > −𝑉𝑇) > 0. Hence, (−𝑎𝑚, 𝜋, 𝑎𝐶) constitutes an

arbitrage.

Lemma 23. For any 𝑉0 ̸⊆ L ∪ U, there is no arbitrage in the
financial market (M, 𝑉).
Proof. The idea of proving this lemma also comes from [8].
We prove it by contradiction. Assume 𝑉0 ̸⊆ U, 𝑉0 ̸⊆ L
and that there exists an arbitrage opportunity in (M, 𝑉). We
suppose that it satisfies Definition 18 for 𝑎 = 1. The case
𝑎 = −1 works similarly.

By definition of arbitrage, there exists 𝑚 ⩽ 0, (𝜋, 𝐶)A ∈
(−𝑚) with

𝑚 = 𝑋−𝑚,𝜋,𝐶
0 ⩽ −𝑉0,

𝑋−𝑚,𝜋,𝐶
𝑇 ⩾ −𝑉𝑇 q.s.

(42)

Therefore, 𝑚 ∈ L. By Lemma 21, it has 𝑉0 ∈ L. This
contradicts our assumption.

Theorem 24. For the financial market (M, 𝑉), the following
identities hold:

Vup = 𝐸𝐺 (𝐷𝑇𝑉𝑇) ,
Vlow = −𝐸𝐺 (−𝐷𝑇𝑉𝑇) .

(43)

Proof. Firstly, let us begin with the identity Vup = 𝐸𝐺(𝐷𝑇𝑉𝑇).
As seen in the proof of Lemma 22, for any𝑚 ∈ Uwe have𝑚 ⩾
𝐸𝐺(𝐷𝑇𝑉𝑇). Therefore, Vup = inf{𝑚 | 𝑚 ∈ U} ⩾ 𝐸𝐺(𝐷𝑇𝑉𝑇).

To show the opposite inequality we need to define the 𝐺-
martingale𝑀 by

𝑀𝑡 fl 𝐸𝐺 (𝐷𝑇𝑉𝑇 | F𝑡) , ∀𝑡 ⩽ 𝑇. (44)

By the martingale representation theorem [15] (see Theo-
rem 9), we know there exists 𝑧 ∈ 𝐻1

𝐺(0, 𝑇) and continuous,
increasing processes 𝐾 = (𝐾𝑡) with 𝐾𝑇 ∈ 𝐿1

𝐺(Ω𝑇) such that
for any 𝑡 ⩽ 𝑇

𝑀𝑡 = 𝐸𝐺 (𝐷𝑇𝑉𝑇) + ∫𝑡

0
𝑧𝑠𝑑𝐵𝑠 − 𝐾𝑡 q.s. (45)

For any 𝑡 ⩽ 𝑇, we set 𝑚 = 𝐸𝐺(𝐷𝑇𝑉𝑇) ⩾ 0, 𝑋𝑡𝜋𝑡]𝑡 =
𝑧𝑡𝐷−1

𝑡 ∈ 𝐻1
𝐺(0, 𝑇), and 𝐶𝑡 = ∫𝑡

0 𝐷−1
𝑠 𝑑𝐾𝑠 ∈ 𝐿1

𝐺(Ω𝑇). Then the
wealth process𝑋𝑚,𝜋,𝐶 satisfies

𝐷𝑡𝑋𝑚,𝜋,𝐶
𝑡 = 𝑚 + ∫𝑡

0
𝐷𝑠𝑋𝑚,𝜋,𝐶

𝑠 𝜋𝑠]𝑠𝑑𝐵𝑠 − ∫𝑡

0
𝐷𝑠𝑑𝐶𝑠

= 𝑀𝑡.
(46)

Theproperties of𝐾 and𝐶 obey the conditions of a cumulative
consumption process in the sense of Definition 11. Due to
𝐷𝑡𝑋𝑚,𝜋,𝐶

𝑡 = 𝑀𝑡 ⩾ 0, for ∀𝑡 ⩽ 𝑇, the wealth process is
bounded from below, where (𝜋, 𝐶) is admissible for 𝑚.

As 𝑋𝑚,𝜋,𝐶
𝑇 = 𝐷−1

𝑇 𝑀𝑇 = 𝑉𝑇 quasi-surely, we have 𝑚 =
𝐸𝐺(𝐷𝑇𝑉𝑇) ∈ U. Due to the definition ofU, we conclude that
Vup ⩽ 𝐸𝐺(𝐷𝑇𝑉𝑇).
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The proof for the second identity is analogous. Again,
using the proof of Lemma 22, we obtain 𝑚 ⩽ −𝐸𝐺(−𝐷𝑇𝑉𝑇)
for any𝑚 ∈ L. Hence, Vlow ⩽ −𝐸𝐺(−𝐷𝑇𝑉𝑇).

In order to obtain Vlow ⩾ −𝐸𝐺(−𝐷𝑇𝑉𝑇), we define a 𝐺-
martingale𝑀 by

𝑀𝑡 = 𝐸𝐺 (−𝐷𝑇𝑉𝑇 | F𝑡) , ∀𝑡 ⩽ 𝑇. (47)

The remaining part is almost a copy of the above. By the
martingale representation theorem [15], there exist 𝑧 ∈
𝐻1

𝐺(0, 𝑇), and a continuous, increasing process𝐾 = (𝐾𝑡)with𝐾𝑇 ∈ 𝐿1
𝐺(Ω𝑇) such that, for any 𝑡 ⩽ 𝑇,

𝑀𝑡 = 𝐸𝐺 (−𝐷𝑇𝑉𝑇) + ∫𝑡

0
𝑧𝑠𝑑𝐵𝑠 − 𝐾𝑡 q.𝑠. (48)

As the above, for any 𝑡 ⩽ 𝑇, let
−𝑚 = 𝐸𝐺 (−𝐷𝑇𝑉𝑇) ⩾ 0,

𝑋𝑡𝜋𝑡]𝑡 = 𝑧𝑡𝐷−1
𝑡 ∈ 𝐻1

𝐺 (0, 𝑇) , (49)

and 𝐶𝑡 = ∫𝑡
0 𝐷−1

𝑠 𝑑𝐾𝑠 ∈ 𝐿1
𝐺(Ω𝑇). Then the wealth process

𝑋−𝑚,𝜋,𝐶 satisfies

𝐷𝑡𝑋−𝑚,𝜋,𝐶
𝑡 = −𝑚 + ∫𝑡

0
𝐷𝑠𝑋−𝑚,𝜋,𝐶

𝑠 𝜋𝑠]𝑠𝑑𝐵𝑠 − ∫𝑡

0
𝐷𝑠𝑑𝐶𝑠

= 𝑀𝑡,
(50)

where 𝐶 obeys the condition of a cumulative consumption
process due to the properties of 𝐾. Moreover, for any 𝑡 ⩽ 𝑇,
it has

𝐷𝑡𝑋−𝑚,𝜋,𝐶
𝑡 = 𝐸𝐺 (−𝐷𝑇𝑉𝑇 | F𝑡) ⩾ 𝐸𝐺 (−𝑉𝑇 | F𝑡) , (51)

which is bounded from below in the sense of item (iii)
in Definition 15 because −𝑉𝑇 ∈ 𝐿2

𝐺(Ω𝑇). Therefore, the
wealth process is bounded from below. Consequently, (𝜋, 𝐶)
is admissible for −𝑚.

Since 𝑋−𝑚,𝜋,𝐶
𝑇 = 𝐷−1

𝑇 𝑀𝑇 = −𝑉𝑇 q.s., it has 𝑚 =
−𝐸𝐺(−𝐷𝑇𝑉𝑇) ∈ L.

Due to the definition of L, we conclude Vlow ⩾
−𝐸𝐺(−𝐷𝑇𝑉𝑇). So far, we have completed the proof of Theo-
rem 24.

Theproof ofTheorem24 is different from that ofVorbrink
[8], because the volatility of stock price is related to 𝑡 rather
than a constant.

Remark 25. Because of sublinear expectation 𝐸𝐺, by Theo-
rem 24 we have Vlow ̸= Vup. This means that the market
is not complete implying that not all claims can be hedged
perfectly. Therefore, there are many no-arbitrage prices for
𝑉. As long as (𝐸𝐺[𝐷𝑇𝑉𝑇 | F𝑡]) is not a symmetric 𝐺-
martingale, it has Vlow ̸= Vup. Under other circumstances, the
process𝐾 is identically equal to zero (see Remark 8),meaning
that (𝐸𝐺[𝐷𝑇𝑉𝑇 | F𝑡]) is symmetric and 𝑉𝑇 can be hedged
perfectly owing to Remark 8 andTheorem 9.

Theorem 26. For any price 𝑉0 ∈ (V𝑙𝑜𝑤, V𝑢𝑝) ̸= 0 of a European
contingent claim at time zero, there does not exist any arbitrage
opportunity in (M, 𝑉). For any price𝑉0 ̸⊆ (V𝑙𝑜𝑤, V𝑢𝑝) ̸= 0 there
exists an arbitrage in the market.

Proof. The first part directly follows from Lemma 23. From
Lemma22,we know that𝑉0 ̸⊆ [Vlow, Vup] implies the existence
of an arbitrage opportunity. Thus, we only need to show that
𝑉0 = Vup and 𝑉0 = Vlow admit an arbitrage opportunity.

We only treat the case 𝑉0 = Vup = inf{𝑚 | 𝑚 ∈ U}. Then
𝑚 ⩾ 𝑉0; that is, −𝑚 + 𝑉0 ⩽ 0. The second case is similar.
Comparing the proof of Theorem 24 and letting 𝑚 > 0, for
−𝑚 = 𝐸𝐺(−𝐷𝑇𝑉𝑇), there exists a pair (𝜋, 𝐶) ∈ A(−𝑚) such
that

𝐷𝑡𝑋−𝑚,𝜋,𝐶
𝑡 = −𝑚 + ∫𝑡

0
𝐷𝑠𝑋−𝑚,𝜋,𝐶

𝑠 𝜋𝑠]𝑠𝑑𝐵𝑠 − ∫𝑡

0
𝐷𝑠𝑑𝐶𝑠

= 𝑀𝑡 = −𝐷𝑇𝑉𝑇 q.s.
(52)

Then 𝐾𝑇 = ∫𝑡
0 𝐷𝑠𝑑𝐶𝑠, where 𝐾 is an increasing, continuous

process with 𝐸𝐺(−𝐾𝑇) = 0. So we can select 𝑃 ∈ P such that
𝐸𝑃(−𝐾𝑇) < 0 (see Remark 25).Then the pair (𝜋, 𝐶) ∈ A(−𝑚)
satisfies

𝐸𝑃 (𝐷𝑇𝑋−𝑚,𝜋,0
𝑇 ) > 𝐸𝑃 (𝐷𝑇𝑋−𝑚,𝜋,𝐶

𝑇 ) = 𝐸𝑃 (−𝐷𝑇𝑉𝑇) . (53)

Thus, 𝑃(𝑋𝑚,𝜋,0
𝑇 > −𝑉𝑇) > 0 and we conclude that (𝜋, 𝐶) ∈

A(−𝑚) constitutes an arbitrage.

On account of Theorem 26, we call (Vlow, Vup) ̸= 0 the
arbitrage free interval. Particularly, in the Markovian case
where 𝑉𝑇 = Φ(𝑆𝑇) for some Lipschitz function Φ : R → R,
we can give more structural details about the bounds Vup and
Vlow. We investigate this issue in Section 4.

4. The Markovian Case

For the European contingent claims𝑉, we have the form𝑉𝑇 =
Φ(𝑆𝑇) for some Lipschitz function Φ : R → R. We use a
nonlinear Feynman-Kac formulawhich is established in Peng
[9]. Let us rewrite the dynamics of 𝑆 in (22) as

𝑑𝑆𝑡,𝑥𝑢 = 𝑟𝑆𝑡,𝑥𝑢 𝑑𝑢 + ]𝑢𝑆𝑡,𝑥𝑢 𝑑𝐵𝑢,
𝑢 ∈ [𝑡, 𝑇] , 𝑆𝑡,𝑥𝑡 = 𝑥 > 0. (54)

Analogy to the lower and upper arbitrage prices at time 0, at
time 𝑡 ∈ [0, 𝑇], the lower and upper arbitrage prices are noted
by V𝑡low(𝑥) and V𝑡up(𝑥), respectively. At a considered time 𝑡, the
stock price 𝑆𝑡 is replaced by the variable 𝑥. That is, 𝑆𝑡 = 𝑥.
Theorem 27. Given a European contingent claim 𝑉 = Φ(𝑆𝑇),
its upper arbitrage price V𝑡𝑢𝑝(𝑥) is given by 𝑢(𝑡, 𝑥), where 𝑢 :
[0, 𝑇] ×R+ → R is the unique solution of the following PDE:

𝜕𝑡𝑢 + 𝑟𝑥𝜕𝑥𝑢 + 𝐺 (]2𝑥2𝜕𝑥𝑥𝑢) = 𝑟𝑢,
𝑢 (𝑇, 𝑥) = Φ (𝑥) .

(55)
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A precise representation for the corresponding trading strategy
in the stock and the cumulative consumption process is given by

𝛽𝑡 = 𝜕𝑥𝑢 (𝑡, 𝑆𝑡) , ∀𝑡 ∈ [0, 𝑇] ,
𝐶𝑡 = −1

2 ∫𝑡

0
]𝑠

2𝑆𝑠2𝜕𝑥𝑥𝑢 (𝑠, S𝑠) 𝑑 ⟨𝐵⟩𝑠

+ ∫𝑡

0
]𝑠

2𝑆𝑠2𝐺 (𝜕𝑥𝑥𝑢 (𝑠, 𝑆𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] .
(56)

Analogously, −𝑢(𝑡, 𝑥) is the lower arbitrage price V𝑡low(𝑥),
where 𝑢 : [0, 𝑇] × R+ → R. V𝑡low(𝑥) solves (55) but with
terminal condition 𝑢(𝑡, 𝑥) = −Φ(𝑥), ∀𝑥 ∈ R+.

Proof. Firstly, we consider the Backward Stochastic Differen-
tial Equation (in short BSDE):

𝑌𝑡,𝑥
𝑠 = 𝐸𝐺 (Φ(𝑆𝑡,𝑥𝑇 ) + ∫𝑇

𝑠
𝑓 (𝑆𝑡,𝑥𝑟 , 𝑌𝑡,𝑥

𝑟 ) 𝑑𝑟 | F𝑠) ,
𝑠 ∈ [𝑡, 𝑇] ,

(57)

where 𝑓 : R × R → R is a given Lipschitz function.
Peng [9] showed that the BSDE has a unique solution. So we
can define a function 𝑢 : [0, 𝑇] × R+ → R by 𝑢(𝑡, 𝑥) fl
𝑌𝑡,𝑥
𝑡 , (𝑡, 𝑥) ∈ [0, 𝑇] × R+. In the light of the knowledge of

the nonlinear Feynman-Kac formula [9], the function 𝑢 is a
viscosity solution of the following PDE:

𝜕𝑡𝑢 + 𝑟𝑥𝜕𝑥𝑢 + 𝐺 (]2𝑥2𝜕𝑥𝑥𝑢) + 𝑓 (𝑥, 𝑢) = 0,
𝑢 (𝑇, 𝑥) = Φ (𝑥) .

(58)

We define the function

�̂� (𝑡, 𝑥) fl 𝐸𝐺 (Φ (𝑆𝑡,𝑥𝑇 )𝐷𝑇) . (59)

According to the above definition, for 𝑓 ≡ 0, �̂� solves (58).
Since the function𝐺 is nondegenerate, �̂� turns into a classical
𝐶1,2-solution (see page 19 in [9]). Consequently, together with
Itô’s formula (Theorem 5.4 in [18]), it has

�̂� (𝑡, 𝑆0,𝑥𝑡 ) − �̂� (0, 𝑥) = ∫𝑡

0
[𝜕𝑡�̂� (𝑠, 𝑆0,𝑥𝑠 ) + 𝑟𝑆0,𝑥𝑠 𝜕𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 )] 𝑑𝑠 + ∫𝑡

0
]𝑠𝑆0,𝑥𝑠 𝜕𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 ) 𝑑𝐵𝑠

+ ∫𝑡

0

1
2 (]𝑠𝑆0,𝑥𝑠 )2 𝜕𝑥𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 ) 𝑑 ⟨𝐵⟩𝑠

= ∫𝑡

0
]𝑠𝑆0,𝑥𝑠 𝜕𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 ) 𝑑𝐵𝑠 + 1

2 ∫𝑡

0
(]𝑠𝑆0,𝑥𝑠 )2 𝜕𝑥𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 ) 𝑑 ⟨𝐵⟩𝑠 − ∫𝑡

0
(]𝑠𝑆0,𝑥𝑠 )2 𝐺(𝜕𝑥𝑥�̂� (𝑠, 𝑆0,𝑥𝑠 )) 𝑑𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−𝐾𝑡=−∫
𝑡

0
𝐷𝑠𝑑𝐶𝑠

.
(60)

Now, consider the function

�̃� (𝑡, 𝑥) fl 𝐷−1
𝑡 �̂� (𝑡, 𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R+. (61)

For 𝑡 = 0, based onTheorem 24, it has

�̃� (𝑡, 𝑥) = �̂� (𝑡, 𝑥) = 𝐸𝐺 (Φ (𝑆𝑡,𝑥𝑇 )𝐷𝑇) = 𝐸𝐺 (𝐷𝑇𝑉𝑇)
= V𝑡up (𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R+.

(62)

Moreover, �̃� can be used as a solution of (55). In addition, the
function 𝑢 defined by

𝑢 (𝑡, 𝑥) fl 𝑌𝑡,𝑥
𝑡 = 𝐸𝐺 (Φ(𝑆𝑡,𝑥𝑇 ) − ∫𝑇

𝑡
𝑟𝑌𝑡,𝑥

𝑠 𝑑𝑠 | F𝑡) ,
∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R+,

(63)

solves (55) owing to the nonlinear Feynman-Kac formula
since 𝑓(𝑥, 𝑦) = −𝑟𝑦. By uniqueness of the solution in (55)
(see [19]; 𝑓 is obviously bounded in 𝑥), we have �̃� = 𝑢. Thus,

𝑢 (𝑡, 𝑥) = 𝐸𝐺 (Φ (𝑆𝑡,𝑥𝑇 )𝐷𝑇−𝑡) = V𝑡up (𝑥) ,
∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R+,

(64)

and it uniquely solves (55).

In combination with the proof of Theorem 24, by using
its notions and Remark 12, we obtain the precise expressions
for the trading strategy 𝛽 and the cumulative consumption
process 𝐶. That is, it has 𝑧𝑡 = ]𝑡𝑆0,𝑥𝑡 𝜕𝑥�̂�(𝑡, 𝑆0,𝑥𝑡 ) = 𝑆0,𝑥𝑡 𝛽𝑡]𝑡𝐷𝑡.
Therefore, 𝛽𝑡 = 𝜕𝑥𝑢(𝑡, 𝑆𝑡), ∀𝑡 ∈ [0, 𝑇].

Analogously, we derive

𝐶𝑡 = ∫𝑡

0
𝐷−1

𝑡 𝑑𝐾𝑠

= −1
2 ∫𝑡

0
]𝑠

2𝑆𝑠2𝜕𝑥𝑥𝑢 (𝑠, 𝑆𝑠) 𝑑 ⟨𝐵⟩𝑠

+ ∫𝑡

0
]𝑠

2𝑆𝑠2𝐺 (𝜕𝑥𝑥𝑢 (𝑠, 𝑆𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] .

(65)

Due to Theorem 27, the functions 𝑢(𝑡, 𝑥) = V𝑡up(𝑥)
and 𝑢(𝑡, 𝑥) = −V𝑡low(𝑥) can be characterized as the unique
solutions of (55). Under the circumstances of Φ being a
convex or concave function, respectively, (55) simplifies
greatly.
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Lemma 28. (1) If Φ is concave, then 𝑢(𝑡, ⋅) is convex for any
𝑡 ⩽ 𝑇.

(2) If Φ is concave, then 𝑢(𝑡, ⋅) is concave for any 𝑡 ⩽ 𝑇.
Similarly, ifΦ is convex, then 𝑢(𝑡, ⋅) is concave for any 𝑡 ⩽ 𝑇. If
Φ is concave, then 𝑢(𝑡, ⋅) is convex for any 𝑡 ⩽ 𝑇.
Proof. We only need to take into account the upper arbitrage
price which is determined by the function

𝑢 (𝑡, 𝑥) = 𝐸𝐺 (Φ (𝑆𝑡,𝑥𝑇 )𝐷𝑇−𝑡) = V𝑡up (𝑥) ,
∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R+.

(66)

First of all, let Φ be convex, 𝑡 ∈ [0, 𝑇], and 𝑥, 𝑦 ∈ R+. For
any 𝜃 ∈ [0, 1], it has

𝑢 (𝑡, 𝜃𝑥 + (1 − 𝜃) 𝑦) = 𝐸𝐺 [Φ (𝑆𝑡,𝜃𝑥+(1−𝜃)𝑦𝑇 ) 𝑒−𝑟(𝑇−𝑡)]
= 𝐸𝐺 [Φ((𝜃𝑥 + (1 − 𝜃) 𝑦)

⋅ 𝑒−𝑟(𝑇−𝑡)−(1/2) ∫
𝑇

𝑡
]𝑢
2𝑑⟨𝐵⟩𝑢+∫

𝑇

𝑡
]𝑢𝑑𝐵𝑢) 𝑒−𝑟(𝑇−𝑡)]

⩽ 𝐸𝐺 [𝜃Φ(𝑥𝑒−𝑟(𝑇−𝑡)−(1/2) ∫
𝑇

𝑡
]𝑢
2𝑑⟨𝐵⟩𝑢+∫

𝑇

𝑡
]𝑢𝑑𝐵𝑢) + (1

− 𝜃)Φ(𝑦𝑒−𝑟(𝑇−𝑡)−(1/2) ∫
𝑇

𝑡
]𝑢
2𝑑⟨𝐵⟩𝑢+∫

𝑇

𝑡
]𝑢𝑑𝐵𝑢)] 𝑒−𝑟(𝑇−𝑡)

⩽ 𝐸𝐺 [𝜃Φ(𝑥𝑒−𝑟(𝑇−𝑡)−(1/2) ∫
𝑇

𝑡
]𝑢
2𝑑⟨𝐵⟩𝑢+∫

𝑇

𝑡
]𝑢𝑑𝐵𝑢)

⋅ 𝑒−𝑟(𝑇−𝑡)] + 𝐸𝐺 [(1 − 𝜃)

⋅ Φ (𝑦𝑒−𝑟(𝑇−𝑡)−(1/2) ∫
𝑇

𝑡
]𝑢
2𝑑⟨𝐵⟩𝑢+∫

𝑇

𝑡
]𝑢𝑑𝐵𝑢)]

= 𝜃𝐸𝐺 [Φ (𝑆𝑡,𝑥𝑇 ) 𝑒−𝑟(𝑇−𝑡)] + (1 − 𝜃) 𝐸𝐺 [Φ (𝑆𝑡,𝑦𝑇 )
⋅ 𝑒−𝑟(𝑇−𝑡)] = 𝜃𝑢 (𝑡, 𝑥) + (1 − 𝜃) 𝑢 (𝑡, 𝑦) ,

(67)

where we used the convexity of Φ, the monotonicity of
𝐸𝐺, and, in the second inequality, the sublinearity of 𝐸𝐺.
Therefore, 𝑢(𝑡, ⋅) is convex for all 𝑡 ∈ [0, 𝑇].

Secondly, let Φ be concave. For any (𝑡, 𝑥) ∈ [0, 𝑇] × R+,
we define

𝑔 (𝑡, 𝑥) fl 𝐸𝑃 [Φ (𝑆𝑡,𝑥𝑇 ) 𝑒−𝑟(𝑇−𝑡)] , (68)

where

𝑑𝑆𝑡,𝑥𝑠 = 𝑟𝑆𝑡,𝑥𝑠 𝑑𝑠 + 𝜎𝑆𝑡,𝑥𝑠 𝑑𝐵𝑠, 𝑠 ∈ [𝑡, 𝑇] , 𝑆𝑡,𝑥𝑡 = 𝑥. (69)

Since 𝐵 = (𝐵𝑡) is a classical Brownian motion under 𝑃0, 𝑔
solves the Black-Scholes PDE (7) with 𝜎 replaced by 𝜎.

Because 𝐸𝑃 is linear, this is straightforward to mean that
𝑔(𝑡, ⋅) is concave for any 𝑡 ∈ [0, 𝑇]. Consequently,𝑔 also solves
(55). By uniqueness, we conclude that 𝑔 = 𝑢.Therefore, 𝑢(𝑡, ⋅)
is concave for any 𝑡 ∈ [0, 𝑇].

5. Conclusion

In order to analyse the financial markets with volatility
uncertainty, we consider a stock pricemodeled by a geometric
𝐺-Brownian motion which features volatility uncertainty.
This is all based on the structure of a 𝐺-Brownian motion.
The “𝐺-framework” is summarized by Peng [9] which gives
us a useful mathematical setting. A little new arbitrage free
concept is utilized to obtain the detailed results which give
us an economically better understanding of financial markets
under volatility uncertainty. We establish the connection of
the lower and supper arbitrage prices by means of partial
differential equations. The outcomes in this paper are only
applied to European contingent claims. For other cases, we
would extend these results to American contingent claims in
our forthcoming paper.
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with 𝐺-Brownian motion,” Stochastic Processes andTheir Appli-
cations, vol. 121, no. 7, pp. 1492–1508, 2011.

[19] H. Ishii and P.-L. Lions, “Viscosity solutions of fully nonlinear
second-order elliptic partial differential equations,” Journal of
Differential Equations, vol. 83, no. 1, pp. 26–78, 1990.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


