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In this study, we focus on stability analysis for systems with time-varying delay and nonlinear perturbations. In order to cut down
the conservatism of the existing stability criteria, we utilize the triple integral forms of Lyapunov-Krasovskii functional (LKF). In
addition, by using single and double integral forms of Wirtinger-based inequality, we overcome some conservatism which come
from Jensen’s inequality. Three well-known numerical examples are given at the end. Compared with some existing results, our
results have less conservatism.

1. Introduction

Time-delay has attracted a lot of interests because it is widely
encountered in communication systems, neural networks,
economic systems, biological systems, and networked control
systems [1–6]. Since time-delay will cause serious degrada-
tion of system performance, a lot of researchers are making
considerable effort for stability analysis of time-delay systems
in the last few decades. The LKF approach and LMI method
are the efficient instrument to get the delay-dependent
stability criterion.However, only a sufficient conditionwe can
get by utilizing these methods.Therefore, we focus on cutting
down the conservatism of stability criterion. As we know, the
maximum allowable delay bound (MADB) of the time-delay
can measure the conservatism of stability criterion. We can
get the larger MADB of time-varying delay according to the
stability criterion with less conservatism.

In a lot of existing results, Jensen’s inequality has played
an important role. However, it will induce some conservatism
hard to overcome. To cut down the conservatism, Wirtinger-
based integral inequality [7], which can be used to obtain
much tighter lower bound of single integral terms, was
proposed. Very recently, based on Wirtinger-based integral
inequality, a Wirtinger-based double integral inequality was

proposed to get much tighter lower bound of double integral
terms [8].

In a lot of recent literatures [9–11], researchers only utilize
single and double integral forms of LKF to derive delay-
dependent stability criterion. We believe that triple integral
form of LKF is helpful for improving the performance of
former criteria.

Motivated by the previous discussions, we are concerned
about the stability analysis for the time-varying delay systems
with nonlinear perturbations.We introduce the triple integral
forms of LKF to cut down the conservatism. Taking the
time derivative of ∫𝑡

𝑡−ℎ
∫𝑡
𝑠
∫𝑡
𝑢
�̇�𝑇(V)𝑅𝑖�̇�(V)𝑑V 𝑑𝑢 𝑑𝑠, we obtain

−∫𝑡
𝑡−ℎ

∫𝑡
𝑠
�̇�𝑇(𝑢)𝑅𝑖�̇�(𝑢)𝑑𝑢 𝑑𝑠. Instead of Jensen’s inequality,

Wirtinger-based double integral inequality was utilized to
find much tighter upper bound of −∫𝑏

𝑎
∫𝑏
𝑢
�̇�𝑇(𝑢)𝑅𝑖�̇�(𝑢)𝑑𝑢 𝑑𝑠.

Compared with some existing results, our results have less
conservatism.

The organization of this paper is as follows. The system is
presented in Section 2, and some useful lemmas are given.
Then the new stability criterion and proof are given in
Section 3. In Section 4, the effectiveness of our results can be
illustrated by three examples. Section 5 is the conclusion of
our investigation.
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Notations. In this paper, the superscript 𝑇 means the trans-
pose of a matrix; col{⋅} denotes the column vector.

2. Problem Formulation and Preliminaries

The time-varying delay systems with nonlinear perturbations
are considered as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏 (𝑡)) + 𝜗 (𝑡) ,
𝜗 (𝑡) = ℎ (𝑥 (𝑡) , 𝑡) + 𝑝 (𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑡) ,
𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑𝑀, 0]

(1)

with 𝑥(𝑡) ∈ R𝑛 as the state variate;𝐴, 𝐵 ∈ R𝑛∗𝑛 are predefined
constant matrices; 𝑑(𝑡) ≥ 0 represent a time-varying delay
satisfying

𝑑 (𝑡) ∈ [𝑑𝑚, 𝑑𝑀] , ̇𝑑 (𝑡) ≤ 𝑑𝑑. (2)

The nonlinear perturbations ℎ(𝑥(𝑡), 𝑡) ∈ R𝑛 and 𝑝(𝑥(𝑡 −𝑑(𝑡)), 𝑡) ∈ R𝑛 can be abbreviated as ℎ and 𝑝, assumed as
follows:

ℎ𝑇ℎ ≤ 𝛼2𝑥𝑇 (𝑡) 𝐶𝑇𝐶𝑥 (𝑡) ,
𝑝𝑇𝑝 ≤ 𝛽2𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝐷𝑇𝐷𝑥 (𝑡 − 𝑑 (𝑡)) , (3)

where 𝛼 and 𝛽 are positive scalars and 𝐶,𝐷 ∈ R𝑛∗𝑛 are
constant matrices.

In order to derive improved stability criterion, the follow-
ing lemmas will be used.

Lemma 1 (see [7]). 𝑍 is a symmetric positive definite matrix,
for differentiable function 𝑥 ∈ [𝑑1, 𝑑2] → R𝑛, and we can
obtain

∫𝑑2
𝑑1

�̇�𝑇 (𝑠) 𝑍�̇� (𝑠) 𝑑𝑠 ≥ 1𝑑2 − 𝑑1 [
𝜀1
𝜀2]
𝑇 [𝑍 0

∗ 𝑍][𝜀1𝜀2] , (4)

where

𝜀1 = 𝑥 (𝑑1) − 𝑥 (𝑑2) ,
𝜀2 = √3𝑥 (𝑑1) + √3𝑥 (𝑑2) − 2√3𝑑2 − 𝑑1 ∫

𝑑2

𝑑1

𝑥 (𝑠) 𝑑𝑠. (5)

Lemma 2 (see [28]). For positive definite 𝑑V : R𝑛 → R, 𝑑V ∈
G ⊆ R𝑛 (V = 1 ⋅ ⋅ ⋅ 𝑁), reciprocally convex combination of 𝑑V
can be written as

min
{𝜌𝑚|𝜌𝑚>0,∑𝑚 𝜌𝑚=1}

∑
𝑚

1𝜌𝑚 𝑑𝑚 (𝑡) = ∑
𝑚

𝑑𝑚 (𝑡) + max
𝑙𝑚,𝑤(𝑡)

∑
𝑚 ̸=𝑤

𝑙𝑚,𝑤 (𝑡)

subject to {𝑙𝑚,𝑤 : R𝑛 → R, 𝑙𝑤,𝑚 (𝑡) ≜ 𝑙𝑚,𝑤 (𝑡) , [ 𝑑𝑚 (𝑡) 𝑙𝑚,𝑤 (𝑡)
𝑙𝑚,𝑤 (𝑡) 𝑑𝑤 (𝑡) ] ≥ 0} .

(6)

Lemma 3 (see [8]). 𝑅 is a symmetric positive definite matrix,
for differentiable function 𝑥 ∈ [ℎ𝑎, ℎ𝑏] → R𝑛, and we have

(ℎ𝑏 − ℎ𝑎)22 ∫ℎ𝑏
ℎ𝑎

∫ℎ𝑏
𝑠

�̇�𝑇 (𝑢) 𝑅�̇� (𝑢) 𝑑𝑢 𝑑𝑠

≥ [𝜔1𝜔2]
𝑇 [𝑅 0

∗ 𝑅][𝜔1𝜔2] ,
(7)

where

𝜔1 = (ℎ𝑏 − ℎ𝑎) 𝑥 (ℎ𝑏) − ∫ℎ𝑏
ℎ𝑎

𝑥 (𝑠) 𝑑𝑠,

𝜔2 = √2 (ℎ𝑏 − ℎ𝑎)2 𝑥 (ℎ𝑏) + √2∫ℎ𝑏
ℎ𝑎

𝑥 (𝑠) 𝑑𝑠

− 3√2ℎ𝑏 − ℎ𝑎 ∫
ℎ𝑏

ℎ𝑎

∫ℎ𝑏
𝑠

𝑥 (𝑢) 𝑑𝑢 𝑑𝑠.
(8)

3. Stability Criterion

Theorem4. System (1) satisfying (2)-(3) will be asymptotically
stable if there exist given scalars 𝑑𝑚, 𝑑𝑀, and 𝑑𝑑 and 𝜖1 > 0
and 𝜖2 > 0 and positive symmetric matrices 𝑃 ∈ R5𝑛∗5𝑛,𝑊𝑠 ∈ R𝑛∗𝑛 (𝑠 = 1, 2, 3), and 𝑍𝑞 ∈ R𝑛∗𝑛 (𝑞 = 1, . . . , 4) and
appropriate dimensions matrices 𝑆𝑚, satisfying the following
LMIs:

[Φ Δ𝑇𝑁
∗ −𝑁 ] < 0,

[𝑍2 𝑆𝑚
∗ 𝑍2] ≥ 0, (𝑚 = 1, 2) ,

(9)

where
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Φ = 𝐺𝑇1𝑃𝐺2 + 𝐺𝑇2𝑃𝐺1 + 𝑄 + 𝑀1 + 𝑀2 − 𝑑2𝑚
2∑
𝑖=1

Γ𝑇𝑖 𝑍1Γ𝑖 −
6∑
𝑖=3

Γ𝑇𝑖 𝑍2Γ𝑖 − Γ𝑇3 𝑆1Γ5 − Γ𝑇5 𝑆𝑇1 Γ3 − Γ𝑇4 𝑆2Γ6 − Γ𝑇6 𝑆𝑇2 Γ4

− 𝑑2𝑚
8∑
𝑖=7

Γ𝑇𝑖 𝑍3Γ𝑖 − 𝑑2𝑀𝑚
10∑
𝑖=9

Γ𝑇𝑖 𝑍4Γ𝑖,
𝐺1 = col {𝑒1, 𝑒5, 𝑒6, 𝑒7, 𝑒8} ,
𝐺2 = col {𝐴𝑒1 + 𝐵𝑒3 + 𝑒11 + 𝑒12, 𝑒1 − 𝑒2, 𝑒2 − 𝑒4, 𝑑𝑚𝑒1 − 𝑒5, 𝑑𝑀𝑚𝑒2 − 𝑒6} ,
𝑊 = diag {𝑊1 + 𝑊2 + 𝑊3 −𝑊2 − (1 − 𝑑𝑑)𝑊1 −𝑊3 0 0 0 0 0 0 0 0} ,
𝑀1 = diag {𝜖1𝛼2𝐶𝑇𝐶 0 0 0 0 0 0 0 0 0 −𝜖1𝐼 0} ,
𝑀2 = diag {0 0 𝜖2𝛽2𝐷𝑇𝐷 0 0 0 0 0 0 0 0 −𝜖2𝐼} ,
Γ1 = 𝑒1 − 𝑒2,
Γ2 = √3𝑒1 + √3𝑒2 − 2√3𝑑𝑚 𝑒5,
Γ3 = 𝑒2 − 𝑒3,
Γ4 = √3𝑒2 + √3𝑒3 − 2√3𝑒9,
Γ5 = 𝑒3 − 𝑒4,
Γ6 = √3𝑒3 + √3𝑒4 − 2√3𝑒10,
Γ7 = 𝑑𝑚𝑒1 − 𝑒5,
Γ8 = √22 𝑑𝑚𝑒1 + √2𝑒5 − 3√2𝑑𝑚 𝑒7,
Γ9 = 𝑑𝑀𝑚𝑒2 − 𝑒6,
Γ10 = √2𝑑𝑀𝑚2 𝑒2 + √2𝑒6 − 3√2𝑑𝑀𝑚 𝑒8,
Δ = 𝐴𝑒1 + 𝐵𝑒3 + 𝑒11 + 𝑒12,

𝑑𝑀𝑚 = 𝑑𝑀 − 𝑑𝑚,
𝑒𝑖 = [0𝑛×(𝑘−1)𝑛 𝐼 0𝑛×(12−𝑘)𝑛] , 𝑘 = 1, 2, . . . , 12
𝑁 = 𝑁1 + 𝑁2 = 𝑑4𝑚𝑍1 + 𝑑2𝑀𝑚𝑍2 + 𝑑6𝑚4 𝑍3 + 𝑑6𝑀𝑚4 𝑍4.

(10)

Proof. Construct the following LKF:

𝑉 (𝑡) = 4∑
𝑖=1

𝑉𝑖 (𝑡) , (11)

where

𝑉1 (𝑡) = ]𝑇 (𝑡) 𝑃] (𝑡) ,

𝑉2 (𝑡)
= ∫𝑡
𝑡−𝑑(𝑡)

𝑥𝑇 (𝑠)𝑊1𝑥 (𝑠) 𝑑𝑠 + ∫𝑡
𝑡−𝑑𝑚

𝑥𝑇 (𝑠)𝑊2𝑥 (𝑠) 𝑑𝑠
+ ∫𝑡
𝑡−𝑑M

𝑥𝑇 (𝑠)𝑊3𝑥 (𝑠) 𝑑𝑠,
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𝑉3 (𝑡)
= 𝑑3𝑚 ∫0

−𝑑𝑚

∫𝑡
𝑡+𝑠

�̇�𝑇 (𝑢) 𝑍1�̇� (𝑢) 𝑑𝑢 𝑑𝑠
+ 𝑑𝑀𝑚 ∫−𝑑𝑚

−𝑑𝑀

∫𝑡
𝑡+𝑠

�̇�𝑇 (𝑢) 𝑍2�̇� (𝑢) 𝑑𝑢 𝑑𝑠,
𝑉4 (𝑡)

= 𝑑4𝑚2 ∫𝑡
𝑡−𝑑𝑚

∫𝑡
𝑠
∫𝑡
𝑢
�̇�𝑇 (V) 𝑍3�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

+ 𝑑4𝑀𝑚2 ∫𝑡−𝑑𝑚
𝑡−𝑑𝑀

∫𝑡−𝑑𝑚
𝑠

∫𝑡
𝑢
�̇�𝑇 (V) 𝑍4�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠,

𝑢1 (𝑡) = ∫𝑡
𝑡−𝑑𝑚

𝑥𝑇 (𝑠) 𝑑𝑠,
𝑢2 (𝑡) = ∫𝑡−𝑑𝑚

𝑡−𝑑𝑀

𝑥𝑇 (𝑠) 𝑑𝑠,
𝑢3 (𝑡) = ∫𝑡

𝑡−𝑑𝑚

∫𝑡
𝑠
𝑥𝑇 (𝑢) 𝑑𝑢 𝑑𝑠,

𝑢4 (𝑡) = ∫𝑡−𝑑𝑚
𝑡−𝑑𝑀

∫𝑡−𝑑𝑚
𝑠

𝑥𝑇 (𝑢) 𝑑𝑢 𝑑𝑠,
]𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑢1 (𝑡) 𝑢2 (𝑡) 𝑢3 (𝑡) 𝑢4 (𝑡)] .

(12)

The time derivative of 𝑉(𝑡) is as follows:
�̇� (𝑡) = 4∑

𝑖=1

�̇�𝑖 (𝑡) , (13)

where

�̇�1 (𝑡) = 2]𝑇 (𝑡) 𝑃]̇ (𝑡) = 𝜉𝑇 (𝑡) (𝐺𝑇1𝑃𝐺2 + 𝐺𝑇2𝑃𝐺1) 𝜉 (𝑡) ,
�̇�2 (𝑡) = 3∑

𝑖=1

𝑥𝑇 (𝑡)𝑊𝑖𝑥 (𝑡) − (1 − ̇𝑑 (𝑡)) 𝑥𝑇 (𝑡 − 𝑑 (𝑡))
∗ 𝑊1𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥𝑇 (𝑡 − 𝑑𝑚)𝑊2𝑥 (𝑡 − 𝑑𝑚)
− 𝑥𝑇 (𝑡 − 𝑑𝑀)𝑊3𝑥 (𝑡 − 𝑑𝑀) ≤ 𝜉𝑇 (𝑡) 𝑄𝜉 (𝑡) ,

�̇�3 (𝑡) = �̇�𝑇 (𝑡) [𝑑4𝑚𝑍1 + 𝑑2𝑀𝑚𝑍2] �̇� (𝑡) + 3∑
𝑖=1

𝜁𝑖 = 𝜉𝑇 (𝑡)

⋅ Δ𝑇𝑁1Δ𝜉 (𝑡) + 3∑
𝑖=1

𝜁𝑖,

�̇�4 (𝑡) = 𝑑4𝑚2 ∫𝑡
𝑡−𝑑𝑚

∫𝑡
𝑠
[�̇�𝑇 (𝑡) 𝑍3�̇� (𝑡) − �̇�𝑇 (𝑢) 𝑍3

∗ �̇� (𝑢)] 𝑑𝑢 𝑑𝑠 + 𝑑4𝑀𝑚2
⋅ ∫𝑡−𝑑𝑚
𝑡−𝑑𝑀

∫𝑡−𝑑𝑚
𝑠

[�̇�𝑇 (𝑡) ∗ 𝑍4�̇� (𝑡)
− �̇�𝑇 (𝑢) 𝑍4�̇� (𝑢)] 𝑑𝑢 𝑑𝑠 = 𝜉𝑇 (𝑡)
⋅ Δ𝑇𝑁2Δ𝜉 (𝑡) + 5∑

𝑖=4

𝜁𝑖,

(14)

where

𝑁1 = 𝑑4𝑚𝑍1 + 𝑑2𝑀𝑚𝑍2,
𝑁2 = 𝑑6𝑚4 𝑍3 + 𝑑6𝑀𝑚4 𝑍4,

𝜁1 (𝑡) = −𝑑3𝑚 ∫𝑡
𝑡−𝑑𝑚

�̇�𝑇 (𝑠) 𝑍1�̇� (𝑠) 𝑑𝑠,
𝜁2 (𝑡) = −𝑑𝑀𝑚 ∫𝑡−𝑑𝑚

𝑡−𝑑(𝑡)
�̇�𝑇 (𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠,

𝜁3 (𝑡) = −𝑑𝑀𝑚 ∫𝑡−𝑑(𝑡)
𝑡−𝑑𝑀

�̇�𝑇 (𝑠) 𝑍2�̇� (𝑠) 𝑑𝑠,
𝜁4 (𝑡) = −𝑑4𝑚2 ∫𝑡

𝑡−𝑑𝑚

∫𝑡
𝑠
�̇�𝑇 (𝑢) 𝑍3�̇� (𝑢) 𝑑𝑢 𝑑𝑠,

𝜁5 (𝑡) = −𝑑4𝑀𝑚2 ∫𝑡−𝑑𝑚
𝑡−𝑑𝑀

∫𝑡−𝑑𝑚
𝑠

�̇�𝑇 (𝑢) 𝑍4�̇� (𝑢) 𝑑𝑢 𝑑𝑠,
𝑢5 (𝑡) = 1𝑑 (𝑡) − 𝑑𝑚 ∫𝑡−𝑑𝑚

𝑡−𝑑(𝑡)
𝑥𝑇 (𝑠) 𝑑𝑠,

𝑢6 (𝑡) = 1𝑑𝑀 − 𝑑 (𝑡) ∫𝑡−𝑑(𝑡)
𝑡−𝑑𝑀

𝑥𝑇 (𝑠) 𝑑𝑠,
𝜉𝑇 (𝑡) = [𝑥𝑇 (𝑡) 𝑥𝑇 (𝑡 − 𝑑𝑚) 𝑥𝑇 (𝑡 − 𝑑 (𝑡)) 𝑥𝑇 (𝑡 − 𝑑𝑀) 𝑢1 (𝑡) ⋅ ⋅ ⋅ 𝑢6 (𝑡) ℎ𝑇 𝑝𝑇] .

(15)
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According to Lemma 1, we obtain

𝜁1 (𝑡) ≤ −𝑑2𝑚 [𝜀1 (𝑡)𝜀2 (𝑡)]
𝑇 [𝑍1 0

∗ 𝑍1][𝜀1 (𝑡)𝜀2 (𝑡)] , (16)

𝜁2 (𝑡) ≤ − 1𝜌1 [
𝜀3 (𝑡)
𝜀4 (𝑡)]

𝑇 [𝑍2 0
∗ 𝑍2][𝜀3 (𝑡)𝜀4 (𝑡)] , (17)

𝜁3 (𝑡) ≤ − 1𝜌2 [
𝜀5 (𝑡)
𝜀6 (𝑡)]

𝑇 [𝑍2 0
∗ 𝑍2][𝜀5 (𝑡)𝜀6 (𝑡)] , (18)

where

𝜌1 = 𝑑 (𝑡) − 𝑑𝑚𝑑𝑀𝑚 ,
𝜌2 = 𝑑𝑀 − 𝑑 (𝑡)𝑑𝑀𝑚 ,

𝜀1 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑𝑚) ,
𝜀2 (𝑡) = √3𝑥 (𝑡) + √3𝑥 (𝑡 − 𝑑𝑚) − 2√3𝑑𝑚 𝑢1 (𝑡) ,
𝜀3 (𝑡) = 𝑥 (𝑡 − 𝑑𝑚) − 𝑥 (𝑡 − 𝑑 (𝑡)) ,
𝜀4 (𝑡) = √3𝑥 (𝑡 − 𝑑𝑚) + √3𝑥 (𝑡 − 𝑑 (𝑡)) − 2√3𝑢5 (𝑡) ,
𝜀5 (𝑡) = 𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥 (𝑡 − 𝑑𝑀) ,
𝜀6 (𝑡) = √3𝑥 (𝑡 − 𝑑 (𝑡)) + √3𝑥 (𝑡 − 𝑑𝑀) − 2√3𝑢6 (𝑡)

(19)

and inequality (16) can be denoted as

𝜁1 (𝑡) ≤ −𝜉𝑇 (𝑡) 𝑑2𝑚 [Γ𝑇1 𝑍1Γ1 + Γ𝑇2 𝑍1Γ2] 𝜉 (𝑡) . (20)

It is clear that the real numbers 𝜌1 and 𝜌2 satisfy 𝜌1 > 0, 𝜌2 >0, and 𝜌1 + 𝜌2 = 1. Then introduce appropriate dimensions
matrices 𝑆1 and 𝑆2, such that

[𝑍2 𝑆2
∗ 𝑍2] ≥ 0,

[𝑍2 𝑆1
∗ 𝑍2] ≥ 0.

(21)

Applying Lemma 2 to (17) and (18)

𝜁2 (𝑡) + 𝜁3 (𝑡) ≤ −( 1𝜌1 𝜀
𝑇
3 (𝑡) 𝑍2𝜀3 (𝑡)

+ 1𝜌2 𝜀
𝑇
5 (𝑡) 𝑍2𝜀5 (𝑡)) − ( 1𝜌1 𝜀

𝑇
4 (𝑡) 𝑍2𝜀4 (𝑡)

+ 1𝜌2 𝜀
𝑇
6 (𝑡) 𝑍2𝜀6 (𝑡)) ≤ −[𝜀3 (𝑡)𝜀5 (𝑡)]

𝑇

⋅ [𝑍2 𝑆1
∗ 𝑍2][𝜀3 (𝑡)𝜀5 (𝑡)] − [𝜀4 (𝑡)𝜀6 (𝑡)]

𝑇 [𝑍2 𝑆2
∗ 𝑍2][𝜀4 (𝑡)𝜀6 (𝑡)]

= −𝜉𝑇 (𝑡) [ 6∑
𝑖=3

Γ𝑇𝑖 𝑍2Γ𝑖 + Γ𝑇3 𝑆1Γ5 + Γ𝑇5 𝑆𝑇1 Γ3 + Γ𝑇4 𝑆2Γ6

+ Γ𝑇6 𝑆𝑇2 Γ4] 𝜉 (𝑡) .
(22)

Using Lemma 3 can lead to

𝜁4 (𝑡) ≤ −𝑑2𝑚 [𝜔1 (𝑡)𝜔2 (𝑡)]
𝑇 [𝑍3 0

∗ 𝑍3][𝜔1 (𝑡)𝜔2 (𝑡)]

= −𝜉𝑇 (𝑡) 𝑑2𝑚
8∑
𝑖=7

Γ𝑇𝑖 𝑍3Γ𝑖𝜉 (𝑡) ,

𝜁5 (𝑡) ≤ −𝑑2𝑀𝑚 [𝜔3 (𝑡)𝜔4 (𝑡)]
𝑇 [𝑍4 0

∗ 𝑍4][𝜔3 (𝑡)𝜔4 (𝑡)]

= −𝜉𝑇 (𝑡) 𝑑2𝑀𝑚
10∑
𝑖=9

Γ𝑇𝑖 𝑍4Γ𝑖𝜉 (𝑡) ,

(23)

where

𝜔1 (𝑡) = 𝑑𝑚𝑥 (𝑡) − 𝑢1 (𝑡) ,
𝜔2 (𝑡) = √2𝑑𝑚2 𝑥 (𝑡) + √2𝑢1 (𝑡) − 3√2𝑑𝑚 𝑢3 (𝑡) ,
𝜔3 (𝑡) = 𝑑𝑀𝑚𝑥 (𝑡 − 𝑑𝑚) − 𝑢2 (𝑡) ,
𝜔4 (𝑡) = √2𝑑𝑀𝑚2 𝑥 (𝑡 − 𝑑𝑚) + √2𝑢2 (𝑡) − 3√2𝑑𝑀𝑚 𝑢4 (𝑡) .

(24)

Form (3), we have

𝜖1 (ℎ𝑇ℎ − 𝛼2𝑥𝑇 (𝑡) 𝐶𝑇𝐶𝑥 (𝑡)) ≤ 0,
𝜖2 (𝑝𝑇𝑝 − 𝛽2𝑥𝑇 (𝑡 − 𝑑 (𝑡))𝐷𝑇𝐷𝑥 (𝑡 − 𝑑 (𝑡))) ≤ 0. (25)

Combining (13), (14), (20), (22), (23), and (25), we obtain

�̇� (𝑡) ≤ 𝜉𝑇 (𝑡) [𝐺𝑇1𝑃𝐺2 + 𝐺𝑇2𝑃𝐺1 + 𝑊 + 𝑀1 + 𝑀2

+ Δ𝑇𝑁Δ − 𝑑2𝑚
2∑
𝑖=1

Γ𝑇𝑖 𝑍1Γ𝑖 −
6∑
𝑖=3

Γ𝑇𝑖 𝑍2Γ𝑖 − Γ𝑇3 𝑆1Γ5

− Γ𝑇5 𝑆𝑇1 Γ3 − Γ𝑇4 𝑆2Γ6 − Γ𝑇6 𝑆𝑇2 Γ4 − 𝑑2𝑚
8∑
𝑖=7

Γ𝑇𝑖 𝑍3Γ𝑖

− 𝑑2𝑀𝑚
10∑
𝑖=9

Γ𝑇𝑖 𝑍4Γ𝑖] 𝜉 (𝑡) .

(26)

Using Schur complement, (26) can be transform to the first
LMI of (9), which completed the proof of Theorem 4.
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When ℎ = 𝑝 = 0, that means system without perturba-
tion. We can consider the following system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑑 (𝑡)) ,
𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝑑𝑀, 0] . (27)

Stability analysis of system (26) is studied in a lot of litera-
tures. From Theorem 4, the stability criterion of system (26)
can be obtained easily.

Corollary 5. System (26) under condition (2) will be asymp-
totically stable if there exist given scalars 𝑑𝑚, 𝑑𝑀, and 𝑑𝑑 and
positive symmetric matrices 𝑃 ∈ R5𝑛∗5𝑛, 𝑊𝑠 ∈ R𝑛∗𝑛 (𝑠 =1, 2, 3), and 𝑍𝑞 ∈ R𝑛∗𝑛 (𝑞 = 1, . . . , 4) and appropriate
dimensions matrices 𝑆𝑚, satisfying the following LMIs:

[Φ Δ𝑇𝑁
∗ −𝑁 ] < 0,

[𝑍2 𝑆𝑚
∗ 𝑍2] ≥ 0, (𝑚 = 1, 2) ,

(28)

where

Φ = 𝐺𝑇1𝑃𝐺2 + 𝐺𝑇2𝑃𝐺1 + 𝑊 − 𝑑2𝑚
2∑
𝑖=1

Γ𝑇𝑖 𝑍1Γ𝑖 −
6∑
𝑖=3

Γ𝑇𝑖 𝑍2Γ𝑖 − Γ𝑇3 𝑆1Γ5 − Γ𝑇5 𝑆𝑇1 Γ3 − Γ𝑇4 𝑆2Γ6 − Γ𝑇6 𝑆𝑇2 Γ4 − 𝑑2𝑚
8∑
𝑖=7

Γ𝑇𝑖 𝑍3Γ𝑖

− 𝑑2𝑀𝑚
10∑
𝑖=9

Γ𝑇𝑖 𝑍4Γ𝑖,
𝐺1 = col {𝑒1, 𝑒5, 𝑒6, 𝑒7, 𝑒8} ,
𝐺2 = col {𝐴𝑒1 + 𝐵𝑒3, 𝑒1 − 𝑒2, 𝑒2 − 𝑒4, 𝑑𝑚𝑒1 − 𝑒5, 𝑑𝑀𝑚𝑒2 − 𝑒6} ,
𝑊 = diag {𝑊1 + 𝑊2 + 𝑊3 −𝑊2 − (1 − 𝑑𝑑)𝑊1 −𝑊3 0 0 0 0 0 0} ,
Δ = 𝐴𝑒1 + 𝐵𝑒3,
𝑒𝑖 = [0𝑛×(𝑘−1)𝑛 𝐼 0𝑛×(10−𝑘)𝑛] ,

𝑘 = 1, 2, . . . , 10,

(29)

Γ1 ⋅ ⋅ ⋅ Γ10 and𝑁 are defined inTheorem 4. If the information of
delay is unavailable, by setting 𝑄1 = 0, we obtain
Corollary 6. If there exist given scalars 𝑑𝑚, 𝑑𝑀, and 𝑑𝑑 and
positive symmetric matrices 𝑃 ∈ R5𝑛∗5𝑛, 𝑊𝑠 ∈ R𝑛∗𝑛 (𝑠 =1, 2, 3), and 𝑍𝑞 ∈ R𝑛∗𝑛 (𝑞 = 1, . . . , 4) and appropriate
dimensions matrices 𝑆𝑚, such that (27) with 𝑊1 = 0 are
feasible, system (26) under condition (2) will be asymptotically
stable.

Remark 7. From the viewpoint of control theory, the changed
trend of system in reality is not only decided by the current
states but also related to its past states. This is why the study
of time-delay system is significant. This paper is interested
in the stability analysis of the system with time-delay which
has strong background in reality. The stability criterion we
proposed can be used to design effective control strategy in a
specific engineering file, such as synchronization of coronary
artery. In order to compare with exiting results, a lot of papers
related to stability analysis are concerned about the MADB
which can be calculated by stability criterion. We can see the
same particular examples in [10–30] as Examples 1–3 in our
manuscript. In these examples structure of the matrices is
prescribed. The purpose of these examples is to measure the

conservatism of proposed criterion. The larger MADB, the
less conservatism.

4. Numerical Examples

The advantages of our results can be illustrated by the
following examples.

Example 1. Nonlinear system (1) is subject to (2) and (3) with

𝐴 = [−1.2 0.1
−0.1 −1] ,

𝐵 = [−0.6 0.7
−1 −0.8] ,

𝐶 = 𝐷 = [1 0
0 1] .

(30)

For given 𝑑𝑚, 𝛼, 𝛽, and 𝑑𝑑, utilizing Theorem 4, we
calculate the MADB 𝑑𝑀 which can guarantee the stability
of system (1). The result is listed in Table 1. We can see that
the stability criterion we proposed has less conservatism than
others. It is worth mentioning that when 𝛼 = 0, Theorem 4
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Table 1: Maximal 𝑑𝑀 for given 𝑑𝑚 = 0.5.
Methods

𝛼, 𝛽𝛼 = 0, 𝛽 = 0.1 𝛼 = 0.1, 𝛽 = 0.1𝑑𝑑 = 0.5 𝑑𝑑 = 0.9 𝑑𝑑 = 1.1 𝑑𝑑 = 0.5 𝑑𝑑 = 0.9 𝑑𝑑 = 1.1
[12] 1.4420 1.3380 1.3380 1.2840 1.2450 1.2450
[10] (𝑁 = 2) 1.5500 1.5500 1.5500 1.3690 1.3690 1.3690
[13] 1.5580 1.5580 1.5580 1.3840 1.3840 1.3840
[14] 1.5636 1.5636 1.5636 1.3858 1.3858 1.3858
[10] (𝑁 = 4) 1.8240 1.8240 1.8240 1.5240 1.5240 1.5240
[15] 1.8599 1.8599 1.8599 1.6622 1.6622 1.6622
Theorem 4 2.2561 2.2561 2.2561 1.6844 1.6844 1.6844
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(a) 𝑑(𝑡) = 1.0922 + 0.5922 ∗ sin(1.5𝑡)
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(b) 𝑑(𝑡) = 2.0497

Figure 1: Trajectories of 𝑥(𝑡).

Table 2: Maximal 𝑑𝑀 with given 𝑑𝑚 = 0 for 𝑑𝑑 = 0.
Methods 𝛼, 𝛽𝛼 = 0, 𝛽 = 0.1 𝛼 = 0.1, 𝛽 = 0.1
[16] 0.6811 0.6129
[17] 1.3279 1.2503
[18] 2.7422 1.8753
[19] 2.7423 1.8753
[20] 2.7757 1.8959
[21] 2.7758 1.8959
[22] 2.9816 1.9805
Theorem 4 3.0715 2.0497

can get much better results. Then we consider system (1)
with constant time-delay. When 𝑑𝑑 = 0, the MADB 𝑑𝑀
under different 𝛼 and 𝛽 is listed in Table 2. We can see
that Theorem 4 provides much less conservative results than
others.

Let 𝑓(𝑥(𝑡)) = 0.1𝑥(𝑡)∗ sin(𝑥(𝑡)), 𝑔(𝑥(𝑡−𝑑(𝑡))) = 0.1𝑥(𝑡−𝑑(𝑡))∗cos(𝑥(𝑡−𝑑(𝑡))), and𝑥(0) = (0.2, 0.3). Figure 1(a) shows

the trajectories of variable𝑥(𝑡)with𝛼 = 0.1,𝛽 = 0.1,𝑑𝑑 = 0.5,𝑑𝑚 = 0.5, and 𝑑(𝑡) = 1.0922 + 0.5922 ∗ sin(1.5𝑡). Figure 1(b)
shows the trajectories of variable 𝑥(𝑡) with 𝛼 = 0.1, 𝛽 = 0.1,𝑑𝑑 = 0, 𝑑𝑚 = 0, and 𝑑(𝑡) = 2.0497.
Example 2. Consider system (26) with

𝐴 = [−2 0
0 −0.9] ,

𝐵 = [−1 0
−1 −1] .

(31)

For given 𝑑𝑚 = 3, 4, 5 and different 𝑑𝑑 = 0.1, 0.3, 0.5, 0.9,
we calculate the MADB 𝑑𝑀 which is listed in Table 3. Table 3
illustrates the methods presented in Corollary 5 providing
less conservative results than others. It is worth noting that
the effect is very obvious when 𝑑𝑑 ≤ 0.5.

Let 𝑑(𝑡) = 5.1964+0.1964∗ sin(4.58∗ 𝑡), and trajectories
of variable 𝑥(𝑡) can be showed in Figure 2.
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Table 3: Maximal 𝑑𝑀 with given 𝑑𝑚 for different 𝑑𝑑.
𝑑𝑚 Methods 𝑑𝑑 = 0.1 𝑑𝑑 = 0.3 𝑑𝑑 = 0.5 𝑑𝑑 = 0.9
3

[23] 4.3979 3.3408 3.3408 3.3408
[24] 4.4506 3.4186 3.4186 3.4186
[11] 4.8247 3.6616 3.6616 3.6616

Corollary 5 5.1213 4.2496 4.2208 3.5974

4

[23] 4.1978 4.1690 4.1690 4.1690
[24] 4.2367 4.2097 4.2097 4.2097
[11] 4.5762 4.3788 4.3788 4.3788

Corollary 5 5.1916 4.9391 4.9338 4.4987

5

[23] 5.0275 5.0275 5.0275 5.0275
[24] 5.0440 5.0440 5.0440 5.0440
[11] 5.1453 5.1453 5.1453 5.1453

Corollary 5 5.7065 5.7043 5.6965 5.3928
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Figure 2: Trajectories of 𝑥(𝑡)with 𝑑(𝑡) = 5.1964+0.1964∗sin(4.58∗𝑡).

Example 3. Consider another system (26) with

𝐴 = [ 0 1
−1 −2] ,

𝐵 = [ 0 0
−1 1] .

(32)

Sometimes the information of𝑑(𝑡) is unavailable or𝑑(𝑡) is
undifferentiable. We calculate the MADB 𝑑𝑀 under different𝑑𝑚 for unknown 𝑑𝑑. From Table 4, it is observed that the
results obtained by Corollary 6 are much less conservative
than others. Finally, for given 𝑑𝑚 = 0 and different 𝑑𝑑 =0.1, 0.3, using Corollary 5 we get the MADB 𝑑𝑀 listed in
Table 5. It is clear to see that our results have much less
conservatism when the lower bound is 𝑑𝑚 = 0.

Let 𝑑(𝑡) = 1.54685 + 1.54685 ∗ sin(0.194 ∗ 𝑡), and
trajectories of variable 𝑥(𝑡) can be showed in Figure 3.

Table 4: Maximal 𝑑𝑀 with given 𝑑𝑚 for unknown 𝑑𝑑.
Methods 𝑑𝑚 = 0.3 𝑑𝑚 = 0.5 𝑑𝑚 = 0.8
[25] 1.0715 1.2191 1.4539
[23] (𝑁 = 2) 1.0716 1.2196 1.4552
[26] 1.2043 1.3429 1.5663
[27] 1.2246 1.3619 1.5838
[28] 1.2400 1.3800 1.6000
[29] 1.2700 1.3900 1.6100
[30] 1.3500 1.4700 1.6800
Corollary 6 1.5607 1.6426 1.7101

Table 5: Maximal 𝑑𝑀 with given 𝑑𝑚 = 0 for 𝑑𝑑 = 0.1, 0.3.
Methods 𝑑𝑑 = 0.1 𝑑𝑑 = 0.3
[25] 5.4630 2.2160
[23] (𝑁 = 2) 5.4764 2.2160
[26] 5.4780 2.2850
[27] 5.4940 2.3070
Corollary 5 7.6301 3.0937

5. Conclusion

We have researched the stability analysis problem for the
time-varying delay systems. We utilize the new augmented
LKFwhich is constructed based on single and double integral
forms ofWirtinger-based inequality. Combining reciprocally
convex method, we get an improved delay-dependent sta-
bility criterion. Finally, examples illustrate that the stability
criterion we obtained is less conservative than some existing
results.
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Figure 3: Trajectories of 𝑥(𝑡) with 𝑑(𝑡) = 1.54685 + 1.54685 ∗
sin(0.194 ∗ 𝑡).
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