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In this paper, we study the performance of BoundaryValueMethods (BVMs) on second-order PDEs.ThePDEs are transformed into
a systemof second-order ordinary differential equations (ODEs) using the Lanczos-Chebyshev reduction technique.The conditions
under which the BVMs converge and the computational complexities of the algorithms are discussed. Numerical illustrations are
given to show the simplicity and high accuracy of the approach.

1. Introduction

Thestudy ofmethodswhich approximates the solution of par-
tial differential equations is an important issue in numerical
analysis. This is because most modeled problems in science
and engineering results in PDEs such as the problem of
the elastic torsion of prismatic bars, axisymmetric ideal flow
around sphere, the heat equation, the wave equations and so
on. In this paper, we are interested in the approximate solu-
tion of the initial or boundary value problems of second-
order PDEs

L𝑢 = 𝑓, (1)

where L is a fixed elliptic or hyperbolic operator of order 2𝑚,𝑓 ∈ 𝐹, and 𝐹 is a space function defined on a domain𝐷.
The reduction of (1) to a lower dimensional problem

results, inmost cases, to either a system of second-order ordi-
nary differential equation (ODE) or an algebraic system. The
reduction technique described in this paper is based on the
Lanczos 𝜏-method [1, 2]. In this approach, polynomials are
used as the trial functions with an important advantage that
the “economized” solutions which can be readily integrated
or differentiated are obtained [1, 2].

In the last few years, Boundary Value Methods (BVMs)
have been used for the solution of the first-order initial

and boundary value problems and their convergence and
linear stability properties have been fully discussed in [3–8].
These BVMs are also used to solve higher order initial and
boundary value problems by first reducing the higher order
differential equations into an equivalent first-order system
which increases the computational cost and time. Biala [9]
and Biala et al. [10–12] developed BVMs for the direct solu-
tion of systems of the general second-order ODEs and PDEs
with initial or boundary conditions. The boundary value
technique simultaneously generates approximate solution(𝑦1, 𝑦2, . . . , 𝑦𝑁)𝑇 to the exact solution (𝑦(𝑥1), 𝑦(𝑥2), . . . ,𝑦(𝑥𝑁))𝑇 on the entire interval of integration. This approach
has the advantage of producing smaller global errors (at the
end of the range of integration) than those produced by the
step-by-step methods due to the presence of accumulated
errors at the each step in the step-by-step method. The novel
property of this paper is in the ease with which the second-
order PDEs are transformed into a system of ODEs.

The paper is organized as follows: In Section 2, we derive
a continuous approximation 𝑈(𝑥) of the exact solution 𝑦(𝑥)
from which the class of BVMs are developed. The conver-
gence and computational complexities of the methods are
discussed in Section 3. In Section 4, the Lanczos-Chebyshev
reduction technique is introduced. Several numerical illus-
trations, given in Section 5, are given to show the efficacy of
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this approach. Finally, we give a concluding remark in Sec-
tion 6.

2. Boundary Value Methods

The BVMs given in [9] are a class of methods for the
general second-order ODEs based on the Linear Multistep
Formulas.Most formulas [4] used for second-orderODEs are
implemented by reducing them into a system of first-order
ODEs. The BVMs in [9] were introduced in order to lessen
the computational cost and time and also to utilize additional
information associated with specific differential equations
such as the oscillatory nature of solutions. One main feature
of the BVMs in [9] is that they can be used in the same way
for solving both initial and boundary value problems with
some slight change in the code used.Therefore such methods
are the best candidates for solving second-order PDEs after
reduction into an equivalent second-order system.

In what follows, we consider the general system of
second-order boundary value problems

𝑦󸀠󸀠 = 𝑓 (𝑥, 𝑦 ⋅ 𝑦󸀠) , 𝑥 ∈ [𝑎, 𝑏] , (2)

subject to the mixed boundary conditions

𝑎0𝑦 (𝑎) + 𝑏0𝑦󸀠 (𝑎) = 𝑑𝑜,𝑎1𝑦 (𝑏) + 𝑏1𝑦󸀠 (𝑏) = 𝑑1, (3)

where 𝑓 : R × R2𝑚 → R𝑚 are continuous functions, 𝑦, 𝑦󸀠,𝑦󸀠󸀠 ∈ R𝑚, and 𝑚 is the dimension of the system. The BVMs
for solving (2) take the general form

𝑦𝑛+𝑗 + 𝛼(𝑗)V 𝑦𝑛+V + 𝛼(𝑗)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽(𝑗)𝑖 𝑓𝑛+𝑖,
𝑗 = 1, . . . , V − 1, V + 1, . . . , 2V (4)

with the derivative formulas

ℎ𝑦󸀠𝑛+𝑗 + 𝛼󸀠(𝑗)V 𝑦𝑛+V + 𝛼󸀠(𝑗)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽󸀠(𝑗)𝑖 𝑓𝑛+𝑖,
𝑗 = 0, 1, . . . , 2V, (5)

where ℎ is the constant stepsize and 𝛼(𝑗)V , 𝛼(𝑗)0 , 𝛽(𝑗)𝑖 , 𝛼󸀠(𝑗)V , 𝛼󸀠(𝑗)0 ,
and 𝛽󸀠(𝑗)𝑖 are chosen so that (4) and (5) have order 2V + 2 and2V + 1, respectively.
2.1. Derivation of the BVMs. In this section, we shall use the
interpolation and collocation approach [9–15] to construct
a 2V-step continuous LMM (CLMM) which will be used to
produce formulas for solving (2).The CLMM has the general
form

𝑈 (𝑥) = 𝛼V (𝑥) 𝑦𝑛+V + 𝛼0 (𝑥) 𝑦𝑛 + ℎ2 2V∑
𝑖=0

𝛽𝑖 (𝑥) 𝑓𝑛+𝑖. (6)

Evaluating (6) at𝑥𝑗, 𝑗 = 1, . . . , V−1, V+1, . . . , 2Vweobtain
the formulas of the form

𝑦𝑛+𝑗 + 2𝑦𝑛+V − 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽𝑖𝑓𝑛+𝑖,
𝑗 = 1, . . . , V − 1, V + 1, . . . , 2V (7)

whose derivative formula is

ℎ𝑦󸀠𝑛+𝑘 + 𝛼󸀠V𝑦𝑛+V + 𝛼󸀠0𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽󸀠𝑖𝑓𝑛+𝑖, 𝑘 = 0 (1) (2V) . (8)

To obtain (6), we seek an approximation 𝑈(𝑥) to the exact
solution 𝑦(𝑥) of the form

𝑈 (𝑥) = 𝑝+𝑞−1∑
𝑟=0

𝑏𝑟𝑥𝑟, (9)

where 𝑥 ∈ [𝑎, 𝑏] and 𝑏𝑟 are coefficients to be uniquely
determined so that the method has order 2V + 2 and 𝑝 and𝑞 are the number of interpolation and collocation points,
respectively. We impose that the interpolating function (9)
satisfies the following conditions:

𝑈(𝑥V) = 𝑦V,𝑈 (𝑥0) = 𝑦0,𝑈󸀠󸀠 (𝑥𝑖) = 𝑓𝑖, 𝑖 = 0 (1) (2V) ,
(10)

which lead to a system of 2V + 3 equations which is solved
using a Computer Algebra System (CAS) such as Mathemat-
ica to obtain 𝑏𝑟, 𝑟 = 0(1)(𝑝 + 𝑞 − 1).

The CLMM is developed by substituting the values of 𝑏𝑟
into (9). After some algebraic manipulations, the CLMM is
expressed in form (6).The 2V-step CLMM is used to generate
the main methods (7) and derivative formulas of form (8)
which are combined to solve (2). For example, the BVMs of
order 6 used are as follows.

BVM order 6:

𝑦𝑛+1 − 12𝑦𝑛+2 − 12𝑦𝑛 = ℎ2480 (−19𝑓𝑛 − 204𝑓𝑛+1− 14𝑓𝑛+2 − 4𝑓𝑛+3 + 𝑓𝑛+4) ,
𝑦𝑛+3 − 32𝑦𝑛+2 + 12𝑦𝑛 = ℎ2480 (17𝑓𝑛 + 252𝑓𝑛+1+ 402𝑓𝑛+2 + 52𝑓𝑛+3 − 3𝑓𝑛+4) ,
𝑦𝑛+4 − 2𝑦𝑛+2 − 𝑦𝑛 = ℎ215 (𝑓𝑛 + 16𝑓𝑛+1 + 26𝑓𝑛+2+ 16𝑓𝑛+3 + 𝑓𝑛+4) 𝑛 = 0 (4) (𝑁 − 4) ,

(11)
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with the derivative formulas

ℎ𝑦󸀠𝑛 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (−53𝑓𝑛 − 144𝑓𝑛+1+ 30𝑓𝑛+2 − 16𝑓𝑛+3 + 3𝑓𝑛+4) ,ℎ𝑦󸀠𝑛+1 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2720 (39𝑓𝑛 + 70𝑓𝑛+1− 144𝑓𝑛+2 + 42𝑓𝑛+3 − 7𝑓𝑛+4) ,ℎ𝑦󸀠𝑛+2 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (5𝑓𝑛 + 104𝑓𝑛+1 + 78𝑓𝑛+2− 8𝑓𝑛+3 + 𝑓𝑛+4) ,ℎ𝑦󸀠𝑛+3 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2720 (31𝑓𝑛 + 342𝑓𝑛+1+ 768𝑓𝑛+2 + 314𝑓𝑛+3 − 15𝑓𝑛+4) ,ℎ𝑦󸀠𝑛+4 − 12𝑦𝑛+2 + 12𝑦𝑛 = ℎ2180 (3𝑓𝑛 + 112𝑓𝑛+1 + 56𝑓𝑛+2+ 240𝑓𝑛+3 + 59𝑓𝑛+4) .

(12)

Also, the BVMs of order 8 are as follows.
BVM order 8:

𝑦𝑛+1 − 13𝑦𝑛+3 − 23𝑦𝑛 = ℎ260480 (−2803𝑓𝑛 − 37950𝑓𝑛+1− 14913𝑓𝑛+2 − 7108𝑓𝑛+3 + 3147𝑓𝑛+4 − 990𝑓𝑛+5+ 137𝑓𝑛+6) ,𝑦𝑛+2 − 23𝑦𝑛+3 − 23𝑦𝑛 = ℎ260480 (−1291𝑓𝑛 − 21906𝑓𝑛+1− 32133𝑓𝑛+2 − 6288𝑓𝑛+3 + 1467𝑓𝑛+4 − 402𝑓𝑛+5+ 53𝑓𝑛+6) ,𝑦𝑛+4 − 43𝑦𝑛+3 + 13𝑦𝑛 = ℎ230240 (661𝑓𝑛 + 10734𝑓𝑛+1+ 19323𝑓𝑛+2 + 27268𝑓𝑛+3 + 2523𝑓𝑛+4 − 18𝑓𝑛+5− 11𝑓𝑛+6) ,𝑦𝑛+5 − 53𝑦𝑛+3 + 23𝑦𝑛 = ℎ212096 (535𝑓𝑛 + 8550𝑓𝑛+1+ 15501𝑓𝑛+2 + 22900𝑓𝑛+3 + 11889𝑓𝑛+4 + 1158𝑓𝑛+5− 53𝑓𝑛+6) ,𝑦𝑛+6 − 2𝑦𝑛+3 + 𝑦𝑛 = ℎ22240 (141𝑓𝑛 + 2430𝑓𝑛+1+ 4131𝑓𝑛+2 + 6756𝑓𝑛+3 + 4131𝑓𝑛+4 + 2430𝑓𝑛+5+ 141𝑓𝑛+6) 𝑛 = 0 (6) (𝑁 − 6) ,

(13)

with the derivatives

ℎ𝑦󸀠𝑛 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (−3795𝑓𝑛 − 14850𝑓𝑛+1+ 2403𝑓𝑛+2 − 6300𝑓𝑛+3 + 3267𝑓𝑛+4 − 1026𝑓𝑛+5+ 141𝑓𝑛+6) ,ℎ𝑦󸀠𝑛+1 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (4019𝑓𝑛 − 3426𝑓𝑛+1− 7125𝑓𝑛+2 + 18308𝑓𝑛+3 − 11019𝑓𝑛+4 + 3390𝑓𝑛+5

− 457𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+2 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2293𝑓𝑛+ 46830𝑓𝑛+1 + 22683𝑓𝑛+2 − 14204𝑓𝑛+3 + 3579𝑓𝑛+4− 786𝑓𝑛+5 + 85𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+3 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (315𝑓𝑛 + 4590𝑓𝑛+1+ 9369𝑓𝑛+2 + 6576𝑓𝑛+3 − 1107𝑓𝑛+4 + 270𝑓𝑛+5− 33𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+4 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2453𝑓𝑛+ 44526𝑓𝑛+1 + 70779𝑓𝑛+2 + 135812𝑓𝑛+3+ 51675𝑓𝑛+4 − 3090𝑓𝑛+5 + 245𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+5 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ2120960 (2995𝑓𝑛+ 40350𝑓𝑛+1 + 85377𝑓𝑛+2 + 103300𝑓𝑛+3+ 145653𝑓𝑛+4 + 47166𝑓𝑛+5 − 1481𝑓𝑛+6) ,
ℎ𝑦󸀠𝑛+6 − 13𝑦𝑛+3 + 13𝑦𝑛 = ℎ213440 (141𝑓𝑛 + 5886𝑓𝑛+1+ 4995𝑓𝑛+2 + 19812𝑓𝑛+3 + 5859𝑓𝑛+4 + 19710𝑓𝑛+5+ 4077𝑓𝑛+6) 𝑛 = 0 (6) (𝑁 − 6) .

(14)

Remark 1. Wenote here that, for higher orders (higher degree
polynomials of (9)), the accuracy of the scheme becomes
lower and tends to integrate the scheme less accurately. This
is due to the truncation errors in the numerical solution.

3. Convergence of the BVMs

In this section, we shall establish the convergence of the
BVMs derived in the previous section. We emphasize that we
evaluate (6) at 𝑥1, 𝑥2, . . . , 𝑥V−1, 𝑥V+1, . . . , 𝑥2V to obtain

𝑦𝑛+1 + 𝛼(1)V 𝑦𝑛+V + 𝛼(1)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽(1)𝑖 𝑓𝑛+𝑖,
𝑦𝑛+2 + 𝛼(2)V 𝑦𝑛+V + 𝛼(2)0 𝑦𝑛 = ℎ2 2V∑

𝑖=0

𝛽(2)𝑖 𝑓𝑛+𝑖,
...

𝑦𝑛+V−1 + 𝛼(V−1)V 𝑦𝑛+V + 𝛼(V−1)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽(V−1)𝑖 𝑓𝑛+𝑖,
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𝑦𝑛+V+1 + 𝛼(V+1)V 𝑦𝑛+V + 𝛼(V+1)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽(V+1)𝑖 𝑓𝑛+𝑖,
...

𝑦𝑛+2V + 𝛼(2V)V 𝑦𝑛+V + 𝛼(2V)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽(2V)𝑖 𝑓𝑛+𝑖
(15)

and also evaluate 𝑈󸀠(𝑥) at 𝑥𝑖, 𝑖 = 0(1)(2V) to obtain
ℎ𝑦󸀠𝑛 + 𝛼󸀠(0)V 𝑦𝑛+V + 𝛼󸀠(0)0 𝑦𝑛 = ℎ2 2V∑

𝑖=0

𝛽󸀠(0)𝑖 𝑓𝑛+𝑖,
ℎ𝑦󸀠𝑛+1 + 𝛼󸀠(1)V 𝑦𝑛+V + 𝛼󸀠(1)0 𝑦𝑛 = ℎ2 2V∑

𝑖=0

𝛽󸀠(1)𝑖 𝑓𝑛+𝑖,
...

ℎ𝑦󸀠𝑛+2V + 𝛼󸀠(2V)V 𝑦𝑛+V + 𝛼󸀠(2V)0 𝑦𝑛 = ℎ2 2V∑
𝑖=0

𝛽󸀠(2V)𝑖 𝑓𝑛+𝑖.
(16)

We note that the formulas in 3 are of 𝑂(ℎ𝑘+4) while the
derivative formulas are of 𝑂(ℎ𝑘+3). Equations 3 and (16) can
be compactly written in matrix form by introducing the
followingmatrix notations. Let𝑅 be a 2𝑁×2𝑁matrix defined
by

𝑅 = [𝑅11 𝑅12𝑅21 𝑅22] , (17)

where 𝑅𝑖𝑗 are𝑁 ×𝑁matrices given as

𝑅11

=

(((((((((((((((((((((((
(

𝛼󸀠(0)V1 𝛼(1)V
d 1 𝛼(V−1)V𝛼(V+1)V 1

d𝛼(2V)V 1 𝛼󸀠(0)V 𝛼󸀠(0)01 𝛼(1)V 𝛼(1)0
d1 𝛼(V−1)V 𝛼(V−1)0𝛼(V+1)V 1 𝛼(V+1)0

d𝛼(2V)V 1 𝛼(2V)0

)))))))))))))))))))))))
)

,

𝑅21 =((((((
(

𝛼󸀠(1)V...𝛼󸀠(2V)V 𝛼󸀠(1)V 𝛼󸀠(1)0... ...𝛼󸀠(2V)V 𝛼󸀠(2V)0

))))))
)

,

(18)

𝑅12 is an 𝑁 × 𝑁 null matrix, and 𝑅22 is an 𝑁 × 𝑁 identity
matrix.

Similarly, let 𝑆 be a 2𝑁 × 2𝑁matrix defined by

𝑆 = [𝑆11 𝑆12𝑆21 𝑆22] , (19)

where 𝑆𝑖𝑗 are𝑁 ×𝑁matrices given as

𝑆11 = ℎ2

(((((((((((((((((((((((((((((((((
(

𝛽󸀠(0)1 𝛽󸀠(0)2 ⋅ ⋅ ⋅ 𝛽󸀠(0)2V𝛽(1)1 𝛽(1)2 ⋅ ⋅ ⋅ 𝛽(1)2V...𝛽(V−1)1 𝛽(V−11)2 ⋅ ⋅ ⋅ 𝛽(V−11)2V𝛽(V+1)1 𝛽(V+1)2 ⋅ ⋅ ⋅ 𝛽(V+1)2V...𝛽(2V)1 𝛽(2V)2 ⋅ ⋅ ⋅ 𝛽(2V)2V 𝛽󸀠(0)1 𝛽󸀠(0)2 ⋅ ⋅ ⋅ 𝛽󸀠(0)2V𝛽(1)1 𝛽(1)2 ⋅ ⋅ ⋅ 𝛽(1)2V...𝛽(V−1)1 𝛽(V−1)2 ⋅ ⋅ ⋅ 𝛽(V−1)2V𝛽(V+1)1 𝛽(V+1)2 ⋅ ⋅ ⋅ 𝛽(V+1)2V...𝛽(2V)1 𝛽(2V)2 ⋅ ⋅ ⋅ 𝛽(2V)2V
d d d d𝛽(2V)1 𝛽(2V)2 ⋅ ⋅ ⋅ 𝛽(2V)2V

)))))))))))))))))))))))))))))))))
)

,
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𝑆21 = ℎ2
((((((((((((((
(

𝛽󸀠(1)1 𝛽󸀠(1)2 ⋅ ⋅ ⋅ 𝛽󸀠(1)2V...𝛽󸀠(2V)1 𝛽󸀠(2V)2 ⋅ ⋅ ⋅ 𝛽󸀠(2V)2V 𝛽󸀠(1)1 𝛽󸀠(1)2 ⋅ ⋅ ⋅ 𝛽󸀠(1)2V...𝛽󸀠(2V)1 𝛽󸀠(2V)2 ⋅ ⋅ ⋅ 𝛽󸀠(2V)2V
d d d d𝛽󸀠(2V)1 𝛽󸀠(2V)2 ⋅ ⋅ ⋅ 𝛽󸀠(2V)2V

))))))))))))))
)

;

(20)

𝑆12, 𝑆22 are𝑁 ×𝑁 null matrices.
We further define the following vectors:

𝑌 = (𝑦𝑛+1, . . . , 𝑦𝑛+2V, ℎ𝑦󸀠𝑛+1, . . . , ℎ𝑦󸀠𝑛+2V)𝑇 ,𝑌 = (𝑦 (𝑥𝑛+1) , . . . , 𝑦 (𝑥𝑛+2V) , ℎ𝑦󸀠 (𝑥𝑛+1) , . . . ,
ℎ𝑦󸀠 (𝑥𝑛+2V))𝑇 ,

𝐹 = (𝑓𝑛+1, . . . , 𝑓𝑛+2V, ℎ𝑓󸀠𝑛+1, . . . , ℎ𝑓󸀠𝑛+2V)𝑇 ,𝐿 (ℎ) = (𝑙1, . . . , 𝑙𝑁, ℎ𝑙󸀠1, . . . , ℎ𝑙󸀠𝑁)𝑇 ,𝐶 = (𝛽󸀠(0)0 ℎ2𝑓0 − ℎ𝑦󸀠0 − 𝛼󸀠(0)0 𝑦0, 𝛽(1)0 ℎ2𝑓0 − 𝛼(1)0 𝑦0, . . . ,𝛽(V−1)0 ℎ2𝑓0 − 𝛼(V−1)0 𝑦0, 𝛽(V+1)0 ℎ2𝑓0 − 𝛼(V+1)0 𝑦0, . . . ,𝛽(2V)0 ℎ2𝑓0 − 𝛼(2V)0 𝑦0, 0, . . . , 0)𝑇 .

(21)

The exact form of the system formed by 3 and (16) is given by

𝑅𝑌 − 𝑆𝐹 (𝑌) + 𝐶 + 𝐿 (ℎ) = 0, (22)

where 𝐿(ℎ) is the truncation error vector of the formulas in 3
and (16). The approximate form of the system is given by

𝑅𝑌 − 𝑆𝐹 (𝑌) + 𝐶 = 0, (23)

where 𝑌 is the approximate solution of vector 𝑌.
Subtracting (22) from (23) and letting𝐸 = 𝑌−𝑌 = (𝑒1, . . . ,𝑒𝑁, 𝑒󸀠1, . . . , 𝑒󸀠𝑁)𝑇 and using the mean value theorem, we have

the error system

(𝑅 − 𝑆𝐽) 𝐸 = 𝐿 (ℎ) , (24)

where 𝐽 is the Jacobian matrix and its entries 𝐽11, 𝐽12, 𝐽21, and𝐽22 are defined as

𝐽11 =((
(

𝜕𝑓1𝜕𝑦1 ⋅ ⋅ ⋅ 𝜕𝑓1𝜕𝑦𝑁... ... ...𝜕𝑓𝑁𝜕𝑦1 ⋅ ⋅ ⋅ 𝜕𝑓𝑁𝜕𝑦𝑁
))
)

,

𝐽12 =(((
(

𝜕𝑓1𝜕𝑦󸀠1 ⋅ ⋅ ⋅ 𝜕𝑓1𝜕𝑦󸀠𝑁... ... ...𝜕𝑓𝑁𝜕𝑦󸀠1 ⋅ ⋅ ⋅ 𝜕𝑓𝑁𝜕𝑦󸀠𝑁
)))
)

,

𝐽21 = ℎ(((
(

𝜕𝑓󸀠1𝜕𝑦1 ⋅ ⋅ ⋅ 𝜕𝑓󸀠1𝜕𝑦𝑁... ... ...
𝜕𝑓󸀠𝑁𝜕𝑦1 ⋅ ⋅ ⋅ 𝜕𝑓󸀠𝑁𝜕𝑦𝑁

)))
)

,

𝐽22 = ℎ(((
(

𝜕𝑓󸀠1𝜕𝑦󸀠1 ⋅ ⋅ ⋅ 𝜕𝑓
󸀠
1𝜕𝑦󸀠𝑁... ... ...

𝜕𝑓󸀠𝑁𝜕𝑦󸀠1 ⋅ ⋅ ⋅ 𝜕𝑓
󸀠
𝑁𝜕𝑦󸀠𝑁
)))
)

.

(25)

Let 𝑀 = −𝑆𝐽 be a matrix of dimension 2𝑁 so that (24)
becomes

(𝑅 +𝑀)𝐸 = 𝐿 (ℎ) , (26)
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and for sufficiently small ℎ, 𝑅 +𝑀 is a monotone matrix and
thus nonsingular (Jator and Li [14]). Therefore(𝑅 +𝑀)−1 = 𝐷 = (𝑑𝑖𝑗) ≥ 0,

2𝑁∑
𝑗=1

𝑑𝑖𝑗 = 𝑂 (ℎ−2) ,
𝐸 = 𝐷𝐿 (ℎ) ,‖𝐸‖ = ‖𝐷𝐿 (ℎ)‖ ,= 𝑂 (ℎ−2)𝑂 (ℎ𝑘+4) ,
= 𝑂 (ℎ𝑘+2)

(27)

which shows that the methods are convergent and the global
error is of order 𝑂(ℎ𝑘+2).
3.1. Computational Complexities. In this section, we discuss
the use of 3 and (16), which we henceforth call BVM (BVM),
for= 0(2])(𝑁−2]), where𝑁 is amultiple of 2].We emphasize
that themethods in the BVM are all mainmethods since they
are weighted the same and their use lead to a single matrix
equationwhich can be solved for the unknowns. For example,
for BVM6 (order 6), we make use of each of the methods
above in steps of 4; that is, 𝑛 = 0, 4, . . . , 𝑁 − 4. This results
in a system of 2𝑁 equations in 2𝑁 unknowns which can be
easily solved for the unknowns. Below is an algorithm for the
use of the methods.

The methods are implemented as BVMs by efficiently
using the following steps.

Step 1. Use the BVM for 𝑛 = 0 to obtain Y1 in the
interval [𝑦0, 𝑦2]] and for 𝑛 = 1 Y2 is obtained in the
interval [𝑦2], 𝑦4V]. Similarly, for 𝑛 = 2, 3, . . . , (Γ − 1) we
obtain Y3, . . . ,YΓ, where 𝑁 = 2] × Γ in the intervals,[𝑦4V, 𝑦6V], [𝑦6V, 𝑦8V], . . . , [𝑦𝑁−2], 𝑦𝑁], respectively.
Step 2. The unified block given by the system Y1 ∪ Y2 ∪ ⋅ ⋅ ⋅ ∪
YΓ−1∪YΓ obtained in Step 1 results in a systemof 2𝑁 equations
in 2𝑁 unknowns which can be easily solved.

Step 3. The values of the solution and the first derivatives of
(1) are generated by the sequence {𝑦𝑛}, {𝑦󸀠𝑛}, 𝑛 = 0, . . . , 𝑁,
obtained as the solution in Step 2.

4. Lanczos-Chebyshev Reduction Technique

We consider the second-order problem of the form
L 𝑢 (𝑥, 𝑦) = 𝑓 in Υ (28)

with the boundary condition
L𝑢 (𝑥, 𝑦) = 𝑔 on Ω, (29)

where Ω is the boundary of the region Υ. The Lanczos 𝜏-
method involves the replacement of one of the two functions
in the trial solution by an approximate polynomial of the form𝐺𝑖 = 𝑥𝑖−1 (30)

and 𝑢(𝑥, 𝑦) is approximated by

𝑢 (𝑥, 𝑦) ≈ 𝑢𝑁 (𝑥, 𝑦) = 𝑁∑
𝑖=1

𝑝𝑖 (𝑦) 𝑥𝑖−1 (31)

and Ω must be bounded by the lines 𝑥 = ±1 in the 𝑥-
direction. The problem is slightly perturbed to obtain

L𝑢𝑁 (𝑥, 𝑦) = 𝜏1 (𝑦) 𝐶∗𝑁−2 (𝑥) + 𝜏2 (𝑦) 𝐶∗𝑁−1 (𝑥) + 𝑓, (32)

L𝑢𝑁 (𝑥, 𝑦) = 𝑔, 𝑥 ∈ [𝑎, 𝑏] , (33)

where 𝜏𝑖(𝑦) are arbitrary functions and 𝐶∗𝑗 (𝑥) are the 𝑗th
order shifted Chebyshev polynomials in the range 𝑥 ∈[𝑎, 𝑏]. Equating the powers of 𝑥 in (32) together with the
boundary conditions (33) gives (𝑁 + 2) equations in (𝑁 + 2)
unknowns 𝜏1(𝑦), 𝜏2(𝑦), 𝑝1(𝑦), . . . , 𝑝𝑁(𝑦).The operator Lmay
also contain polynomial functions. The inclusion of (33) is to
ensure the exact satisfaction of the exact solutions at 𝑥 = 𝑎
and 𝑥 = 𝑏. The arbitrary 𝜏 functions are eliminated to give a
set of𝑁 second-order ordinary differential equations. Hence,𝑝𝑖(𝑦) can be uniquely determined.

5. Numerical Illustrations

In this section, we consider five numerical examples using
the BVMs of order 6 to solve the ODE system arising from
the semidiscretization of the PDEs. All computations were
carried out using a written code in Mathematica 11.0. In all
examples, a uniform stepsize was used and the maximum
absolute errors were computed as

max 󵄩󵄩󵄩󵄩󵄩(𝑢𝑖𝑗 − 𝑢 (𝑥𝑖, 𝑦𝑗))󵄩󵄩󵄩󵄩󵄩 , 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀, (34)

where𝑢𝑖𝑗 is the numerical approximation of the exact solution𝑢(𝑥𝑖, 𝑦𝑗) at the mesh point (𝑥𝑖, 𝑦𝑗).
Example 1. We consider the following one-dimensional ellip-
tic PDE:𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 2 (𝑥2 + 𝑦2 − 2) , 𝑥, 𝑦 ∈ [−1, 1] ,𝑢 (𝑥, ±1) = 0

Exact: 𝑢 (𝑥, 𝑦) = (𝑥2 − 1) (𝑦2 − 1) . (35)

We seek an approximation of the form

𝑢𝑁 (𝑥, 𝑦) = 𝑁∑
𝑖=1

𝑝𝑖 (𝑦) 𝑥𝑖−1 (36)

to obtain

∇2𝑢 = 𝑁∑
𝑖=1

{𝑝󸀠󸀠𝑖 (𝑦) + 𝑖 (𝑖 + 1) 𝑝𝑖+2 (𝑦)} 𝑥𝑖−1 (37)

and the perturbed form∇2𝑢𝑁 (𝑥, 𝑦) = 2 (𝑥2 + 𝑦2 − 2) + 𝜏1𝐶𝑁−2 (𝑥)+ 𝜏2 (𝑦) 𝐶𝑁−1 (𝑥) (38)
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Table 1: Maximum errors on the line 𝑥 = 0 for the elliptic PDE in
Example 1. 𝑁

4 5 6 7 84.441𝑒 − 16 2.776𝑒 − 16 2.220𝑒 − 16 2.43𝑒 − 16 2.220𝑒 − 16
with ∇2𝑢𝑁 (𝑥, 𝑦) = 2 (𝑥2 + 𝑦2 − 2)󵄨󵄨󵄨󵄨󵄨𝑥=±1 , (39)

where

𝐶𝑁 (𝑥) = 𝑁∑
𝑖=1

𝐶𝑁𝑖 𝑥𝑖, − 1 ≤ 𝑥 ≤ 1. (40)

Equating the powers of 𝑥 in (38), we obtain𝑝󸀠󸀠𝑖 (𝑦) + 𝑖 (𝑖 + 1) 𝑝𝑖+2 (𝑦)= 𝜏1 (𝑦) 𝐶𝑁−2𝑖−1 + 𝜏2 (𝑦) 𝐶𝑁−1𝑖−1 𝑖 = 2, 4, 5, . . . , 𝑁 − 2,𝑝󸀠󸀠1 (𝑦) + 2𝑝3 (𝑦)= −4 + 2𝑦2 + 𝜏1 (𝑦) 𝐶𝑁−20 + 𝜏2 (𝑦) 𝐶𝑁−10 ,𝑝󸀠󸀠3 (𝑦) + 12𝑝5 (𝑦) = 2 + 𝜏1 (𝑦) 𝐶𝑁−22 + 𝜏2 (𝑦) 𝐶𝑁−12 ,𝑝󸀠󸀠𝑁−1 (𝑦) = 𝜏1 (𝑦) 𝐶𝑁−2𝑁−2 + 𝜏2 (𝑦) 𝐶𝑁−1𝑁−2,𝑝󸀠󸀠𝑁 (𝑦) = 𝜏2 (𝑦) 𝐶𝑁−1𝑁−1.

(41)

From (39) and (41), we eliminate 𝜏𝑖(𝑦) to obtain 𝑁 second-
order differential equations in 𝑁 unknowns 𝑝𝑖(𝑦), 𝑖 =1(1)𝑁. To use the BVMs to solve the resulting second-order
system, we require𝑁 boundary conditions which is obtained
from 𝑢(𝑥, ±1) = 0; that is, 𝑝0(±1) = ⋅ ⋅ ⋅ = 𝑝𝑁(±1) = 0.
Table 1 shows the computational results; Figures 1–3 show the
exact, approximate, and error function of the elliptic problem,
respectively.

Example 2. We consider the one-dimensional wave equation
with variable coefficients𝑥22 𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0, 𝑥, 𝑦 ∈ [0, 1] ,𝑢 (𝑥, 0) = 𝑥,𝑢𝑦 (𝑥, 0) = 𝑥2

Exact: 𝑢 (𝑥, 𝑦) = 𝑥 + 𝑥2 sinh (𝑦) .
(42)

The perturbed form of the problem is𝑥22 (𝑢𝑁)𝑥𝑥 − (𝑢𝑁)𝑦𝑦 = 𝜏1 (𝑦) 𝐶∗𝑁−2 (𝑥)+ 𝜏2 (𝑦) 𝐶∗𝑁−1 (𝑥) (43)
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Figure 1: Graph of the exact solution for Example 1.
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Figure 2: Graph of the approximate solution for Example 1.

with 𝑥22 (𝑢𝑁)𝑥𝑥 − (𝑢𝑁)𝑦𝑦 = 0|𝑥=0,1
𝐶∗𝑁 (𝑥) = 𝑁∑

𝑖=0

𝐶𝑁𝑖 𝑥𝑖, 0 ≤ 𝑥 ≤ 1. (44)

Equating powers of 𝑥, we obtain12 (𝑖 − 1) (𝑖 + 1) 𝑝𝑖 (𝑦) − 𝑝󸀠󸀠𝑖 (𝑦)= 𝜏1 (𝑦) 𝐶𝑁−2𝑖−1 + 𝜏2 (𝑦) 𝐶𝑁−1𝑖−1 𝑖 = 3, . . . , 𝑁 − 1,𝑝󸀠󸀠1 (𝑦) = −𝜏1 (𝑦) 𝐶𝑁−20 − 𝜏2 (𝑦) 𝐶𝑁−10 ,𝑝󸀠󸀠2 (𝑦) = −𝜏1 (𝑦) 𝐶𝑁−21 − 𝜏2 (𝑦) 𝐶𝑁−11 ,𝑝󸀠󸀠𝑁 (𝑦) = −𝜏2 (𝑦) 𝐶𝑁−1𝑁−1.
(45)

Eliminating 𝜏𝑖(𝑦) from (44) and (45), we obtain 𝑁 second-
order differential equations in𝑁 unknowns 𝑝𝑖(𝑦), 𝑖 = 1(1)𝑁.
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Figure 3: Graph of the error function for Example 1.
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Figure 4: Graph of the exact solution for Example 2.

The initial conditions to be used with this system of second-
order ODE are

𝑝1 (0) = 0,𝑝2 (0) = 1,𝑝3 (0) = ⋅ ⋅ ⋅ = 𝑝𝑁 (0) = 0,
𝑝󸀠1 (0) = 0,
𝑝󸀠2 (0) = 0,
𝑝󸀠3 (0) = 1,
𝑝󸀠4 (0) = ⋅ ⋅ ⋅ = 𝑝󸀠𝑁 (0) = 0.

(46)

Table 2 shows the maximum errors on the line 𝑥 = 0.5 for
different 𝑁. Also Figures 4–6 depict the exact, approximate,
and error function of the wave equation.
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Figure 5: Graph of the approximate solution for Example 2.
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Figure 6: Graph of the error function for Example 2.

Table 2: Maximum errors on the line 𝑥 = 0.5 for the wave equation
in Example 2. 𝑁

4 5 6 7 86.579𝑒 − 11 4.211𝑒 − 11 2.924𝑒 − 11 2.148𝑒 − 11 1.645𝑒 − 11
Example 3. Consider the one-dimensional linear inhomoge-
neous Klein-Gordon equation

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 = 6𝑥3𝑡 + 𝑡3 (𝑥3 − 6𝑥) , 𝑥, 𝑡 ∈ [0, 1] ,𝑢 (𝑥, 0) = 0,𝑢𝑡 (𝑥, 0) = 0
Exact: 𝑢 (𝑥, 𝑡) = 𝑥3𝑡3.

(47)

With the procedures of the previous examples, we obtain
the maximum errors as shown in Table 3. Figures 7–9 also
show the exact, approximate, and error function of the Klein-
Gordon equation.
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Figure 8: Graph of the approximate solution for Example 3.

Table 3: Maximum errors on the line 𝑥 = 0.5 for the Klein-Gordon
equation in Example 3. 𝑁

4 5 6 7 84.163𝑒 − 17 1.388𝑒 − 17 6.939𝑒 − 18 3.469𝑒 − 18 3.469𝑒 − 18
Example 4. Consider the Helmholtz equation

𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑢 = 0, 𝑥, 𝑦 ∈ [0, 1] ,𝑢 (𝑥, 0) = 0,𝑢𝑦 (𝑥, 0) = 𝑒𝑥
Exact: 𝑢 (𝑥, 𝑦) = 𝑦𝑒𝑥 + 𝑥 cosh (𝑦) .

(48)

Table 4 shows the numerical results for the Helmholtz
equation. We observe that, for this example, as 𝑁 increases
the method gives more accurate results. This is due to the
accuratematching of the derivative conditions as𝑁 increases.
Figures 10–12 show the plot of the exact, approximate, and
error function for this example.
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Figure 9: Graph of the error function for Example 3.
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Figure 10: Graph of the exact solution for Example 4.

Table 4: Maximum errors on the line 𝑥 = 0.5 for the Helmholtz
equation in Example 4. 𝑁

4 6 8 109.554𝑒 − 03 .170𝑒 − 04 1.998𝑒 − 06 1.639𝑒 − 08
Example 5. Lastly, we consider the nonlinear equation

𝑢𝑡𝑡 = (𝑢𝑢𝑥)𝑥 , 𝑥, 𝑡 ∈ [0, 1] ,𝑢 (𝑥, 0) = 𝑥2,𝑢𝑡 (𝑥, 0) = −2𝑥2
Exact: 𝑢 (𝑥, 𝑡) = ( 𝑥𝑡 + 1)2 .

(49)

Table 5 and Figures 13–15 show the numerical results for
the nonlinear equation.
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Figure 11: Graph of the approximate solution for Example 4.
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Figure 12: Graph of the error function for Example 4.
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6. Conclusion

TheBoundary ValueMethods have been used to approximate
second-order PDEs. This has been achieved by using the
Lanczos-Chebyshev reduction technique to transform the
PDEs into an equivalent second-order system. The high
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Figure 14: Graph of the approximate solution for Example 5.

0

x

0.0

0.5

1.0

t

0.0

0.5

1.0
3. × 10−6

2. × 10−6

1. × 10−6

Er
ro
r

Figure 15: Graph of the error function for Example 5.

Table 5: Maximum errors on the line 𝑥 = 0.5 for the nonlinear
equation in Example 5. 𝑁

4 51.454𝑒 − 06 9.304𝑒 − 07
accuracy and simplicity of the approach is evidenced by the
preceding examples.
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