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This study focuses on the𝑁-level batching problem with a hierarchical clustering structure. Clustering is the task of grouping a set
of item types in such a way that item types in the same cluster are more similar (in some sense or another) to each other than to
those in other clusters. In hierarchical clustering structure, more and more different item types are clustered together as the level
of the hierarchy increases. 𝑁-level batching is the process by which items with different types are grouped into several batches
passed from level 1 to level 𝑁 sequentially for given hierarchical clustering structure such that batches in each level should satisfy
the maximum and minimum batch size requirements of the level. We consider two types of processing costs of the batches: unit
processing cost and batch processing cost. We formulate the𝑁-level batching problem with a hierarchical clustering structure as a
nonlinear integer programming model with the objective of minimizing the total processing cost. To solve the problem optimally,
we propose a multidimensional dynamic programming algorithm with an example.

1. Introduction

According to Wikipedia, clustering problem is the task of
grouping a set of item types in such a way that item types
in the same cluster are more similar (in some sense or
another) to each other than to those in other clusters. It is
the main task of exploratory data mining and a common
technique for statistical data analysis, used in many fields,
includingmachine learning, pattern recognition, image anal-
ysis, information retrieval, bioinformatics, data compression,
and computer graphics. Hierarchical clustering (also called
hierarchical cluster analysis or HCA) is a method of cluster
analysis which seeks to build a hierarchy of clusters. Strategies
for hierarchical clustering generally fall into two types:
agglomerative clustering and divisive one. Agglomerative
clustering is a bottom-up approach: that is, each observation
starts in its own cluster, and pairs of clusters aremerged as one
moves up the hierarchy. To the contrary, divisive clustering
is a top-down approach: that is, all observations start in one
cluster, and splits are performed recursively as one moves

down the hierarchy. In general, the merges and splits are
determined in a greedy manner. The results of hierarchical
clustering are usually presented in a dendrogram.

The hierarchical clustering problem has been studied
for several decades in a wide range of fields including
manufacturing, biotechnology, information technology (IT),
logistics and transportation, financial, and postal industries.
In the manufacturing sector, hierarchical clustering has been
used to form manufacturing cells and processing batches.
Vakharia and Wemmerlöv [1] investigated the performance
of seven hierarchical agglomerative clustering techniques and
eight dissimilarity measures in the context of cell formation
in the cellularmanufacturing system.Chen et al. [2] proposed
a constrained agglomerative clustering algorithm for the
single batch processing machine scheduling problem often
encountered in semiconductor manufacturing and metal
heat treatment. Hierarchical clustering is one of the most
commonly used methods in biotechnology for classification.
Cheng et al. [3] suggested hierarchical model-based cluster-
ing of DNA sequences by upgrading Bayesian model-based

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 6021708, 12 pages
https://doi.org/10.1155/2017/6021708

https://doi.org/10.1155/2017/6021708


2 Mathematical Problems in Engineering

clustering. Cameron et al. [4] proposed hierarchical cluster-
ing of gene expression patterns consistent with the lineage
of differentiating excitatory neurons during early neocortical
development. Saunders et al. [5] used Markov clustering
and hierarchical clustering to classify protein families of rust
pathogens and rank them according to their likelihood of
being effectors. Barzinpour et al. [6] proposed a spectral
approach to community detection, where the multiplex is
mapped onto Euclidean Space (using the top few eigenvec-
tors) and applied 𝑘-mean clustering. See Andreopoulos et
al. [7] for a review of the clustering algorithms applied in
bioinformatics.

Clustering is one of the most important techniques for
image segmentation and data analytics in the IT industry.
Arifin and Asano [8] presented a histogram threshold-
ing algorithm using hierarchical cluster analysis for image
segmentation. Nunez-Iglesias et al. [9] proposed an active
machine learning approach for performing hierarchical
agglomerative clustering from superpixels to improve seg-
mentation of 2D and 3D images. See Zaitoun and Aqel [10]
for a survey of image segmentation techniques. In relation
to data analytics, Bouguettaya et al. [11] proposed a set of
agglomerative hierarchical clustering methods, and Costa et
al. [12] proposed a hierarchical approach for clustering XML
documents with multiple forms of structural components.
Hierarchical clustering also has been successfully applied to
the logistics and transportation sector. Özdamar and Demir
[13] proposed a multilevel clustering algorithm that groups
demand nodes into smaller clusters at each planning level
for coordinating vehicle routing in large-scale postdisaster
distribution and evacuation activities. Zhu and Guo [14]
extended the traditional hierarchical clustering method by
generalizing flows to different hierarchical levels to aggregate
andmap large taxi flowdata in an urban area.Thehierarchical
clustering problem arises in the postal industry as well.
Lim et al. [15] studied the three-level presorting loading
problem which occurs in the commercial bulk mail service.
They considered the problem as a three-level hierarchical
clustering problem and proposed an optimal solution algo-
rithm. For the financial sector application, Aghabozorgi and
Teh [16] suggested a novel three-phase clustering model to
categorize companies based on the similarity in the shape of
their stock markets. See Murtagh and Contreras [17] for an
extensive survey on the agglomerative hierarchical clustering
algorithms.

In this study, we consider an N-level batching with
agglomerative hierarchical clustering structure in which the
highest possible level of the hierarchy is 𝑁. 𝑁-level batching
is the process by which items with different types are grouped
into several batches passed from level 1 to level𝑁 sequentially
for a given hierarchical clustering structure such that batches
in each level of the hierarchy should satisfy themaximumand
minimum batch size requirements of the level. We assume
that types of items that can be clustered together are given
in each level (i.e., hierarchical clustering structure). Also,
we assume that there exist the maximum and minimum
batch size requirements at each level of the hierarchy. We
consider two kinds of costs for processing batched items:
batch processing cost and unit processing cost. If items in

a batch are closely related, they can be processed as a batch
simultaneously; hence, a batch processing cost occurs to the
batch. On the other hand, if items in a batch are loosely
related, they have to be processed separately; hence, a unit
processing cost occurs to process each item in the batch. The
objective of the problem is to minimize the total cost for
processing all items.

2. 𝑁-Level Batching Problem with
Hierarchical Clustering Structure

Now we describe the𝑁-level batching problem (NLBP) with
agglomerative hierarchical clustering structure considered
in this study. The paper develops an integer nonlinear
programming model for the NLBP using the notations (see
Notations).

An integer nonlinear programming formulation for the
NLBP is now presented.

[NLBP] Minimize
𝑁∑
𝑛=1

∑
𝑙(𝑛)∈Λ(𝑛)

𝑈

𝐶𝑈𝑙(𝑛)Ω𝑙(𝑛)

+ 𝑁∑
𝑛=1

∑
𝑙(𝑛)∈Λ(𝑛)

𝐵

𝐶𝐵𝑙(𝑛) ⌈Ω𝑙(𝑛)𝑊𝑙(𝑛) ⌉ ,
(1)

subject to 𝑄𝑙(𝑛) = 𝑅𝑙(𝑛) + Ω𝑙(𝑛) ∀𝑛, 𝑙(𝑛), (2)

𝑄𝑙(𝑛) = ∑
𝑙(𝑛−1)∈Δ

𝑙(𝑛)

𝑅𝑙(𝑛−1)
∀𝑛 ≥ 1, 𝑙(𝑛),

(3)

𝑅𝑙(𝑁) = 0 ∀𝑙(𝑁), (4)

( Ω𝑙(𝑛)⌈Ω𝑙(𝑛)/𝑊𝑙(𝑛)⌉) ≤ 𝑊𝑙(𝑛)
if

Ω𝑙(𝑛)⌈Ω𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛) ∀𝑛 ≥ 1, 𝑙(𝑛),
(5)

𝐷𝑙(𝑛) ≤ ( Ω𝑙(𝑛)⌊Ω𝑙(𝑛)/𝑊𝑙(𝑛)⌋) ≤ 𝑊𝑙(𝑛)
if

Ω𝑙(𝑛)⌈Ω𝑙(𝑛)/𝑊𝑙(𝑛)⌉ < 𝐷𝑙(𝑛) , Ω𝑙(𝑛) ≥ 𝐷𝑙(𝑛) ∀𝑛 ≥ 1, 𝑙(𝑛),
(6)

Ω𝑙(𝑛) = 0
if𝑄𝑙(𝑛) < 𝐷𝑙(𝑛) ∀𝑛 ≥ 1, 𝑙(𝑛), (7)

𝑄𝑙(𝑛) ≥ 0 and integer ∀𝑛, 𝑙(𝑛), (8)

Ω𝑙(𝑛) ≥ 0 and integer ∀𝑛, 𝑙(𝑛), (9)

𝑅𝑙(𝑛) ≥ 0 and integer ∀𝑛, 𝑙(𝑛). (10)

The objective function (1) to be minimized denotes the
total processing cost for all batched items. Both of unit
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Figure 1: An example of a NLBP with 𝑁 = 3 and nine original item types.

processing cost and batch processing cost are involved in
the total cost. Constraint (2) balances the number of items
to be batched, the number of items batched, and number
of items not batched for all hierarchical clusters. Constraint
(3) ensures that the total number of items to be batched
at any cluster should be equal to the number of items not
batched in the clusters at the immediate preceding level.
Constraint (4) ensures that there is no remained item not
batched until level𝑁. Constraints (5)–(7) indicate that items
batched at any cluster should satisfy both the minimum and
the maximum batch size requirements. Constraints (8)–(10)
represent decision variables.

Figure 1 provides an example of a NLBP with 𝑁 = 3 and
nine original item types: that is, Λ(0) = {1(0), 2(0), . . . , 9(0)}. As
shown in the figure, NLBP can be represented as a network
flowproblem.Thenetwork consists of nine source nodes with𝑄𝑙(0) items to be batched through 3-level batching. That is,
there are nine level-1 clusters (𝑙(1) for 𝑙 = 1, 2, . . . , 9) where

the first level batches are formed withΩ𝑙(1) satisfying both the
minimum and the maximum batch size requirements of the
clusters at level 1, three level-2 clusters (𝑙(2) for 𝑙 = 1, 2, 3)
where different types of items are batched (for example, four
different types of items are batched at 1(2) cluster), one level-
3 cluster where all nine item types can be batched together,
and finally one destination node 0. In the network, items
are taken out to form batches passed from level-1 clusters to
level-3 cluster sequentially with the objective of minimizing
total processing costs of batched items. Here, processing
costs of batched items, in general, increase as the level of
cluster is deeper. Also, the minimum and maximum batch
size requirements of clusters may be different. Item quantities
to be batched at level 𝑛 (1 ≤ 𝑛 ≤ 3) are the total number of
items not batched at level 𝑛 − 1.

Lim et al. [15] developed an optimal solution algorithm
for a special type of 3-level batching problem that has tapering
discount structure in unit processing cost of batched item:
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that is, 𝐶𝑈
𝑙(2)

− 𝐶𝑈
𝑙(1)

≥ 𝐶𝑈
𝑙(3)

− 𝐶𝑈
𝑙(2)

for any 𝑙. In this study,
we challenge a more general problem than that of Lim et al.
[15] by extending the hierarchical level to 𝑁 and considering
more general cost structure for batched items. This paper
develops a dynamic programming solution algorithm for the
NLBP to obtain an optimal𝑁-level batchingwith hierarchical
clustering structure.

3. Dynamic Programming
Algorithm for the NLBP

In the dynamic programming algorithm for the NLBP, stage𝑛 (𝑛 = 1, 2, . . . , 𝑁) is represented by the level and the
state at a stage n is the numbers of items of cluster 𝑙(𝑛) not
batched yet until level n: that is 𝑅1(𝑛) , 𝑅2(𝑛) , . . . , 𝑅𝑙(𝑛) . Also,
possible alternatives at stage 𝑛 are the numbers of items of
cluster 𝑙(𝑛) batched at level n: that is, Ω1(𝑛) , Ω2(𝑛) , . . . , Ω𝑙(𝑛) ,
satisfying the balancing constraints (2)–(4) and theminimum
and maximum batch size constraints (5)–(7). First, we give
notation used in the DP recursive equations as follows:

Ψ𝑛(𝑅1(𝑛) , 𝑅2(𝑛) , . . . , 𝑅𝑙(𝑛)): theminimumprocessing cost
for batched items during level 1 through n when
the numbers of items not batched at level 𝑛 are𝑅1(𝑛) , 𝑅2(𝑛) , . . . , 𝑅𝑙(𝑛)Γ𝑛(Ω1(𝑛) , Ω2(𝑛) , . . . , Ω𝑙(𝑛)): the processing cost for
batched items at level n when the numbers
of items batched at level 𝑛 are Ω1(𝑛) , Ω2(𝑛) , . . . , Ω𝑙(𝑛)
(here, Γ𝑛(Ω1(𝑛) , Ω2(𝑛) , . . . , Ω𝑙(𝑛)) = ∑

𝑙(𝑛)∈Λ(𝑛)
𝑈

𝐶𝑈
𝑙(𝑛)

Ω𝑙(𝑛)+∑
𝑙(𝑛)∈Λ(𝑛)

𝐵

𝐶𝐵
𝑙(𝑛)

⌈Ω𝑙(𝑛)/𝑊𝑙(𝑛)⌉)
The forward DP recursive equations for the NLBP are

Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅𝑙(1))
= min

Ω
𝑙(1)
=𝑅
𝑙(0)
−𝑅
𝑙(1)
∀𝑙(1)

Batches fromΩ
𝑙(1)

should satisfy the batch size constraints.

Γ1 (Ω1(1) ,

Ω2(1) , . . . , Ω𝑙(1)) ,
Ψ𝑛 (𝑅1(𝑛) , 𝑅2(𝑛) , . . . , 𝑅𝑙(𝑛))

= min
Ω
𝑙(𝑛)
=∑𝑙∈Δ

𝑙(𝑛)
𝑅
𝑙(𝑛−1)
−𝑅
𝑙(𝑛)
∀𝑙(𝑛)

Batches fromΩ
𝑙(𝑛)

should satisfy the batch size constraints.

Γ𝑛 (Ω1(𝑛) ,

Ω2(𝑛) , . . . , Ω𝑙(𝑛)) + Ψ𝑛−1 (𝑅1(𝑛−1) , 𝑅2(𝑛−1) , . . . , 𝑅𝑙(𝑛−1))
for 𝑛 = 2, 3, . . . , 𝑁 − 1,

Ψ𝑁 (𝑅1(𝑁))
= min

Ω
1(𝑁)
=∑𝑙∈Δ

𝑙(𝑁)
𝑅
𝑙(𝑁−1)

Batches fromΩ
1(𝑁)

should satisfy the batch size constraints.

Γ𝑁 (Ω1(𝑁))

+ Ψ𝑁−1 (𝑅1(𝑁−1) , 𝑅2(𝑁−1) , . . . , 𝑅𝑙(𝑁−1)) .

(11)

Optimal objective value for the NLBP is Ψ𝑁(𝑅1(𝑁)) = Ψ𝑁(0).

It is necessary to reduce the number of states for com-
putational efficiency. We find the range of 𝑅𝑙(𝑛) needed to be
considered in the DP recursive equations to find an optimal
solution of the NLBP when unit processing cost, 𝐶𝑈

𝑙(𝑛)
, is

charged for batched items.

Property 1. For a given cluster 𝑙(𝑛) charged by unit processing
cost, 𝑅𝑙(𝑛) ≤ ⌊((𝐶𝑈

𝑙(𝑁)
− 𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

− 𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋, where �̂�𝑙(𝑛) is
as follows:

(a) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is an integer, �̂�𝑙(𝑛) = min{(𝑄𝑙(𝑛)/𝑊𝑙(𝑛)) ⋅(𝑊𝑙(𝑛) − 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
(b) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ≥

𝐷𝑙(𝑛) , �̂�𝑙(𝑛) = min{𝑄𝑙(𝑛) − (⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ⋅ 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
(c) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ <

𝐷𝑙(𝑛) , �̂�𝑙(𝑛) = min{𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
Proof. Let 𝑅

𝑙(𝑛)
be the number of items of cluster 𝑙(𝑛) not

batched at level 𝑛 and assume that 𝑅
𝑙(𝑛)

≤ 𝐷𝑙(𝑛) − 1. In this
case (Case 1), the maximum processing cost of cluster 𝑙(𝑛)
becomes Ω

𝑙(𝑛)
𝐶𝑈
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑁)

when 𝑅
𝑙(𝑛)

is batched at the last
level 𝑁. Here, Ω

𝑙(𝑛)
is the number of items of cluster 𝑙(𝑛)

batched at level 𝑛 with 𝑅
𝑙(𝑛)

not batched items. Let 𝑅
𝑙(𝑛)

be
the number of items of cluster 𝑙(𝑛) not batched at level 𝑛 but𝑅
𝑙(𝑛)

≥ 𝐷𝑙(𝑛) . Also, let Ω𝑙(𝑛) be the number of items of cluster𝑙(𝑛) batched at level 𝑛 with 𝑅
𝑙(𝑛)

not batched items. In this case
(Case 2), theminimumprocessing cost of cluster 𝑙(𝑛) becomesΩ
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛)

+𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛+1)

when𝑅
𝑙(𝑛)

is batched at the next level 𝑛+1.
The difference between the maximum cost of Case 1 and the
minimum cost of Case 2 is Ω

𝑙(𝑛)
𝐶𝑈
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑁)

− (Ω
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛)

+𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛+1)

) = (Ω
𝑙(𝑛)

− Ω
𝑙(𝑛)

)𝐶𝑈
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑁)

− 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛+1)

=(𝑅
𝑙(𝑛)

− 𝑅
𝑙(𝑛)

)𝐶𝑈
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑁)

− 𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛+1)

(since Ω
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

=Ω
𝑙(𝑛)

+𝑅
𝑙(𝑛)

) = (𝑅
𝑙(𝑛)

−𝑅
𝑙(𝑛)

)𝐶𝑈
𝑙(𝑛)

+𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑁)

−𝑅
𝑙(𝑛)

𝐶𝑈
𝑙(𝑛+1)

= (𝐶𝑈
𝑙(𝑁)

−𝐶𝑈
𝑙(𝑛)

)𝑅
𝑙(𝑛)

− (𝐶𝑈
𝑙(𝑛+1)

− 𝐶𝑈
𝑙(𝑛)

)𝑅
𝑙(𝑛)
. As a result, it is better to keep𝑅

𝑙(𝑛)
≤ 𝐷𝑙(𝑛) −1 items not batched at level 𝑛 than to keep𝑅

𝑙(𝑛)
≥𝐷𝑙(𝑛) if (𝐶𝑈𝑙(𝑁)−𝐶𝑈

𝑙(𝑛)
)𝑅
𝑙(𝑛)

−(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

)𝑅
𝑙(𝑛)

≤ 0.That is, keeping𝑅
𝑙(𝑛)

items at level 𝑛 gives less processing cost of batched items
if𝑅
𝑙(𝑛)

≥ ((𝐶𝑈
𝑙(𝑁)

−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))𝑅
𝑙(𝑛)
. In other words, it is

sufficient to consider𝑅𝑙(𝑛) < ⌊((𝐶𝑈
𝑙(𝑁)

−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))𝑅
𝑙(𝑛)

⌋
to obtain an optimal solution of the NLBP. Here, note that(𝐶𝑈
𝑙(𝑁)

− 𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

− 𝐶𝑈
𝑙(𝑛)

) ≥ 1 since 𝐶𝑈
𝑙(𝑛)

< 𝐶𝑈
𝑙(𝑛+1)

for all𝑛. There are three cases where 𝑅
𝑙(𝑛)

≤ 𝐷𝑙(𝑛) − 1. The first case
is when 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is an integer. In this case, each batch can
contain 𝑊𝑙(𝑛) items and (𝑊𝑙(𝑛) − 𝐷𝑙(𝑛)) items in each batch can
remain not batched. As a result, 𝑅

𝑙(𝑛)
= min{(𝑄𝑙(𝑛)/𝑊𝑙(𝑛)) ⋅(𝑊𝑙(𝑛) − 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1} in this case. The second case is when𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛) .

We can form ⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ batches and 𝑄𝑙(𝑛) − (⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ⋅𝐷𝑙(𝑛)) items can remain not batched. As a result, 𝑅
𝑙(𝑛)

=
min{𝑄𝑙(𝑛) − (⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ⋅ 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1} in this case.
The third case is when 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ < 𝐷𝑙(𝑛) . We can form ⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ batches
and𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝐷𝑙(𝑛)) items can remain not batched.
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As a result, 𝑅
𝑙(𝑛)

= min{𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) −1} in
this case. This completes the proof.

Let Φ(𝑙(𝑛)) be the set of 𝑅𝑙(𝑛) needed to be considered in
DP recursive equations to obtain an optimal solution of the
NLBP when unit processing cost, 𝐶𝑈

𝑙(𝑛)
, is charged for batched

items.

Property 2. For a given 𝑙(𝑛) charged by unit processing cost
satisfying 1 ≤ 𝑛 ≤ 𝑁 − 1, Φ(𝑙(𝑛)) is given as follows.

(a) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is an integer, Φ(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤
𝑅𝑙(𝑛) ≤ ⌊((𝐶𝑈

𝑙(𝑁)
−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ and (𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊((𝐶𝑈
𝑙(𝑁)

−
𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

− 𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≥ 𝐷𝑙(𝑛) whereas Φ(𝑙(𝑛)) =
{𝑅𝑙(𝑛) | 0 ≤ 𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊((𝐶𝑈

𝑙(𝑁)
− 𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−
𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≤ 𝐷𝑙(𝑛) − 1 where �̂�𝑙(𝑛) = min{(𝑄𝑙(𝑛)/𝑊𝑙(𝑛)) ⋅(𝑊𝑙(𝑛) − 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
(b) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ≥𝐷𝑙(𝑛) , Φ(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤ 𝑅𝑙(𝑛) ≤ ⌊((𝐶𝑈

𝑙(𝑁)
−

𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

− 𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊((𝐶𝑈
𝑙(𝑁)

− 𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−
𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≥ 𝐷𝑙(𝑛) , whereas Φ(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤
𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥
𝐷𝑙(𝑛)}when ⌊((𝐶𝑈

𝑙(𝑁)
−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≤ 𝐷𝑙(𝑛)−1, where �̂�𝑙(𝑛) = min{𝑄𝑙(𝑛) − (⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ⋅𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) −1}.
(c) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ <𝐷𝑙(𝑛) and 𝑄𝑙(𝑛) ≥ 𝐷𝑙(𝑛) , Φ(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 𝑄𝑙(𝑛) −(⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝑊𝑙(𝑛)) ≤ 𝑅𝑙(𝑛) ≤ ⌊((𝐶𝑈

𝑙(𝑁)
− 𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−
𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥
𝐷𝑙(𝑛)}when ⌊((𝐶𝑈

𝑙(𝑁)
−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≥ 𝐷𝑙(𝑛) ,
whereasΦ(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝑊𝑙(𝑛)) ≤
𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥
𝐷𝑙(𝑛)}when ⌊((𝐶𝑈

𝑙(𝑁)
−𝐶𝑈
𝑙(𝑛)

)/(𝐶𝑈
𝑙(𝑛+1)

−𝐶𝑈
𝑙(𝑛)

))�̂�𝑙(𝑛)⌋ ≤ 𝐷𝑙(𝑛)−1, where �̂�𝑙(𝑛) = min{𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) −1}.
(d) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ <𝐷𝑙(𝑛) and 𝑄𝑙(𝑛) < 𝐷𝑙(𝑛) , Φ(𝑙(𝑛)) = {𝑄𝑙(𝑛)}.

Proof. It is obvious from Property 1.

The next property gives the range of 𝑅𝑙(𝑛) needed to be
considered in the DP recursive equations to find an optimal
solution of the NLBP when batch processing cost 𝐶𝐵

𝑙(𝑛)
is

charged instead of unit processing cost 𝐶𝑈
𝑙(𝑛)
.

Property 3. For a given cluster 𝑙(𝑛) charged by batch pro-
cessing cost, it is sufficient to consider 𝑅𝑙(𝑛) ≤ ⌊(𝑅

𝑙(𝑛)
𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

)⌋ in DP recursive equations.

Proof. Let 𝑅
𝑙(𝑛)

be the number of items of cluster 𝑙(𝑛) not
batched at level 𝑛 and assume that 𝑅

𝑙(𝑛)
≤ 𝐷𝑙(𝑛) − 1. In this

case (Case 1), the maximum processing cost of cluster 𝑙(𝑛)
becomes ⌈Ω

𝑙(𝑛)
/𝑊𝑙(𝑛)⌉𝐶𝐵𝑙(𝑛) +𝐶𝐵

𝑙(𝑁)
≤ {(Ω

𝑙(𝑛)
/𝑊𝑙(𝑛))+1}𝐶𝐵

𝑙(𝑛)
+𝐶𝐵
𝑙(𝑁)

(since ⌈Ω
𝑙(𝑛)

/𝑊𝑙(𝑛)⌉ ≤ (Ω
𝑙(𝑛)

/𝑊𝑙(𝑛)) + 1) when 𝑅
𝑙(𝑛)

is batched at
the last level 𝑁. Here, Ω

𝑙(𝑛)
is the number of items of cluster𝑙(𝑛) batched at level n with 𝑅
𝑙(𝑛)

not batched items. Let 𝑅
𝑙(𝑛)

be
the number of items of cluster 𝑙(𝑛) not batched at level 𝑛 but𝑅
𝑙(𝑛)

≥ 𝐷𝑙(𝑛) . Also, let Ω𝑙(𝑛) be the number of items of cluster𝑙(𝑛) batched at level n with 𝑅
𝑙(𝑛)

not batched items. In this case
(Case 2), theminimumprocessing cost of cluster 𝑙(𝑛) becomes⌈Ω
𝑙(𝑛)

/𝑊𝑙(𝑛)⌉𝐶𝐵𝑙(𝑛) + ⌈𝑅
𝑙(𝑛)

/𝑊𝑙(𝑛)⌉𝐶𝐵𝑙(𝑛+1) ≥ (Ω
𝑙(𝑛)

/𝑊𝑙(𝑛))𝐶𝐵𝑙(𝑛) +(𝑅
𝑙(𝑛)

/𝑊𝑙(𝑛))𝐶𝐵𝑙(𝑛+1) (since ⌈Ω
𝑙(𝑛)

/𝑊𝑙(𝑛)⌉ ≤ (Ω
𝑙(𝑛)

/𝑊𝑙(𝑛)) + 1 and⌈𝑅
𝑙(𝑛)

/𝑊𝑙(𝑛)⌉ ≤ (𝑅
𝑙(𝑛)

/𝑊𝑙(𝑛))+1) when𝑅
𝑙(𝑛)

is batched at the next
level 𝑛+1.The difference between the maximum cost of Case1 and theminimum cost of Case 2 is {𝐶𝐵

𝑙(𝑛)
(Ω
𝑙(𝑛)

−Ω
𝑙(𝑛)

)/𝑊𝑙(𝑛)}+𝐶𝐵
𝑙(𝑁)

− {(𝐶𝐵
𝑙(𝑛+1)

𝑅
𝑙(𝑛)

)/𝑊𝑙(𝑛)} = {𝐶𝐵
𝑙(𝑛)

(𝑅
𝑙(𝑛)

− 𝑅
𝑙(𝑛)

)/𝑊𝑙(𝑛)} + 𝐶𝐵
𝑙(𝑁)

−{(𝐶𝐵
𝑙(𝑛+1)

𝑅
𝑙(𝑛)

)/𝑊𝑙(𝑛)} sinceΩ
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)

= Ω
𝑙(𝑛)

+ 𝑅
𝑙(𝑛)
. As a result,

it is better to keep 𝑅
𝑙(𝑛)

≤ 𝐷𝑙(𝑛) − 1 items not batched at level𝑛 than to keep 𝑅
𝑙(𝑛)

≥ 𝐷𝑙(𝑛) if {𝐶𝐵𝑙(𝑛)(𝑅𝑙(𝑛) − 𝑅
𝑙(𝑛)

)/𝑊𝑙(𝑛)} + 𝐶𝐵
𝑙(𝑁)

−{(𝐶𝐵
𝑙(𝑛+1)

𝑅
𝑙(𝑛)

)/𝑊𝑙(𝑛)} ≤ 0. That is, keeping 𝑅
𝑙(𝑛)

items at level 𝑛
gives less processing cost of batched items if𝑅

𝑙(𝑛)
≥ (𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

). In other words, it is sufficient to
consider 𝑅𝑙(𝑛) < (𝑅

𝑙(𝑛)
𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) +𝐶𝐵
𝑙(𝑛+1)

) to obtain
an optimal solution of the NLBP.

Let Φ̃(𝑙(𝑛)) be the set of𝑅𝑙(𝑛) needed to be considered inDP
recursive equations to obtain an optimal solution of theNLBP
whenbatch processing cost,𝐶𝐵

𝑙(𝑛)
, is charged for batched items.

Property 4. For a given 𝑙(𝑛) charged by batch processing cost
satisfying 1 ≤ 𝑛 ≤ 𝑁 − 1, Φ̃(𝑙(𝑛)) is given as follows.

(a) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is an integer, Φ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤𝑅𝑙(𝑛) ≤ ⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+ 𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

)⌋ and(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) +𝐶𝐵
𝑙(𝑛+1)

)⌋ ≥ 𝐷𝑙(𝑛) , whereasΦ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤ 𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+
𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵

𝑙(𝑛+1)
)⌋ ≤ 𝐷𝑙(𝑛) − 1, where �̂�𝑙(𝑛) =

min{(𝑄𝑙(𝑛)/𝑊𝑙(𝑛)) ⋅ (𝑊𝑙(𝑛) − 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
(b) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ≥𝐷𝑙(𝑛) , Φ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤ 𝑅𝑙(𝑛) ≤ ⌊(𝑅

𝑙(𝑛)
𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

)⌋ and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+ 𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵
𝑙(𝑛)

+ 𝐶𝐵
𝑙(𝑛+1)

)⌋ ≥ 𝐷𝑙(𝑛) , whereas Φ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 0 ≤
𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥𝐷𝑙(𝑛)} when ⌊(𝑅

𝑙(𝑛)
𝐶𝐵
𝑙(𝑛)

+ 𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

)⌋ ≤
𝐷𝑙(𝑛) − 1, where �̂�𝑙(𝑛) = min{𝑄𝑙(𝑛) − (⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ ⋅𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
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(c) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ <𝐷𝑙(𝑛) and 𝑄𝑙(𝑛) ≥ 𝐷𝑙(𝑛) , Φ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) | 𝑄𝑙(𝑛) −(⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝑊𝑙(𝑛)) ≤ 𝑅𝑙(𝑛) ≤ ⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵
𝑙(𝑛+1)

)⌋ and (𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊(𝑅
𝑙(𝑛)

𝐶𝐵
𝑙(𝑛)

+ 𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵
𝑙(𝑛)

+ 𝐶𝐵
𝑙(𝑛+1)

)⌋ ≥ 𝐷𝑙(𝑛) , whereas Φ̃(𝑙(𝑛)) = {𝑅𝑙(𝑛) |
𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝑊𝑙(𝑛)) ≤ 𝑅𝑙(𝑛) ≤ �̂�𝑙(𝑛) and (𝑄𝑙(𝑛) −𝑅𝑙(𝑛))/⌈(𝑄𝑙(𝑛) − 𝑅𝑙(𝑛))/𝑊𝑙(𝑛)⌉ ≥ 𝐷𝑙(𝑛)} when ⌊(𝑅

𝑙(𝑛)
𝐶𝐵
𝑙(𝑛)

+
𝑊𝑙(𝑛)𝐶𝐵𝑙(𝑁))/(𝐶𝐵𝑙(𝑛) + 𝐶𝐵

𝑙(𝑛+1)
)⌋ ≤ 𝐷𝑙(𝑛) − 1, where �̂�𝑙(𝑛) =

min{𝑄𝑙(𝑛) − (⌊𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌋ ⋅ 𝐷𝑙(𝑛)), 𝐷𝑙(𝑛) − 1}.
(d) If 𝑄𝑙(𝑛)/𝑊𝑙(𝑛) is not an integer and 𝑄𝑙(𝑛)/⌈𝑄𝑙(𝑛)/𝑊𝑙(𝑛)⌉ <𝐷𝑙(𝑛) and 𝑄𝑙(𝑛) < 𝐷𝑙(𝑛) , Φ̃(𝑙(𝑛)) = {𝑄𝑙(𝑛)}.

Proof. It is obvious from Property 3.

Now, we can redefine the forward DP recursive equations
as follows:
Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅𝑙(1))

= min
Ω
𝑙(1)
=𝑅
𝑙(0)
−𝑅
𝑙(1)
∀𝑙(1)

𝑅
𝑙(1)
∈Φ(𝑙(1))∀𝑙(1)∈Λ(1)

𝑈

𝑅
𝑙(1)
∈Φ̃(𝑙(1))∀𝑙(1)∈Λ(1)

𝐵

Γ1 (Ω1(1) , Ω2(1) , . . . , Ω𝑙(1)) ,

Ψ𝑛 (𝑅1(𝑛) , 𝑅2(𝑛) , . . . , 𝑅𝑙(𝑛))
= min
Ω
𝑙(𝑛)
=∑𝑙∈Δ

𝑙(𝑛)
𝑅
𝑙(𝑛−1)
−𝑅
𝑙(𝑛)
∀𝑙(𝑛)

𝑅
𝑙(𝑛)
∈Φ(𝑙(𝑛))∀𝑙(𝑛)∈Λ(𝑛)

𝑈

𝑅
𝑙(𝑛)
∈Φ̃(𝑙(𝑛))∀𝑙(𝑛)∈Λ(𝑛)

𝐵

Γ𝑛 (Ω1(𝑛) , Ω2(𝑛) , . . . , Ω𝑙(𝑛))

+ Ψ𝑛−1 (𝑅1(𝑛−1) , 𝑅2(𝑛−1) , . . . , 𝑅𝑙(𝑛−1))
for 𝑛 = 2, 3, . . . , 𝑁 − 1,

Ψ𝑁 (𝑅1(𝑁))
= min
Ω
1(𝑁)
=∑𝑙∈Δ

𝑙(𝑁)
𝑅
𝑙(𝑁−1)

𝑅
1(𝑁)
∈Φ(1(𝑁))∀𝑙(𝑁)∈Λ(𝑁)

𝑈

𝑅
1(𝑁)
∈Φ̃(1(𝑁))∀𝑙(𝑁)∈Λ(𝑁)

𝐵

Γ𝑁 (Ω1(𝑁))

+ Ψ𝑁−1 (𝑅1(𝑁−1) , 𝑅2(𝑁−1) , . . . , 𝑅𝑙(𝑁−1)) .

(12)

4. An Example for the Dynamic
Programming Algorithm

In this section, we give an example to explain how to solve
the NLBP with the DP recursive equations. Note that this
example is the same as that given in Figure 1. Problem data is
as follows. Here, we assume that all batched items are charged
by unit processing cost.

𝑊𝑙(𝑛) = 100 ∀𝑛, 𝑙(𝑛),
𝐷𝑙(1) = 80 ∀𝑙(1),
𝐷𝑙(2) = 75 ∀𝑙(2),

𝐷𝑙(3) = 0 ∀𝑙(3),
𝐶𝑈𝑙(1) = 100 ∀𝑙(1),
𝐶𝑈𝑙(2) = 125 ∀𝑙(2),
𝐶𝑈𝑙(3) = 140 ∀𝑙(3),
𝑄1(0) = 𝑄1(1) = 128,
𝑄2(0) = 𝑄2(1) = 258,
𝑄3(0) = 𝑄3(1) = 78,
𝑄4(0) = 𝑄4(1) = 480,
𝑄5(0) = 𝑄5(1) = 298,
𝑄6(0) = 𝑄6(1) = 400,
𝑄7(0) = 𝑄7(1) = 99,
𝑄8(0) = 𝑄8(1) = 555,
𝑄9(0) = 𝑄9(1) = 171.

(13)

Table 1 shows DP calculations at the first stage. Also, the
processing cost for batched items at this stage (i.e., level 1) for
given (Ω1(1) , Ω2(1) , . . . , Ω9(1)) is computed as

Γ1 (Ω1(1) , Ω2(1) , . . . , Ω9(1)) = 9∑
𝑙=1

Ω𝑙(1)𝐶𝑈𝑙(1) . (14)

The minimum processing cost for batched items to level 1 for
given (𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1)) is computed as

Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1))
= min
Ω
𝑙(1)
=𝑅
𝑙(0)
−𝑅
𝑙(1)
∀𝑙(1)

𝑅
𝑙(1)
∈Φ(𝑙(1))∀𝑙(1)

Γ1 (Ω1(1) , Ω2(1) , . . . , Ω9(1)) . (15)

Also, we can define the set of 𝑅𝑙(1) needed to be considered in
DP recursive equations to obtain an optimal solution of the
NLBP as follows:

�̂�1(1) = min{𝑄1(1) − 𝐷1(1) ⋅ ⌊ 𝑄1(1)𝑊1(1) ⌋ ,𝐷1(1) − 1}
= min {128 − 80 ⋅ ⌊128100⌋ , 79} = 48,

(𝐶𝑈
1(3)

− 𝐶𝑈
1(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
1(1)

) �̂�


1(1) = (140 − 100)(125 − 100)48 = 76.8

Φ (1(1)) = {𝑅1(1) | 𝑄1(1) − (⌊𝑄1(1)𝑊1(1) ⌋ ⋅ 𝑊1(1)) ≤ 𝑅1(1)
≤ �̂�1(1) , (𝑄1(1) − 𝑅1(1))⌈(𝑄1(1) − 𝑅1(1)) /𝑊1(1)⌉ ≥ 𝐷1(1)} ,



Mathematical Problems in Engineering 7

Φ(1(1)) = {𝑅1(1) | 128 − (⌊128100⌋ ⋅ 100) ≤ 𝑅1(1)
≤ 48, (128 − 𝑅1(1))⌈(128 − 𝑅1(1)) /100⌉ ≥ 80} ,

Φ (1(1)) = {𝑅1(1) | 28 ≤ 𝑅1(1)
≤ 48, (128 − 𝑅1(1))⌈(128 − 𝑅1(1)) /100⌉ ≥ 80} ,

Φ (1(1)) = {28, 29, . . . , 48} ,
�̂�2(1) = min{𝑄2(1) − 𝐷2(1) ⋅ ⌈ 𝑄2(1)𝑊2(1) ⌉ ,𝐷2(1) − 1}

= min {258 − 100 ⋅ ⌊258100⌋ , 79} = 58,
(𝐶𝑈
1(3)

− 𝐶𝑈
1(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
1(1)

) �̂�


2(1) = (140 − 100)(125 − 100)58 = 92.8,

Φ (2(1)) = {𝑅2(1) | 0 ≤ 𝑅2(1)

≤ ⌊(𝐶𝑈
1(3)

− 𝐶𝑈
2(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
2(1)

) �̂�


2(1)⌋ , (𝑄2(1) − 𝑅2(1))⌈(𝑄2(1) − 𝑅2(1)) /𝑊2(1)⌉
≥ 𝐷2(1)} ,

Φ (2(1)) = {𝑅2(1) | 0 ≤ 𝑅2(1)
≤ ⌊(140 − 100)(125 − 100)58⌋ , (258 − 𝑅2(1))⌈(258 − 𝑅2(1)) /100⌉ ≥ 80} ,

Φ (2(1)) = {𝑅2(1) | 0 ≤ 𝑅2(1)
≤ 92, (258 − 𝑅2(1))⌈(258 − 𝑅2(1)) /100⌉ ≥ 80} ,

Φ (2(1)) = {0, 1, 2, . . . , 18, 58, 59, . . . , 92} ,
Φ (3(1)) = {78} ,
�̂�4(1) = min{𝑄4(1) − 𝐷4(1) ⋅ ⌈ 𝑄4(1)𝑊4(1) ⌉ ,𝐷4(1) − 1}

= {480 − 80 ⋅ 5, 79} = 79,
(𝐶𝑈
1(3)

− 𝐶𝑈
4(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
4(1)

) �̂�


4(1) = (140 − 100)(125 − 100)79 = 126.4,

Φ (4(1)) = {𝑅4(1) | 0 ≤ 𝑅4(1)

≤ ⌊(𝐶𝑈
1(3)

− 𝐶𝑈
4(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
4(1)

) �̂�


4(1)⌋ , (𝑄4(1) − 𝑅4(1))⌈(𝑄4(1) − 𝑅4(1)) /𝑊4(1)⌉
≥ 𝐷4(1)} ,

Φ (4(1)) = {𝑅4(1) | 0 ≤ 𝑅4(1)
≤ ⌊(140 − 100)(125 − 100)79⌋ , (480 − 𝑅4(1))⌈(480 − 𝑅4(1)) /100⌉ ≥ 80} ,

Φ (4(1)) = {𝑅4(1) | 0 ≤ 𝑅4(1)
≤ 126, (480 − 𝑅4(1))⌈(480 − 𝑅4(1)) /100⌉ ≥ 80} ,

Φ (4(1)) = {0, 1, 2, . . . , 126} ,
�̂�5(1) = min{𝑄5(1) − 𝐷5(1) ⋅ ⌈ 𝑄5(1)𝑊5(1) ⌉ ,𝐷5(1) − 1}

= {298 − 80 ⋅ 3, 79} = 58,
(𝐶𝑈
1(3)

− 𝐶𝑈
5(1)

)
(𝐶𝑈
2(2)

− 𝐶𝑈
5(1)

) �̂�


5(1) = (140 − 100)(125 − 100)58 = 92.8,

Φ (5(1)) = {{{
𝑅5(1) | 0 ≤ 𝑅5(1)

≤ [[
[

(𝐶𝑈
1(3)

− 𝐶𝑈
5(1)

)
(𝐶𝑈
2(2)

− 𝐶𝑈
5(1)

) �̂�


5(1)

]]
] , (𝑄5(1) − 𝑅5(1))⌈(𝑄5(1) − 𝑅5(1)) /𝑊5(1)⌉

≥ 𝐷5(1)}}}
,

Φ (5(1)) = {𝑅5(1) | 0 ≤ 𝑅5(1)
≤ ⌊(140 − 100)(125 − 100)58⌋ , (298 − 𝑅5(1))⌈(298 − 𝑅5(1)) /100⌉ ≥ 80} ,

Φ (5(1)) = {𝑅5(1) | 0 ≤ 𝑅5(1)
≤ 92, (298 − 𝑅5(1))⌈(298 − 𝑅5(1)) /100⌉ ≥ 80} ,

Φ (5(1)) = {0, 1, 2, . . . , 58} ,
�̂�6(1) = min{(𝑄6(1)𝑊6(1) ) ⋅ (𝑊6(1) − 𝐷6(1)) , 𝐷6(1) − 1}

= min {(400100) ⋅ (100 − 80) , 79} = 79,
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(𝐶𝑈
1(3)

− 𝐶𝑈
1(1)

)
(𝐶𝑈
1(2)

− 𝐶𝑈
1(1)

) �̂�


6(1) = (140 − 100)(125 − 100)79 = 126.4,

Φ (6(1)) = {{{
𝑅6(1) | 0 ≤ 𝑅6(1)

≤ [[
[

(𝐶𝑈
1(3)

− 𝐶𝑈
6(1)

)
(𝐶𝑈
2(2)

− 𝐶𝑈
6(1)

) �̂�


6(1)

]]
] , (𝑄6(1) − 𝑅6(1))⌈(𝑄6(1) − 𝑅6(1)) /𝑊6(1)⌉

≥ 𝐷6(1)}}}
,

Φ (6(1)) = {𝑅6(1) | 0 ≤ 𝑅6(1)
≤ 126, (400 − 𝑅6(1))⌈(400 − 𝑅6(1)) /100⌉ ≥ 80} ,

Φ (6(1)) = {0, 1, 2, . . . , 80, 100, 101, . . . , 126} ,
�̂�7(1) = min{𝑄7(1) − 𝐷7(1) ⋅ ⌈ 𝑄7(1)𝑊7(1) ⌉ ,𝐷7(1) − 1}

= min {99 − 80 ⋅ 1, 79} = 19,
(𝐶𝑈
1(3)

− 𝐶𝑈
7(1)

)
(𝐶𝑈
3(2)

− 𝐶𝑈
7(1)

) �̂�


7(1) = (140 − 100)(125 − 100)19 = 30.4,

Φ (7(1)) = {𝑅7(1) | 0 ≤ 𝑅7(1)
≤ �̂�7(1) , (𝑄7(1) − 𝑅7(1))⌈(𝑄7(1) − 𝑅7(1)) /𝑊7(1)⌉ ≥ 𝐷7(1)} ,

Φ (7(1)) = {𝑅7(1) | 0 ≤ 𝑅7(1) ≤ 19, (99 − 𝑅7(1))⌈(99 − 𝑅7(1)) /100⌉
≥ 80} ,

Φ (7(1)) = {0, 1, 2, . . . , 19} ,
�̂�8(1) = min{𝑄8(1) − 𝐷8(1) ⋅ ⌈ 𝑄8(1)𝑊8(1) ⌉ ,𝐷8(1) − 1}

= min {555 − 80 ⋅ 6, 79} = 75,
(𝐶𝑈
1(3)

− 𝐶𝑈
8(1)

)
(𝐶𝑈
3(2)

− 𝐶𝑈
8(1)

) �̂�


8(1) = (140 − 100)(125 − 100)75 = 120,

Φ (8(1)) = {{{
𝑅8(1) | 0 ≤ 𝑅8(1)

≤ [[
[

(𝐶𝑈
1(3)

− 𝐶𝑈
8(1)

)
(𝐶𝑈
3(2)

− 𝐶𝑈
8(1)

) �̂�


8(1)

]]
] , (𝑄8(1) − 𝑅8(1))⌈(𝑄8(1) − 𝑅8(1)) /𝑊8(1)⌉

≥ 𝐷8(1)}}}
,

Φ (8(1)) = {𝑅8(1) | 0 ≤ 𝑅8(1)

≤ 120, (555 − 𝑅8(1))⌈(555 − 𝑅8(1)) /100⌉ ≥ 80} ,
Φ (8(1)) = {0, 1, 2, . . . , 120} ,
�̂�9(1) = min{𝑄9(1) − 𝐷9(1) ⋅ ⌈ 𝑄9(1)𝑊9(1) ⌉ ,𝐷9(1) − 1}

= min {171 − 80 ⋅ 2, 79} = 11,
(𝐶𝑈
1(3)

− 𝐶𝑈
9(1)

)
(𝐶𝑈
3(2)

− 𝐶𝑈
9(1)

) �̂�


9(1) = (140 − 100)(125 − 100)11 = 17.6,

Φ (9(1)) = {𝑅9(1) | 0 ≤ 𝑅9(1)

≤ �̂�9(1) , (𝑄9(1) − 𝑅9(1))⌈(𝑄9(1) − 𝑅9(1)) /𝑊9(1)⌉ ≥ 𝐷9(1)} ,

Φ (9(1)) = {𝑅8(1) | 0 ≤ 𝑅8(1)

≤ 11, (171 − 𝑅9(1))⌈(171 − 𝑅9(1)) /100⌉ ≥ 80} ,
Φ (9(1)) = {0, 1, 2, . . . , 11} .

(16)

All possible states at stage 1 are defined with all combinations
of 𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1) of the sets Φ(1(1)), Φ(2(1)), . . . , Φ(9(1))
and given in the first column of Table 1. That is, the number
of possible states is 21×93×1×127×59×127×20×121×12.
Since the time complexity of the DP algorithm depends on
both the number of stages and the number of possible states at
each stage, theDP algorithmhas exponential time complexity
because the number of states increases exponentially due
to the multidimensionality from the agglomerative hierar-
chical clustering structure. However, we expect that the DP
algorithm works well for moderate-sized problem instances
because the size of the solution space can be dramatically
reduced inmany cases by reducing the number of states using
Properties 1 and 2.

Table 2 shows DP calculations at stage 2. The processing
cost for batched items at this stage (i.e., level 2) for given
(Ω1(2) , Ω2(2) , Ω3(2)) is computed as

Γ2 (Ω1(2) , Ω2(2) , Ω3(2)) = 3∑
𝑙=1

Ω𝑙(2)𝐶𝑈𝑙(2) . (17)
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Table 1: DP calculations at stage 1.

(𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1)) (Ω1(1) , Ω2(1) , . . . , Ω9(1)) Γ1 (Ω1(1) , Ω2(1) , . . . , Ω9(1)) Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1))(28, 0, 78, 0, 0, 0, 0, 0, 0) (100, 258, 0, 480, 298, 400, 99, 555, 171) (100 + ⋅ ⋅ ⋅ + 171) × 100 = 236100 236100(28, 0, 78, 0, 0, 0, 0, 0, 1) (100, 258, 0, 480, 298, 400, 99, 555, 170) (100 + ⋅ ⋅ ⋅ + 170) × 100 = 236000 236000⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(48, 92, 78, 126, 58, 126, 19, 120, 11) (80, 166, 0, 354, 240, 274, 80, 435, 160) (80 + ⋅ ⋅ ⋅ + 160) × 100 = 178900 178900

Table 2: DP calculations at stage 2.

(𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1)) (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) (Ω1(2) , Ω2(2) , Ω3(2)) Γ2 (Ω1(2) , Ω2(2) , Ω3(2)) +
Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1)) Ψ2 (𝑅1(2) , 𝑅2(2) , 𝑅3(2))

(28, 0, 78, 0, 0, 0, 0, 0, 0)
(6, 18, 0) (100, 0, 0) (100 + 0 + 0) × 125 +236100 = 248600
(7, 18, 0) (99, 0, 0) (99 + 0 + 0) × 125 +

236100 = 248475⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(31, 18, 0) (75, 0, 0) (75 + 0 + 0) × 125 +236100 = 245475

(28, 0, 78, 0, 0, 0, 0, 0, 1)
(6, 18, 1) (100, 0, 0) (100 + 0 + 0) × 125 +236000 = 248500
(7, 18, 1) (99, 0, 0) (99 + 0 + 0) × 125 +236000 = 248375⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(31, 18, 1) (75, 0, 0) (75 + 0 + 0) × 125 +236000 = 245375

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(28, 1, 78, 0, 0, 0, 0, 0, 0)
(7, 18, 0) (100, 0, 0) (100 + 0 + 0) × 125 +

236000 = 248500

(8, 18, 0) (99, 0, 0) (99 + 0 + 0) × 125 +236000 = 248375⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(32, 18, 0) (75, 0, 0) (75 + 0 + 0) × 125 +236000 = 245375

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(48, 92, 78, 126, 58, 126, 19, 120, 11)

(0, 0, 0) (344, 184, 150)
(0, 1, 0) (344, 183, 150)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
(44, 34, 0) (300, 150, 150)

Theminimum processing cost for batched items until level 2
for given (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) is computed as

Ψ2 (𝑅1(2) , 𝑅2(2) , 𝑅3(2))
= min
Ω
𝑙(2)
=∑𝑙∈Δ

𝑙(2)
𝑅
𝑙(1)
−𝑅
𝑙(2)
∀𝑙(2)

𝑅
𝑙(2)
∈Φ(𝑙(2))∀𝑙(2)

Γ2 (Ω1(2) , Ω2(2) , Ω3(2))

+ Ψ1 (𝑅1(1) , 𝑅2(1) , . . . , 𝑅9(1)) .
(18)

Next, we define the set of 𝑅𝑙(2) needed to be considered in
DP recursive equations to obtain an optimal solution of
the NLBP as follows. As shown in Table 2, possible states at
stage 2 are defined with the states at stage 1. For example,
26 states (26 × 1 × 1) at stage 2 are defined with a state

(𝑅1(1) , 𝑅2(1) , 𝑅3(1) , 𝑅4(1) , 𝑅5(1) , 𝑅6(1) , 𝑅7(1) , 𝑅8(1) , 𝑅9(1)) = (28, 0, 78,0, 0, 0, 0, 0, 0) as follows. Here, note that a state at stage
2 can be defined by several different states at stage 1.
See the state (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) = (7, 18, 0) of Table 2.
This state can be defined by the state (𝑅1(1) , 𝑅2(1) , 𝑅3(1) ,𝑅4(1) , 𝑅5(1) , 𝑅6(1) , 𝑅7(1) , 𝑅8(1) , 𝑅9(1)) = (28, 0, 78, 0, 0, 0, 0, 0, 0)
and the state (𝑅1(1) , 𝑅2(1) , 𝑅3(1) , 𝑅4(1) , 𝑅5(1) , 𝑅6(1) , 𝑅7(1) , 𝑅8(1) ,𝑅9(1)) = (28, 1, 78, 0, 0, 0, 0, 0, 0). As a result, Ψ2(𝑅1(2) , 𝑅2(2) ,𝑅3(2)) should be determined among several different states(𝑅1(1) , 𝑅2(1) , 𝑅3(1) , 𝑅4(1) , 𝑅5(1) , 𝑅6(1) , 𝑅7(1) , 𝑅8(1) , 𝑅9(1)) at the first
stage making the same state (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) at the second
stage.

𝑄1(2) = 𝑅1(1) + 𝑅2(1) + 𝑅3(1) + 𝑅4(1) = 28 + 0 + 78 + 0
= 106,
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𝑄2(2) = 𝑅5(1) + 𝑅6(1) = 0 + 18 = 18,
𝑄3(2) = 𝑅7(1) + 𝑅8(1) + 𝑅9(1) = 0 + 0 + 0 = 0,
�̂�1(2) = min{𝑄1(2) − 𝐷1(2) ⋅ ⌊ 𝑄1(2)𝑊1(2) ⌋ ,𝐷1(2) − 1}

= min {106 − 75 ⋅ ⌊106100⌋ , 74} = 31,
(𝐶𝑈
1(3)

− 𝐶𝑈
1(2)

)
(𝐶𝑈
1(3)

− 𝐶𝑈
1(2)

) �̂�


1(2) = (140 − 125)(140 − 125)31 = 31,

Φ (1(2)) = {𝑅1(2) | 𝑄1(2) − (⌊𝑄1(2)𝑊1(2) ⌋ ⋅ 𝑊1(2)) ≤ 𝑅1(2)
≤ �̂�1(2) , (𝑄1(2) − 𝑅1(2))⌈(𝑄1(2) − 𝑅1(2)) /𝑊1(2)⌉ ≥ 𝐷1(2)} ,

Φ (1(2)) = {𝑅1(2) | 106 − (⌊106100⌋ ⋅ 100) ≤ 𝑅1(2)
≤ 31, (106 − 𝑅1(2))⌈(106 − 𝑅1(2)) /100⌉ ≥ 75} ,

Φ (1(2)) = {𝑅1(2) | 6 ≤ 𝑅1(2)
≤ 31, (106 − 𝑅1(2))⌈(106 − 𝑅1(2)) /100⌉ ≥ 75} ,

Φ (1(2)) = {6, 7, . . . , 31} ,
Φ (2(2)) = {18} ,
Φ (3(2)) = {0} .

(19)

We can define 1575 states (45 × 35 × 1) with another state
of stage 1, (𝑅1(1) , 𝑅2(1) , 𝑅3(1) , 𝑅4(1) , 𝑅5(1) , 𝑅6(1) , 𝑅7(1) , 𝑅8(1) , 𝑅9(1)) =(48, 92, 78, 126, 58, 126, 19, 120, 11) as follows:

𝑄1(2) = 𝑅1(1) + 𝑅2(1) + 𝑅3(1) + 𝑅4(1) = 48 + 92 + 78
+ 126 = 344,

𝑄2(2) = 𝑅5(1) + 𝑅6(1) = 58 + 126 = 184,
𝑄3(2) = 𝑅7(1) + 𝑅8(1) + 𝑅9(1) = 19 + 120 + 11 = 150,
�̂�1(2) = min{𝑄1(2) − 𝐷1(2) ⋅ ⌈ 𝑄1(2)𝑊1(2) ⌉ ,𝐷1(2) − 1}

= {344 − 75 ⋅ 4, 74} = 44,
(𝐶𝑈
1(3)

− 𝐶𝑈
1(2)

)
(𝐶𝑈
1(3)

− 𝐶𝑈
1(2)

) �̂�


1(2) = (140 − 125)(140 − 125)44 = 44,

Φ (1(2)) = {𝑅1(2) | 0 ≤ 𝑅1(2)

≤ �̂�1(2) , (𝑄1(2) − 𝑅1(2))⌈(𝑄1(2) − 𝑅1(2)) /𝑊1(2)⌉ ≥ 𝐷1(2)} ,

Φ (1(2)) = {𝑅1(2) | 0 ≤ 𝑅1(2)

≤ 44, (344 − 𝑅1(2))⌈(344 − 𝑅1(2)) /100⌉ ≥ 75} ,
Φ (1(2)) = {0, 1, 2, . . . , 44} ,
�̂�2(2) = min{𝑄2(2) − 𝐷2(2) ⋅ ⌈ 𝑄2(2)𝑊2(2) ⌉ ,𝐷2(2) − 1}

= {184 − 75 ⋅ 2, 74} = 34,
(𝐶𝑈
1(3)

− 𝐶𝑈
2(2)

)
(𝐶𝑈
1(3)

− 𝐶𝑈
2(2)

) �̂�


2(2) = (140 − 125)(140 − 125)34 = 34,

Φ (2(2)) = {𝑅2(2) | 0 ≤ 𝑅2(2)

≤ �̂�2(2) , (𝑄2(2) − 𝑅2(2))⌈(𝑄2(2) − 𝑅2(2)) /𝑊2(2)⌉ ≥ 𝐷2(2)} ,

Φ (2(2)) = {𝑅2(2) | 0 ≤ 𝑅2(2)

≤ 34, (184 − 𝑅2(2))⌈(184 − 𝑅2(2)) /100⌉ ≥ 75} ,
Φ (2(2)) = {0, 1, 2, . . . , 34} ,
�̂�3(2) = min {𝑁3(2) − 𝐷(2) ⋅ ⌈𝑁3(2)𝑊 ⌉ ,𝐷(2) − 1} = {150

− 75 ⋅ 2, 74} = 0,
(𝐶𝑈
1(3)

− 𝐶𝑈
3(2)

)
(𝐶𝑈
1(3)

− 𝐶𝑈
3(2)

) �̂�


3(2) = (140 − 125)(140 − 125)0 = 0,

Φ (3(2)) = {𝑅3(2) | 0 ≤ 𝑅3(2)

≤ �̂�3(2) , (𝑄3(2) − 𝑅3(2))⌈(𝑄3(2) − 𝑅3(2)) /𝑊3(2)⌉ ≥ 𝐷3(2)} ,
Φ (3(2)) = {0} .

(20)

Table 3 shows DP calculations at stage 3. The processing cost
for batched items at this stage (i.e., level 3) for given Ω1(3) is
computed as

Γ3 (Ω1(3)) = Ω1(3)𝐶𝑈1(3) . (21)
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Table 3: DP calculations at stage 3.

(𝑅1(2) , 𝑅2(2) , 𝑅3(2)) 𝑅1(3) Ω1(3) Γ3 (Ω1(3)) + Ψ2 (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) Ψ3 (𝑅1(3))(6, 18, 0) 0 24 (6 + 18 + 0) × 140 + Ψ2 (6, 18, 0)(7, 18, 0) 0 25 (7 + 18 + 0) × 140 + Ψ2 (7, 18, 0)⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(44, 34, 0) 0 78 (44 + 34 + 0) × 140 + Ψ2 (38, 61, 30)

Theminimum processing cost for batched items until level 3
for given 𝑅1(3) is computed as

Ψ3 (𝑅1(3)) = Ψ3 (0)
= min
Ω
1(3)
=∑𝑙∈Δ

𝑙(3)
𝑅
𝑙(2)

𝑅
1(3)
∈Φ(1(3))

Γ3 (Ω1(3))

+ Ψ2 (𝑅1(2) , 𝑅2(2) , 𝑅3(2)) .

(22)

As shown in Table 3, there exists only one state at stage 3: that
is, 𝑅1(3) = 0. This means that all items should be batched until
the last level.

5. Concluding Remarks

In this study, we consider the 𝑁-level batching problem
(NLBP) with a hierarchical clustering structure for mini-
mizing the total cost for processing all items. In the 𝑁-
level batching problem, given items with different types
can be grouped into several batches at each level and this
batching process is performed from level 1 to level 𝑁 (from
the shallower to the deeper level) sequentially in the given
hierarchical clustering structure until all of given items are
grouped. In this problem, we assume that the less processing
cost is incurred for the batches in the shallower level, since
more similar items are required to be grouped in a batch of
the shallower level. Both of unit processing cost and batch
processing cost are considered for batches at each level for
real-world applications.

We formulate the NLBP as a nonlinear integer program-
ming model, propose a multidimensional dynamic program-
ming algorithm for the NLBP, and develop several optimal
properties bywhich the number of states is efficiently reduced
in the proposed DP algorithm. For the clear understanding
of the proposed DP algorithm and the properties, we provide
the tangible example of NLBP and its solution. In the further
research, we will apply the proposed algorithm to real world
such as the batching processes of the semiconductor wafer
fabrications to reduce the manufacturing cost. In addition,
it is necessary to develop more efficient heuristic algorithms
for the NLBP since the time and space complexity of the
proposed DP algorithm is too high to solve large-sized
problem instances.

Notations

Parameters

𝑛: Index of levels (𝑛 = 0, 1, 2, . . . , 𝑁)𝑙(𝑛): Index of clusters at level 𝑛 (here, note that any cluster
includes item types and items of these item types
should be batched. Each cluster at level 𝑛 is
composed of clusters at level 𝑛 − 1 (i.e., agglomerative
hierarchical clustering structure). Also, 𝑙(0) is the
index of original item types not clustered)Λ(𝑛): Set of all clusters at level 𝑛 (here, Λ(0) is the set of all
original item types not clustered)Λ(𝑛)𝑈 : Set of all clusters at level 𝑛 and charged by unit
processing cost (here, we assume that clusters
charged by unit processing cost are known in
advance)Λ(𝑛)𝐵 : Set of all clusters at level 𝑛 and charged by batch
processing cost (here, we assume that clusters
charged by batch processing cost are known in
advance)Δ 𝑙(𝑛) : Set of clusters at level 𝑛 − 1 that consists of cluster 𝑙(𝑛)
(here, Δ 𝑙(𝑛)1 ∩ Δ 𝑙(𝑛)2 = 𝜙 if 𝑙(𝑛)1 ̸= 𝑙(𝑛)2 and
⋃𝑙(𝑛) Δ 𝑙(𝑛) = Λ(𝑛−1) for all 𝑛. Also, we assume that any
cluster at level 𝑛 − 1 can be included in only one
cluster at level 𝑛)𝑊𝑙(𝑛) : The maximum batch size requirement of cluster 𝑙(𝑛)𝐷𝑙(𝑛) : The minimum batch size requirement of cluster 𝑙(𝑛)𝐶𝑈

𝑙(𝑛)
: Unit processing cost of item batched in the cluster 𝑙(𝑛)
(here, we assume that 𝐶𝑈

𝑙(𝑛)
< 𝐶𝑈
𝑙(𝑛+1)

for all 𝑛)𝐶𝐵
𝑙(𝑛)
: Batch processing cost of item batched in the cluster𝑙(𝑛) (here, we assume that 𝐶𝐵

𝑙(𝑛)
< 𝐶𝐵
𝑙(𝑛+1)

for all 𝑛).
Decision Variables

𝑄𝑙(𝑛) : Total number of items to be batched in the cluster 𝑙(𝑛)Ω𝑙(𝑛) : Total number of items batched in the cluster 𝑙(𝑛)
(here, Ω𝑙(0) = 0 for all 𝑙(0))𝑅𝑙(𝑛) : Total number of items not batched in the cluster 𝑙(𝑛)
(here, 𝑅𝑙(𝑛) = 𝑄𝑙(𝑛) − Ω𝑙(𝑛) and 𝑄𝑙(𝑛) = ∑𝑙(𝑛−1)∈Δ

𝑙(𝑛)
𝑅𝑙(𝑛−1) .

Also, 𝑅𝑙(0) is the number of items in the cluster 𝑙(0) to
be batched).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.



12 Mathematical Problems in Engineering

Acknowledgments

This work was supported by the Incheon National University
(International Cooperative) Research Grant in 2013.

References

[1] A. J. Vakharia andU.Wemmerlöv, “A comparative investigation
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