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A 7-degree-of-freedom (DOF) vibration model of a fixed-caliper disc brake system was developed herein based on the Stribeck
effect. Furthermore, a dynamometer brake test was conducted to determine the characteristic system parameters of the 7-DOF
vibration model. This model was developed to study the effects of braking conditions, such as disc rotational speed and brake
pressure on brake noise. The complex eigenvalues of the system were also calculated to analyze the brake model stability under
different braking conditions. The acceleration time history diagrams and phase plots were obtained by solving the equations of the
system.The numerical calculation results showed that the brake noise increased with an increasing braking force and a decreasing
breaking speed. These numerical findings were verified by the results of the dynamometer tests.

1. Introduction

Fixed-caliper disc brakes are widely used in passenger and
light commercial vehicles. One ormore pairs of opposing pis-
tons are used in such brake systems to clamp both sides of the
disc, with the caliper carrying the pistons fixed on a knuckle,
such that its position does not change relative to the disc.
However, with the increasing demand for driving comfort, a
greater need to address the noise, vibration, and harshness
(NVH) issues of such brake systems is required. Brake noise,
especially “brake squeal,” which occurs with frequencies of
1–16 kHz and reaches the upper human auditory threshold, is
of particular importance in current vehicle NVH engineering
[1–3].

Studies on brake noise began in the 1930s [4] when
researchers conducted diverse investigations from different
perspectives, including frictional properties of utilized mate-
rials and structures of the brake system parts [5, 6]. These
studies revealed a close relationship between brake noise and
vibrational excitation caused by friction between the disc and
the lining [7, 8].The theory of this relationship is based on the
two following basic characteristics of friction coefficients: (1)
the static friction coefficient is higher than the sliding friction

coefficient and (2) the friction coefficients decrease with
the increasing relative velocity within a certain range. The
former characteristic produces the system stick-slip effect,
which causes vibration [9]. Meanwhile, the latter induces
negative damping, which results in system instability [10–12].
However, previous studies on brake noise that investigated
the friction characteristics mainly considered the self-excited
vibration at a specific friction coefficient or unstable vibration
caused by the negative slope in the relative velocity versus the
friction coefficient curve [13–15].

Accordingly, 2-DOF vibration models were employed in
most of the previous studies, in which brake squeal was
examined based on friction.This made it difficult to simulate
the working conditions during braking, thereby hindering
the investigation of the interaction between the different parts
of the brake assembly [16–18]. Vibration models with more
than two DOFs have consequently been developed for the
brake squeal investigation. For example, Kinkaid designed
a 4-DOF brake model that captured some of the dynamics
of a set of brake pads used to stop a rotor [19]. Ahmed
built a 10-DOFmathematical prediction model to investigate
the effects of different brake component parameters on a
ventilated disc brake squeal [20]. Wang et al. developed a
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Figure 1: Structure of a fixed-caliper disc brake.

4-DOF model of a disc brake with friction and contact loss
nonlinearities to investigate the mechanism and the dynamic
characteristics of a brake squeal [21]. The present study
developed a 7-DOF vibration model of a fixed-caliper brake
system based on the Stribeck effect. A dynamometer test was
conducted to determine the characteristic systemparameters.
Furthermore, the effects of the braking conditions on the
system stability were studied.

2. Establishment of the Brake
Vibration System

2.1. Establishment of the State Equations. Figure 1 shows a
typical structure of a fixed-caliper disc brake for a vehi-
cle. During the braking process, the brake fluid pressure
increases, and the rotating disc is clamped by both sides of
the brake linings, thereby resulting in the deceleration of the
moving vehicle. The vibration model of the brake system,
which basically comprises the caliper, disc, and both sides of
the brake linings, can be simplified as shown in Figure 2.

In Figure 2, 𝑚𝑑 is the mass of the disc; 𝑚𝑐 is the mass
of the caliper; 𝑚1 and 𝑚2 are the masses of the inner and
outer brake linings, respectively; V0 is the absolute linear
velocity of the brake disc assumed to be in the 𝑦+ direction;
and 𝐹 is the brake pressure on either lining of both sides,
considering that the inner and outer pistons are of the same
size. The movement along the 𝑥-axis was considered for the
disc, while simultaneous movements along the 𝑥- and 𝑦-
axes were considered for the caliper and both brake linings.
Suppose that the disc moves in the x+ direction during the
braking process, the inner lining would move in an x−/𝑦+
direction; the outer liningwouldmove in an x+/𝑦+ direction;
and the caliper would move in an x+/𝑦+ direction. This
hypothesis was used to define the initial state of the system
to facilitate analysis, such that the directions of the reaction
forces on the springs and dampers can be obtained. The final
results would not be affected by these assumptions because
the obtained values of the reaction forces would be negative
if their directions are opposite the assumed direction.
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Figure 2: Vibration model of a fixed-caliper disc brake.

Based on the abovementioned assumptions and the rela-
tionships among the different parts in the brake system, the
equations of the vibration system shown in Figure 2 can be
obtained as follows by using Newton’s law:

𝑚𝑐𝑥̈𝑐 = −𝑐𝑐𝑥𝑥̇𝑐 + 𝑐2𝑐𝑥 (𝑥̇2 − 𝑥̇𝑐) − 𝑐1𝑐𝑥 (𝑥̇𝑐 − 𝑥̇1) − 𝑘𝑐𝑥𝑥𝑐
+ 𝑘2𝑐𝑥 (𝑥2 − 𝑥𝑐) − 𝑘1𝑐𝑥 (𝑥𝑐 − 𝑥1) ,

𝑚𝑐 ̈𝑦𝑐 = −𝑐𝑐𝑦 ̇𝑦𝑐 + 𝑐2𝑐𝑦 ( ̇𝑦2 − ̇𝑦𝑐) + 𝑐1𝑐𝑦 ( ̇𝑦1 − ̇𝑦𝑐) − 𝑘𝑐𝑦𝑦𝑐
+ 𝑘2𝑐𝑦 (𝑦2 − 𝑦𝑐) + 𝑘1𝑐𝑦 (𝑦1 − 𝑦𝑐) ,

𝑚𝑑𝑥̈𝑑 = −𝑐𝑑𝑥̇𝑑 + 𝑐2𝑑𝑥 (𝑥̇2 − 𝑥̇𝑑) − 𝑐1𝑑𝑥 (𝑥̇1 − 𝑥̇𝑑)
− 𝑘𝑑𝑥𝑑 + 𝑘2𝑑𝑥 (𝑥2 − 𝑥𝑑) − 𝑘1𝑑𝑥 (𝑥𝑑 − 𝑥1) ,

𝑚1𝑥̈1 = −𝐹 + 𝑐1𝑑𝑥 (𝑥̇𝑑 − 𝑥̇1) + 𝑐1𝑐𝑥 (𝑥̇𝑐 − 𝑥̇1)
+ 𝑘1𝑑𝑥 (𝑥𝑑 − 𝑥1) + 𝑘1𝑐𝑥 (𝑥𝑐 − 𝑥1) ,

𝑚1 ̈𝑦1 = 𝐹𝑓1 − 𝑐1𝑐𝑦 ( ̇𝑦1 − ̇𝑦𝑐) − 𝑘1𝑐𝑦 (𝑦1 − 𝑦𝑐) ,
𝑚2𝑥̈2 = 𝐹 − 𝑐2𝑑𝑥 (𝑥̇2 − 𝑥̇𝑑) − 𝑐2𝑐𝑥 (𝑥̇2 − 𝑥̇𝑐)

− 𝑘2𝑑𝑥 (𝑥2 − 𝑥𝑑) − 𝑘2𝑐𝑥 (𝑥2 − 𝑥𝑐) ,
𝑚2 ̈𝑦2 = 𝐹𝑓2 − 𝑐2𝑐𝑦 ( ̇𝑦2 − ̇𝑦𝑐) − 𝑘2𝑐𝑦 (𝑦2 − 𝑦𝑐) ,

(1)

where 𝐹𝑓1 and 𝐹𝑓2 are the frictional forces between the
disc and the two brake linings, respectively. The expressions
of which were obtained using a Stribeck model and the
dynamometer test results (Section 2.2 for a detailed descrip-
tion). Considering the structural symmetry of a fixed-caliper
disc brake system, it was assumed that 𝑐1 = 𝑐1𝑑𝑥 = 𝑐2𝑑𝑥,
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𝑘1 = 𝑘1𝑑𝑥 = 𝑘2𝑑𝑥, 𝑐2 = 𝑐1𝑐𝑦 = 𝑐2𝑐𝑦, 𝑘2 = 𝑘1𝑐𝑦 = 𝑘2𝑐𝑦,𝑐3 = 𝑐1𝑐𝑥 = 𝑐2𝑐𝑥, 𝑘3 = 𝑘1𝑐𝑥 = 𝑘2𝑐𝑥, 𝑐4 = 𝑐𝑑𝑥, 𝑘4 = 𝑘𝑑𝑥,𝑐5 = 𝑐𝑐𝑥, 𝑘5 = 𝑘𝑐𝑥, 𝑐6 = 𝑐𝑐𝑦, and 𝑘6 = 𝑘𝑐𝑦. Furthermore,
the generalized displacement 𝑞 and the generalized velocitẏ𝑞 were introduced by defining 𝑦1 = 𝑞1, 𝑦2 = 𝑞2, 𝑦𝑐 = 𝑞3,𝑥1 = 𝑞4, 𝑥2 = 𝑞5, 𝑥𝑐 = 𝑞6, and 𝑥𝑑 = 𝑞7. Thus, the vibration
equations could be derived based on generalized coordinates.

Finally, the state variable 𝑧 was used to rewrite the equations
as follows:

𝑧𝑖 = 𝑞𝑖, 𝑖 = 1, 2, . . . , 7,
𝑧𝑖+7 = ̇𝑞𝑖, 𝑖 = 1, 2, . . . , 7. (2)

The system state equations were also obtained as follows:

𝑧̇1 = 𝑧𝑖+7 (𝑖 = 1, 2, . . . , 7) ,
𝑧̇8 = [𝐹𝑓1 − 𝑐2 (𝑧8 − 𝑧10) − 𝑘2 (𝑧1 − 𝑧3)]𝑚1 ,

𝑧̇9 = [𝐹𝑓2 − 𝑐2 (𝑧9 − 𝑧10) − 𝑘2 (𝑧2 − 𝑧3)]𝑚2 ,

𝑧̇10 = [−𝑐6𝑧10 + 𝑐2 (𝑧9 − 𝑧10) − 𝑘6𝑧3 + 𝑘2 (𝑧1 + 𝑧2 − 2𝑧3)]𝑚𝑐 ,

𝑧̇11 = [−𝐹 + 𝑐1 (𝑧11 − 𝑧14) − 𝑐3 (𝑧13 − 𝑧11) + 𝑘1 (𝑧7 − 𝑧4) + 𝑘3 (𝑧6 − 𝑧4)]𝑚1 ,

𝑧̇12 = [𝐹 − 𝑐1 (𝑧12 − 𝑧14) − 𝑐3 (𝑧12 − 𝑧13) − 𝑘1 (𝑧5 − 𝑧7) − 𝑘3 (𝑧5 − 𝑧6)]𝑚2 ,

𝑧̇13 = [−𝑐5𝑧13 + 𝑐3 (𝑧11 + 𝑧12 − 2𝑧13) − 𝑘5𝑧6 + 𝑘3 (𝑧4 + 𝑧5 − 2𝑧6)]𝑚𝑐 ,

𝑧̇14 = [−𝑐4𝑧14 + 𝑐1 (𝑧11 + 𝑧12 − 2𝑧14) − 𝑘4𝑧7 + 𝑘1 (𝑧4 + 𝑧5 − 2𝑧7)]𝑚𝑑 .

(3)

2.2. Representation of the Braking Force Based on the Stribeck
Effect. In 1903, Stribeck found that the Coulomb friction
model could not be used to properly describe the actual fric-
tion behavior, especially the relationship between the friction
coefficient and the normal pressure [22].The relative velocity
in the classic Coulomb friction model was not considered in
the sliding friction. The transition between the static friction
and the sliding friction was discrete. Furthermore, the value
of the sliding friction coefficient was always smaller than
the maximum static friction coefficient. However, Stribeck
proposed that the sliding friction coefficient decreased with
the increasing relative velocity and presented the former as
a continuous function of the latter for low velocities. The
friction behavior in the low-velocity region was referred to as
the negative-slope friction phenomenon because of the
negative slope of the velocity-friction curve. The following
exponential model of the phenomenon was proposed by Bo
and Pavelescu [23]:

𝑓 (V) = 𝑓𝑐 + (𝑓𝑠 − 𝑓𝑐) 𝑒−(V/V𝑠)𝛿 , (4)

where 𝑓𝑐 is the Coulomb friction force; V is the relative
velocity between the two contacting surfaces; V𝑠 is the
Stribeck velocity; and V𝑠 and 𝛿 are the empirical constants.
Bo and Pavelescu proposed a range of 0.5–1 for 𝛿 [23], while

some other scholars considered 𝛿 = 1 or 𝛿 = 2 as reasonable
[24, 25].The frictional force was directly related to the normal
pressure. Therefore, (4) can be rewritten as follows:

𝑓 (V) = 𝐹 ⋅ 𝜇 (V) , (5)

𝜇 (V) = 𝜇𝑐 + Δ𝜇 ⋅ 𝑒−(V/V𝑠)𝛿 . (6)

The friction conditions of the brake linings on both sides
were similar because of the structural symmetry of the fixed-
caliper brake. Hence, 𝐹𝑓1 and 𝐹𝑓2 can be expressed as follows
by substituting the variables of the state equations into (5) and
(6) and setting 𝛿 = 1:

𝐹𝑓1 = sgn(V0 − 60𝑧82𝜋𝑅𝐸) ⋅ 𝐹

⋅ [𝜇𝑐 + Δ𝜇 ⋅ exp(−
󵄨󵄨󵄨󵄨V0 − (60𝑧8/2𝜋𝑅𝐸)󵄨󵄨󵄨󵄨

V𝑠
)] ,

𝐹𝑓2 = sgn(V0 − 60𝑧92𝜋𝑅𝐸) ⋅ 𝐹

⋅ [𝜇𝑐 + Δ𝜇 ⋅ exp(−
󵄨󵄨󵄨󵄨V0 − (60𝑧9/2𝜋𝑅𝐸)󵄨󵄨󵄨󵄨

V𝑠
)] .

(7)
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Table 1: Parameters determined by fitting of the Stribeck friction
model.

Parameter Value Standard error
𝜇𝑐 0.27090 0.00278
Δ𝜇 0.14479 0.00230
V𝑠 257.75876 10.03653
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Figure 3: n-𝜇 curve fitted using the dynamometer test results.

The friction forces between the disc and the inner/outer
brake linings in the vibration system presented as (7) were
based on the Stribeck friction model, where sgn is the sign
function used to determine the direction of the friction on
the contacting surfaces; 𝑧8 and 𝑧9 are the linear velocities
of the contacting surfaces in m/s (a unit conversion factor
is required because V0 is the rotational speed of the disc in
RPM); and 𝑅𝐸 is the effective radius of the brake system.The
values of𝜇𝑐,Δ𝜇, V𝑠, and𝑅𝐸were required for calculation using
the abovementioned equations.𝑅𝐸 is a design parameter with
a value of 0.018m and provided by the vehicle manufacturer.
The values of the other parameters can be determined by the
dynamometer test results.

The tests in the present study were conducted using a
model 3900 brake NVH dynamometer (manufactured by
LINK Engineering Company) and based on the SAE J2521
(Ver. 2013Apr) test procedure. Hence, the dynamic character-
istics of the break friction coefficient during the entire brak-
ing process from 50 km/h to rest can be determined. Figure 3
presents the obtained raw data.The curve obviously matched
well the characteristics of the Stribeck effect although some
fluctuations in the friction, which were caused by creeping,
existed. All 1412 sets of friction coefficient and rotational
speed data were substituted into (4) and (6) by fitting the raw
data shown in Figure 3. The values of 𝜇𝑐, Δ𝜇, and V𝑠 can then
be determined. Table 1 and Figure 3 show the obtained
parameter values and the fitted curve, respectively.

3. Numerical Calculations

3.1. Determination of the System Stability Using the Complex-
Eigenvalue Method. A point at which {𝑧̇} ̸= {0} is referred to

as an ordinary point in the state space, while one that satisfies
(8) is referred to as a balance point.

{𝑧̇} = {𝑧̇1, 𝑧̇2, . . . , 𝑧̇14}𝑇 = {𝑍𝑖 (𝑧1, 𝑧2, . . . , 𝑧14)} = {0} . (8)

The coordinates of a balance point should be calculated to
determine the stability. The change rates 𝑧̇𝑖 (𝑖 = 1, 2, . . . , 14)
of all the state variables should be 0 at a balance point. Hence,
the coordinates can be calculated as follows by substituting
(8) into the system state equations:

𝑧1𝑒 = 𝑧2𝑒 = 𝐹𝑓0 ( 2𝑘6 +
1
𝑘2) ,

𝑧3𝑒 = 2𝐹𝑓0𝑘6 ,

𝑧4𝑒 = −𝐹
(𝑘1 + 𝑘3) ,

𝑧5𝑒 = 𝐹
(𝑘1 + 𝑘3) ,

𝑧𝑚𝑒 = 0, 𝑚 = 6, 7, . . . , 14,

(9)

𝐹𝑓0 = 𝐹 ⋅ (𝜇𝑐 + Δ𝜇 ⋅ 𝑒−V0/V𝑠) . (10)

Equation (9) obviously showed that a balance point
cannot occur at the origin of the coordinate in this system.
Therefore, coordinate transformationwas necessary to satisfy
the requirements for the system linearization in the process of
ascertaining the system stability. McLaughlin’s expansion was
applied, with items of the second or higher orders ignored,
because the functions of 𝐹𝑓1 and 𝐹𝑓2 were the only nonlinear
terms in the system state equations. The approximate expres-
sions of 𝐹𝑓1 and 𝐹𝑓2 near the origin are presented as follows:

𝐹𝑓1 = 𝐹 ⋅ (𝜇𝑐 + Δ𝜇 ⋅ 𝑒−V0/V𝑠) + 𝐹 ⋅ Δ𝜇 ⋅ 60
2𝜋𝑅𝐸V𝑠 ⋅ 𝑒

−V0/V𝑠

⋅ 𝑧8,
𝐹𝑓1 = 𝐹 ⋅ (𝜇𝑐 + Δ𝜇 ⋅ 𝑒−V0/V𝑠) + 𝐹 ⋅ Δ𝜇 ⋅ 60

2𝜋𝑅𝐸V𝑠 ⋅ 𝑒
−V0/V𝑠

⋅ 𝑧9.

(11)

The linearized state equations near the origin can be
obtained by substituting (11) into the state equations after
coordinate transformation. This can also be used to deter-
mine the Jacobian matrix and the equations of the system
characteristics shown as (12). The existence of the positive
real parts of the eigenvalues is the necessary and sufficient
condition for establishing a balance point to be unstable.
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Table 2: Vibration model parameters of the fixed-caliper disc brake.

Mass Value (kg) Stiffness Value (N⋅m−1) Damping Value (N⋅s⋅m−1)
𝑚1 0.35 𝑘1 1.5 × 105 𝑐1 5
𝑚2 0.35 𝑘2 7.5 × 105 𝑐2 30
m𝑐 5.56 𝑘3 7.5 × 105 𝑐3 15
m𝑑 7.04 𝑘4 1.0 × 106 𝑐4 40

𝑘5 1.5 × 106 𝑐5 50
𝑘6 1.5 × 106 𝑐6 50

Table 3: Number of eigenvalues with positive real parts.

Disc speed (RPM) Brake pressure (N)
300 400 500 600 700 800 1000 1200 1500

15 0 0 2 2 4 4 6 6 6
25 0 0 2 2 2 4 6 6 6
42 0 0 0 2 4 4 6 6 6
83 0 0 0 0 2 2 4 4 6
100 0 0 0 0 0 2 4 4 6
150 0 0 0 0 0 0 2 4 4
200 0 0 0 0 0 0 2 2 4
250 0 0 0 0 0 0 0 2 2

Hence, the stability of the system balance point can be
determined by calculating the eigenvalues of the system.

𝑎𝑖,𝑗 = 𝜕𝑍𝑖 (𝑧1, 𝑧2, . . . , 𝑧14)𝜕𝑧𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧1=𝑧2=⋅⋅⋅=𝑧14=0

,
𝑖, 𝑗 = 1, 2, . . . , 14,

det ([𝑎] − 𝜆 [1]) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎1,1 − 𝜆 𝑎1,2 ⋅ ⋅ ⋅ 𝑎1,14
𝑎2,1 𝑎2,2 − 𝜆 ⋅ ⋅ ⋅ 𝑎2,14
... ... d

...
𝑎14,1 𝑎14,2 ⋅ ⋅ ⋅ 𝑎14,14 − 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(12)

In the present study, themajor working condition param-
eters of the brake system included the initial disc speed V0
and the brake pressure𝐹. Different values of these parameters
were applied to the system vibration model to numerically
ascertain the stability of the balance point under various
working conditions. A total of 72 working conditions were
considered in the present study based on the actual brake con-
ditions comprising various combinations of brake pressure 𝐹
values of 300, 400, 500, 600, 700, 800, 1000, 1200, and 1500N
and initial disc speed V0 values of 15, 25, 42, 83, 100, 150, 200,
and 250 RPM (25, 42, 83, and 250 RPM correspond to the
linear speeds of 3, 5, 10, and 30 km/h in SAE J2521, resp.).
Table 2 shows the employed values of the other parameters
of the vibration system based on the structure symmetry and
the connection relationships among the different parts of the
brake system.

MATLAB was used to calculate the eigenvalues of the
system to qualitatively investigate the stability of the system
under different working conditions. Table 3 presents the
number of eigenvalues with positive real parts under each
working condition.

Several balance points with differing stabilities could
be present for a nonlinear vibration system. Accordingly,
the stability of a nonlinear system cannot be determined
based only on the stability of one balance point. Therefore,
McLaughlin’s expansion was used to linearize the nonlinear
terms, such that the system equations could be linearized
and approximately maintained at the balance point. The
stability of the vibration system after linearization could be
determined based on the stability of the balance point because
there can only be one balance point for a liner vibration
system.

The stability of the brake vibration system at any rota-
tional speed was closely related to the pressure applied on the
brake linings according to the data in Table 3.The systemmay
become unstable when the brake pressure 𝐹 reaches a certain
threshold.The number of eigenvalues with positive real parts
increased with the increase of 𝐹. In addition, the value of𝐹, at which the system became unstable, varied with the
rotational speed. This result indicated that the probability of
instability of a fixed-caliper disc brake system increased with
the increasing brake pressure at a given rotational speed.

Furthermore, the system eigenvalues with positive real
parts only occurred when the brake pressure reached the
threshold, and the threshold increased with the increasing
rotational speed. In other words, the brake systemmore easily
became unstable at a lower vehicle speed. Moreover, a higher
brake pressure was required to cause an instability at a higher
speed.
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Figure 4: System acceleration time history diagrams for V0 = 150RPM and 𝐹 = 500N.

3.2. System Time History Diagrams and Phase Plots. The
determined equations of the brake system were used to
obtain the corresponding acceleration time history diagrams
and the phase plots for further analysis of the relationship
between the working conditions and the system stability. All
72 working conditions were considered. Three representative
working conditions were selected to reflect the influence of

the disc rotation speed and the brake pressure on the system
stability with the obtained diagrams in Figures 4–9. Seven
acceleration time history diagrams and seven phase plots
were obtained for each working condition considering the
seven DOFs and 14-dimensional phase spaces in the system.
The caliper and the disc remained static along the 𝑥-axis
of the vibration system because of the structural symmetry
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Figure 6: System acceleration time history diagrams for V0 = 150RPM and 𝐹 = 1000N.

of the fixed-caliper brake system, thereby causing the forces
applied on the caliper and the disc along the 𝑥-axis to always
occur in pairs of equal magnitude, but opposing directions.
Consequently, the displacement, velocity, and acceleration of𝑥𝑐 and 𝑥𝑑 remained 0 during the braking process, which
comprised a horizontal line at 0 in the acceleration time
history diagrams and a single dot at the origin in the phase
plots. Therefore, 𝑥𝑐 and 𝑥𝑑 figures were omitted.

All the unstable DOFs of the vibration system were
concentrated on the 𝑦-axis in each acceleration time history
diagram. However, though the vibration on the 𝑥-axis of
the inner and outer linings began after the excitation by the
brake pressure𝐹, but the amplitude of the acceleration rapidly
attenuated and finally reached the steady state.

Figures 4–7 present the effects of the brake pressure
on the system vibration characteristics at a given rotational
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Figure 8: System acceleration time history diagrams for V0 = 15RPM and 𝐹 = 500N.

speed. The vibrations for all the DOFs of the system can be
attenuated and stabilized, with the trajectory rotating inward
and gradually converging on the focus of the phase plots in
Figure 5, when the brake pressure was not sufficiently high.
However, the stabilities of both linings and the caliper along
the 𝑦-axis were lost when the brake pressure increased to
the stability threshold for a given speed. Figure 6 shows that
their acceleration increased to a certain value. Meanwhile,

the trajectory rotates outward, and limit cycles were formed
in Figure 7. Thus, the phase plots were consistent with the
system stability characteristics determined by calculating the
system eigenvalues.

The system stability transition at a given speed was
directly related to the negative slope of the Stribeck friction
effect, which caused the friction coefficient to decrease with
the increasing relative speed. Consequently, in contrary to the
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Figure 10: Brake noise under different dragging conditions.

case of the viscous damping, the equivalent damping caused
by the velocity feedback was negative, with the negative
equivalent damping effect becoming more significant with
the increasing brake pressure because the friction force was
directly proportional to the normal force. Finally, the stability
of the system was lost, and a self-excited vibration was
induced when the total damping of the system was negative.

Figures 4, 5, 8, and 9 show the effect of the disc rotational
speed on the system vibration for a given brake pressure.
The stability of the vibration system was lost at a certain
brake pressure with the decreasing disc rotational speed.This
observation was related to the trend of the friction coefficient
versus the speed curve. According to (4), the Stribeck friction
model curve was actually a transformed exponential curve
(Figure 3).The slope of the curve decreased with the decreas-
ing disc rotational speed. Hence, the negative equivalent
damping caused by the velocity feedback decreased as the
speed decreased, thereby consequently decreasing the total
damping, with the system becoming unstable when the total
damping is negative.

4. Dynamometer Tests

The abovementioned assertion that the stability of a fixed-
caliper brake system decreases with an increasing brake
pressure and a decreasing disc rotational speed was based on
a numerical investigation using a vibration model. An
appropriate fixed-caliper disc brake was used to conduct
a dynamometer test using the standard SAE J2521 test
procedure and validate the numerical findings.

The test data presented in Figure 10 were obtained from
three stops along the corresponding drag cycles using the
same initial brake temperature condition, as prescribed in
Section 3, Module 4 of SAE J2521. A brake squeal with a fre-
quency of 11,100Hz and a sound pressure level (SPL) of 83 dB
was observed at a drag speed of 3 km/h and a brake pressure
of 1.5MPa. However, no squeal was observed, and the
maximum sound pressure level was 57 dB when the brake
pressure was decreased to 1.0MPa, or the drag speed was
increased to 10 km/h. This finding indicated that the proba-
bility of brake noise generation decreased with the decreasing
brake pressure and the increasing brake speed. Figure 11
shows the SPL data for all the stops prescribed in Section 3,
Module 4 of SAE J2521, which substantiates the abovemen-
tioned observations on the brake noise occurrence.
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Figure 11: Maximum SPL data obtained as prescribed in Section 3,
Module 4 of SAE J2521.
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Figure 12: Brake noise during the deceleration braking process.

The effects of the disc rotational speed on the brake noise
were not only investigated in the drag section of the
dynamometer test, but also in the deceleration section.
Figure 12 shows the complete brake noise spectrum for the
ninth stop prescribed in Section 7, Module 7 of SAE J2521.
The disc was forced-braked from 50 km/h to rest under a
brake pressure of 2MPa at this stop. The figure showed no
noise at the beginning of the braking process. However, the
brake noise with an 11,000Hz frequency was generated in the
final stage of the process as the rotation speed of the disc
decreased with time.

5. Conclusion

This study developed a 7-DOF vibration model of a fixed-
caliper disc brake based on the Stribeck effect. The eigen-
values of the corresponding Jacobian matrix were calculated
to analyze the system stability. Furthermore, the acceleration
time history diagrams and the phase plots of each DOF in the
vibration system were obtained by solving the system
equations, revealing regular relationships among the brake
pressure, disc rotational speed, and generated noise. The
dynamometer tests were used to determine the system
parameters and verify the numerical analysis results. The
main conclusions drawn from the findings of the study are
as follows:
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(1) The probability of brake noise generation increases
with the increasing brake pressure because the veloc-
ity feedback causes a negative equivalent damping,
which increases with the increasing brake pressure.

(2) The probability of brake noise generation increases
with the decreasing disc rotational speed because
the slope of the curve decreases with the decreasing
disc rotational speed, and the negative equivalent
damping caused by the velocity feedback decreases
as the speed decreases, which also decreases the total
system damping.

(3) The 7-DOF brake vibration model based on the
Stribeck effect can be used to design and investigate
the brake system parameters because its brake noise
predictions agree well with the dynamometer test
results.
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