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3D shape retrieval is a problem of current interest in different fields, especially in themechanical engineering domain. According to
our knowledge,multifeature based techniques achieve the best performance at present.However, the practicability of thosemethods
is badly limited due to the high computational cost. To improve the retrieval efficiency of 3D CAD model, we propose a novel
3D CAD model retrieval algorithm called VSC WCO which consists of a new 3D shape descriptor named VSC and Weights
CombinationOptimization schemeWCO.VSC represents a 3Dmodel with three distance distribution histograms based on vertices
classification. The weighted sum of 𝐿1 norm distances between corresponding distance histograms of two VSC descriptors is
regarded as dissimilarity of two models. For higher retrieval accuracy on a classified 3D model database, WCO is proposed based
on Particle Swarm Optimization and existing class information. Experimental results on ESB, PSB, and NTU databases show that
the discriminative power of VSC is already comparable to or better than several typical shape descriptors. AfterWCO is employed,
the performance of VSC WCO is similar to the leading methods by all performance metrics and is much better by computational
efficiency.

1. Introduction

The development of computer graphics technology gives a
birth to the explosion in the number of 3D models which are
now widely used in many diverse applications. Meanwhile,
more and more 3Dmodel databases are available on the web,
such as Princeton Shape Benchmark (PSB) [1], National
Taiwan University Shape Benchmark (NTU) [2], and Engi-
neering Shape Benchmark (ESB) [3]. As Funkhouser et al. [4]
predicted, the key question about 3D model has shifted from
“How do we construct them?” to “How do we find them?”
There is no doubt that searching suitable 3D engineering
models from existing resource is extremely beneficial for
mechanical design, because (1) more than 75% of design
activity comprises reuse of previous design knowledge to
address a newdesign problem [5] and (2)modeling a complex
3D model, such as mechanical parts, is still error-prone and
time-consuming. Therefore, it is very necessary to develop
efficient tools for 3D CAD model retrieval. As a promising

technique, the so-called content-based 3D model retrieval,
using the characteristics of 3Dmodel itself, has attracted a lot
of research interests [6–13].The content-based approaches are
broadly classified into three categories: shape-based, view-
based, and multifeature based approaches.

Shape-Based Approaches. This kind of approaches uses the
distribution of 3D features to characterize the geometric
properties of a 3D model. D2 [14] is a well known shape-
based 3D model retrieval method. D2 took samples on the
distances between two points on the model surface and then
accumulated them into bins of different intervals to form a
distance distribution histogram as the model shape descrip-
tor. D2 has many advantages: robustness, rotation invariance,
and computational efficiency. However, the discriminative
capability of D2 is limited for complex 3D model such as
3D engineering models. Inspired by D2, several new shape-
based methods were proposed. Shih et al. [15] investigated
a descriptor named Grid D2 (GD2). In GD2, the 3D model
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is decomposed by a voxel grid. A voxel is regarded as valid
if there is a polygonal surface located within this voxel and
invalid otherwise. The distribution of distance between two
valid voxels instead of two points on the surface is calculated.
Different from GD2, the shape distributions in Volume D2
(VD2) [16] are generated from Euclidean distance between
randomly selected voxels. Not only surface voxels but also
internal ones are involved. In order to reduce the computa-
tional complexity of D2,Wu et al. [17] proposed an algorithm
called Quick D2 which modifies the sampling phase of D2.
Pan et al. [18] proposed a new shape descriptor called Poisson
Histogram which can be defined by the following two steps.
Firstly, a 3D shape signature was defined by Poisson equation.
Secondly, a histogram was constructed by accumulating the
values of the defined signature in bins.

View-Based Approaches. The main concept of visual repre-
sentation in 3D model retrieval is to first convert the 3D
model into 2D projection image and then utilize mature
image processing techniques to extract various features [19].
The original work was accomplished by Chen et al. [2],
who proposed a method named Light Field (LF) descriptor
which is a typical view-based approach. The main idea of LF
is that if two 3D models are similar, they also look similar
from all viewing angles. LF represents a 3D model as a
collection of 2D images rendered from uniformly sampled
positions on a viewing sphere located around the model.
The distance between two descriptors is defined as the min-
imum L1 distance, taken over all rotations and all pairing
of vertices on two dodecahedra. LF had been shown to
perform well on the ESB [3] database. In [20], adaptive
views clustering (AVC) selected the best characteristic views
from more than 320 projected views. The characteristic
view selection algorithm is based on an adaptive clustering
algorithm and uses statistical model distribution scores
to select the optimal number of views. The view-based
methods achieved better retrieval performance compared
to shape-based ones because they capture more of shape
content. However, as pointed out in [2], view-based methods
involve more computation compared to the shape-based
ones.

Multifeature Based Approaches. According to [3], the shape
representations that hold more shape content are better
at retrieving more relevant models. Therefore, combining
different 3D shape features is an efficient way to enhance the
retrieval accuracy [21]. Papadakis et al. [22] presented a novel
hybrid 3D model shape descriptor named PANORAMA
using a set of panoramic views of a 3D model. A panoramic
view is generated by projecting the model to the lateral sur-
face of a cylinder parallel to one of its three principal axes and
centered at the centroid of the model. The 3D model is pro-
jected to three perpendicular cylinders, each one alignedwith
one of its principal axes in order to capture the global shape
of the model. They used Fourier and wavelet transforms to
extract the features for each panoramic view. Leng and Xiong
[23] proposed a composite shape descriptor called TUGE
which is obtained from a combination of two-view version
of depth buffer-based shape descriptor in [24] and GEDT

shape descriptor in [4]. Li and Johan [25] proposed a hybrid
3D shape descriptor ZFDR which comprises four features:
Zernikemoments, Fourier descriptor, depth information and
ray-based features.

Multifeatures based methods have more powerful
retrieval capability than shape-based and view-based
techniques; however, the time consumption is much higher
than the latter because of involving more computations.
In ZFDR example [25], the average retrieval time on ESB
database (contains 866 3D CAD models) is 1.37 sec. If the
target database is 100 times bigger than ESB, the average
retrieval time will be more than 10 sec. High time cost limits
the practicability of multifeature based techniques seriously.

In addition to those methods mentioned above, machine
learning technologies are also used to address 3D models
retrieval. In [26], 3D models are represented as probability
distributions of binary variables on a 3D voxel grid and
the proposed method uses a Convolutional Deep Belief
Network to learn the distribution of complex 3D shapes
across different categories and arbitrary poses from raw
CAD data. In [27], the distance between 3D models is
computed based on distance histogram features and 3D
moment features. Using this distance measure, the relation-
ships between all 3D models in dataset are formulated as a
graph structure. A semisupervised learning process is then
conducted to estimate the relevance among the 3D models.
Leng et al. [28] proposed a 3Dmodel recognitionmechanism
based on Deep Boltzmann Machines (DBM). The high-level
abstraction representation can be obtained from a DBM
which is trained by depth images of 3D model and the
feature is used in semisupervised classification method. Qin
et al. [29] proposed a deep learning approach to automati-
cally classify 3D CAD models according to the mechanical
part catalogue. The designed deep neural network classifier
is based on the latest machine learning technique, deep
learning.

In this paper, to improve the retrieval efficiency of 3D
CAD model, we propose a novel retrieval algorithm named
VSC WCO which consists of a new shape-based 3D model
descriptor called VSC and Weights Combination Optimiza-
tion scheme WCO. The VSC descriptor represents a 3D
model with three Euclidean distance distribution histograms
which are calculated based on vertices classification. The
weighted sum of L1 norm distances of corresponding his-
tograms in two VSC descriptors is regarded as the dissim-
ilarity of two models. To avoid risks caused by using fixed
weights in VSC distance computation and further improve
the retrieval performance on classified 3D model database,
WCO is proposed based on Particle Swarm Optimization
(PSO) and existing class information of 3D model database.
The objective ofWCO is searching optimal weights combina-
tions for different query models.

The rest of this paper is organized as follows. The pro-
posed 3D shape descriptor VSC is presented in Section 2. In
Section 3, we describe the details of WCO and our 3D CAD
models retrieval method VSC WCO. Experimental results
are demonstrated in Section 4. Finally, conclusions and future
work are presented in Section 5.
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2. 3D Shape Descriptor VSC Based on
Vertices Classification

In this section, we define a new shape-based 3D model
descriptor named VSC based on classification of vertices.
A VSC descriptor consists of three distance distribution
histograms which are computed by the following steps: (i)
according to Tensor Voting Theory, the vertices of a 3D
model are divided into three categories: Face, Sharp Edge,
and Corner; (ii) the Euclidean distances between pairs of
vertices in the same category are calculated; (iii) the distance
distribution histograms of distinct categories are formed.

2.1. Vertices Classification Based on Tensor Voting Theory.
Tensor voting theory has great advantages in computer vision
tasks such as segmentation and object recognition. According
to [30], the normal voting tensor is defined as

𝑇V = ∑
𝑡𝑖∈𝑁𝑡(V)

𝜇𝑡𝑖 �⃗�𝑡𝑖 �⃗�𝑇𝑡𝑖 , (1)

where V is vertex of 3D mesh model; 𝑇V is the normal voting
tensor of V; 𝑁𝑡(V) denotes a collection of 1-ring neighbor
triangles of v; 𝑡𝑖 is 𝑖th 1-ring neighbor triangle in 𝑁𝑖(V); �⃗�𝑡𝑖
represents the unit normal vector of 𝑡𝑖; 𝜇𝑡𝑖 is calculated based
on [30]:

𝜇𝑡𝑖
= ( area (𝑡𝑖)

max (area (𝑁𝑡 (V)))) exp(−
 ⃗𝑐𝑡𝑖 − �⃗�V


max ( ⃗𝑐𝑡𝑖 − �⃗�V

)) , (2)

where area (𝑡𝑖) is area of triangle 𝑡𝑖; max(area(𝑁𝑡(V))) is max-
imum area among𝑁𝑡(V); ⃗𝑐𝑡𝑖 denotes barycenter of triangle 𝑡𝑖;�⃗�V represents the position of V.

Because 𝑇V is a rank-3 positive semidefinite matrix, it can
be diagonalized as follows:

𝑇V = 𝜆1 ⃗𝑒1 ⃗𝑒𝑇1 + 𝜆2 ⃗𝑒2 ⃗𝑒𝑇2 + 𝜆3 ⃗𝑒3 ⃗𝑒𝑇3 , (3)

where ⃗𝑒1, ⃗𝑒2, and ⃗𝑒3 are the corresponding unit eigenvectors
of 𝜆1, 𝜆2, and 𝜆3 (𝜆1 ≥ 𝜆2 ≥ 𝜆3), respectively. According to
the eigenvalues, vertices can be divided into Face, Sharp Edge,
and Corner as follows [31]:

(i) Face: 𝜆1 is dominant; 𝜆2 and 𝜆3 are close to 0.
(ii) Sharp Edge: 𝜆1 and 𝜆2 are dominant; 𝜆3 is close to 0.
(iii) Corner: 𝜆1, 𝜆2, and 𝜆3 are approximately equal.

Figure 1 shows an example of vertices classification; (a)
is a 3D CAD model called advgr01 in ESB. Marked points in
(b), (c), and (d) denote the vertices of Face, Sharp Edge, and
Corner, respectively. The numbers of vertices in the distinct
categories are 670, 127, and 16, respectively.

2.2. Distance Distribution Histogram. After classification of
vertices, the Euclidean distances between any two vertices
in the distinct categories are measured. To eliminate the

influence of quantity of points, the distances histogram
containing n bins is defined as

ℎ = {𝑏1, 𝑏2, 𝑏3, . . . , 𝑏𝑛}𝑁 (𝑁 − 1) /2 , (4)

where 𝑏𝑖 is the number of distances within the range of the𝑖th bin;𝑁 is the quantity of each type of vertices; ℎ denotes a
histogram constructed by counting how many distances fall
into each bin. The width of bin is determined by

width = 𝑑max − 𝑑min
𝑛 , (5)

where 𝑑max and 𝑑min are maximum and minimum distance
between pairs of vertices in the same class; n is the number of
bins.

Three distance distribution histograms compose the 3D
shape descriptor VSC which is defined as follows:

VSC = {ℎ𝑓, ℎ𝑒, ℎ𝑐} , (6)

where ℎ𝑓, ℎ𝑒, and ℎ𝑐 denote distance distribution histograms
of vertices in Face, Sharp Edge, and Corner, respectively.
Table 1 is a comparison between feature extraction results
of D2 and VSC for six models of ESB database, the first
two models are taken from different classes of ESB; the
third and fourth models are taken from ESB\Flat-Thin Wall
Components\Back Doors; and the fifth and sixth are taken
from ESB\Solid Of Revolution\Gear-like Parts. As shown in
Table 1, the first and second models are completely different
in shape, but theirD2 descriptors are very similar. Different to
D2, those two models are quite different in the view of VSC.
The third and fourth models are taken from the same class
and their shapes are very similar. There are almost no differ-
ences between theVSCdescriptors of those twomodels, so do
the D2 descriptors.The fifth and sixth models are taken from
the same class also, but there is a little difference between their
shapes.Through comparing twoVSCdescriptors of those two
models, it is clear that the VSC descriptor reflects differences
between two models successfully. Generally speaking, due to
the subdivision of distances between sample points, the shape
discrimination capacity of VSC is better than D2.

2.3. Distance between Two VSC Descriptors. After VSC
descriptors are constructed, the similarity comparison
between two 3D models is mapped into the comparison of
VSC descriptors. The distance between two VSC descriptors
is defined as the weighted sum of L1 norm distances of
corresponding histograms:

Dis (VSC𝑚𝑎 ,VSC𝑚𝑏) = 𝑤1 × 𝐿1 (ℎ𝑓𝑚𝑎 , ℎ𝑓𝑚𝑏) + 𝑤2
× 𝐿1 (ℎ𝑒𝑚𝑎 , ℎ𝑒𝑚𝑏) + 𝑤3
× 𝐿1 (ℎ𝑐𝑚𝑎 , ℎ𝑐𝑚𝑏) ,

(7)

where𝑚𝑎 and𝑚𝑏 denote two 3D models; VSC𝑚𝑎 and VSC𝑚𝑏
are VSC descriptors of 𝑚𝑎 and 𝑚𝑏, respectively; L1 is the
L1 norm distance measure; 𝑤1, 𝑤2, and 𝑤3 are weights. The
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(a) (b) (c) (d)

Figure 1: An example of vertices classification: (a) 3D CADmodel: ESB\Rectangular-Cubic Prism\Bearing Blocks\advgr01, 813 vertices; (b)
vertices of Face; (c) vertices of Sharp Edge; (d) vertices of Corner.

Table 1: Comparison of feature extraction results of D2 and VSC on two ESB models.
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three distance histograms reflect the different shape charac-
teristics of a model and they have the same contribution for
VSC distance computation. Therefore, we linearly combine
them. In addition, the distances between the corresponding
histograms fall in the same range; as such, we assign the same
weight for each histogram: 𝑤1 = 𝑤2 = 𝑤3 = 1/3. For
two 3D models, the distance between corresponding VSC
descriptor is regarded as the dissimilarity, and the smaller the
VSC distance is, the more similar they are. According to (7),
the VSC distance between first two models shown in Table 1
is 1.71.

For a querymodel 𝑞, different weights combinations used
in (7) will produce different dissimilarities between 𝑞 and
models in database and lead to different retrieval results
eventually. The influence of weights combination against
retrieval result provides an opportunity to achieve more
desirable retrieval result on a classified 3D model database
(details are discussed in the next section).

3. 3D CAD Model Retrieval Algorithm
VSC_WCO Based on VSC and
Weights Combination Optimization
Scheme WCO

In this section, to further improve retrieval performance in a
classified 3D model database, we propose a 3D CAD model
retrieval algorithm called VSC WCO based on 3D shape
descriptorVSCpresented in Section 2 andWeights Combina-
tion Optimization scheme WCO. In order to avoid the risks
caused by using fixed weights combination in VSC distance
computation, WCO takes into account the class information
of 3D model database and utilizes Particle Swarm Optimiza-
tion (PSO) to search optimal weights combination for each
class.

3.1. Weights Combination Optimization. In order to avoid
the risks caused by fixed weights and improve retrieval per-
formance, we define Weights Combination Optimization
method named WCO which takes into account the class
information of 3D model database and utilizes Particle
Swarm Optimization (PSO) [32] to search the optimal
weights combination for each class.Themotivations ofWCO
are described as follows:

(1) For a query model q, different weights combina-
tions used in (7) will produce different dissimilari-
ties between q and models in database and lead to
different retrieval results eventually. The influence of
weights combination against retrieval result provides
an opportunity to achieve more desirable retrieval
result by searching more suitable weights combina-
tion for q.

(2) In fact, those three distance histograms ℎ𝑓, ℎ𝑒, andℎ𝑐 in the proposed shape descriptor VSC depict a 3D
model from different aspects, respectively, and they
can be regarded as three single 3D shape descriptors.
It is demonstrated in [3] that no single 3D model
descriptor performs well on all models and different
descriptors have different strengths and weaknesses.

According to this conclusion, fixed weights combina-
tion used in (7) for VSC distance computation is not
suitable for all models.

In this subsection, we introduce the PSO first and then
describe the details of WCO.

3.1.1. Particle Swarm Optimization (PSO). PSO has several
advantages over other artificial intelligence algorithms. For
example, it is better at global optimization and is easier to
apply to multiple-objective problems [28]. PSO is initialized
with a population of random potential solutions and the
algorithm searches the optimal solution according to its
performance. The goodness of a particle is determined by a
function called fitness function in PSO. The fitness function
takes position of a particle as input and returns a single
number which denotes the goodness of the particle for the
optimization problem.

Consider a group ofN particles that are searching a global
optimal solution in a D dimensions space. The position and
velocity of 𝑃𝑖 (𝑖th particle) can be expressed as

𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝐷𝑖 ) , (8)

𝑉𝑖 = (V1𝑖 , V2𝑖 , . . . , V𝐷𝑖 ) , (9)

𝑉𝑡+1𝑖 = 𝑤 × 𝑉𝑡𝑖 + 𝑐1 × 𝑟1 × (𝑝best𝑖 − 𝑋𝑡𝑖) + 𝑐2 × 𝑟2
× (𝑔best𝑡 − 𝑋𝑡𝑖) ,

(10)

𝑋𝑡+1𝑖 = 𝑋𝑡𝑖 + 𝑉𝑡+1𝑖 , (11)

where𝑉𝑡𝑖 and𝑉𝑡+1𝑖 denote the velocity of 𝑃𝑖 in iterations 𝑡 and𝑡 + 1; 𝑋𝑡𝑖 and 𝑋𝑡+1𝑖 represent the positions of 𝑃𝑖 in iterations 𝑡
and 𝑡+1;𝑝best𝑖 is the best position of𝑃𝑖 until iteration 𝑡;𝑔best𝑡
is the best position among all the particles until iteration 𝑡;𝑐1 and 𝑐2 are the personal learning coefficient and the social
learning factor, respectively; 𝑟1 and 𝑟2 are random numbers
in the range of (0, 1); 𝑤 is an inertia factor from 0.8 to 1.2.

In WCO, PSO is used for searching the optimal weights
combination for each class in a classified 3D model database;
thus the position and velocity of each particle consist of three
numbers, respectively. In order to avoid negative numbers
during the optimization process, the relationship between
positions and weights is expressed as

𝑤𝑖 = exp (𝑥𝑖) (𝑖 = 1, 2, 3) , (12)
where 𝑤𝑖 is the 𝑖th weight and 𝑥𝑖 is the 𝑖th component of
particle’s position.

It is obvious that if the weights combination used in (7) is
more reasonable to querymodel 𝑞, the VSC distance between
q and all models in database will be more accurate and the
retrieval performance will be better. In other words, the more
reasonable weights combination, the better retrieval perfor-
mance.Thus, the retrieval performance achieved by a particle
can be used as its fitness.We employ the performancemetrics
First Tier (FT) [1] to evaluate the retrieval performance of
each particle. FT is expressed as

FT (𝑅) = 𝑛𝑟|𝐶| − 1 , (13)
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where R represents a retrieval result which is formed by
sorting all models in ascending order based on their VSC
distances from query model 𝑞; 𝐶 denotes the class of 𝑞 and|𝐶| is the cardinality of 𝐶; 𝑛𝑟 is the number of models of 𝐶 in
top |𝐶| − 1 list of 𝑅.
3.1.2. Implementation Process of WCO. By controlling weight
alterations, one ensures the evaluation of retrieval result
better, which is the main idea of WCO. The optimization
process ofWCO is summarized in Algorithm 1 and notations
used inAlgorithm 1 are explained in theNotations. According
to Algorithm 1, the time and space complexity of WCO are𝑂(𝑁 × 𝑇 × 𝑃 × |𝐶| × |𝑀|) and 𝑂(1).
3.2. Implementation of VSC WCO. To improve the retrieval
performance on a classified 3D CAD model database, we
propose a new 3D CAD model retrieval algorithm named
VSC WCO based on VSC descriptor described in Section 2
and Weights Combination Optimization scheme WCO pre-
sented in Section 3.1. Our VSC WCO is composed of two
parts: online and offline parts, which are described as follows
and the whole process of VSC WCO is illustrated in Figure 2.

Offline

(1) VSC Feature Extraction. We extract the VSC shape
descriptors of all the models in Train and Test sets,
based on the method in Section 2.

(2) OptimalWeights Calculation in Train Set.We calculate
the optimal weights combinations (OWC) for all
classes of Train set, based on WCO described in
Section 3.1. All optimal weights combinations are
stored in a database with the corresponding class
information.

Online

(1) VSC Feature Extraction. We extract the VSC shape
descriptor of query model q, based on the method in
Section 2.

(2) Determine the Most Similar Class (MSC) of q in Train
Set. First, we compute the VSC distance between q
andmodels in Train set according to (7) usingweights
combination: {1/3, 1/3, and 1/3}, and then we select
the nearest model’s class as the most similar class of q,
which is denoted as MSCq.

(3) Determine the Optimal Weights Combination (OWC)
of q according to MSCq. The optimal weights com-
bination corresponding to q’s MSC is selected from
database, which is denoted as OWCq.

(4) VSC Distances Computation in Test Set. We compute
the VSC distances between q and models in Test set
according to (7) using weights combination OWCq.

(5) Ranking and Output. Sort all the models in Test set in
ascending order based on their VSC distances com-
puted in step (4) and output retrieval lists accordingly.

4. Experiments

In this paper, all retrieval experiments are implemented in
MATLAB R2011b and performed in a PC with configuration:
CPU: Intel Pentium Dual-Core E5400@2.7GHz; memory:
2.0GB; OS: Windows XP. To investigate the performance
of VSC WCO for 3D engineering and generic models, we
selected the following three representative standard bench-
mark databases:

(i) Engineer Shape Benchmark (ESB) [3]. It is developed
by Purdue University for evaluating the search meth-
ods relevant to the mechanical engineering domain.
There are 866 3D engineering models in ESB and
those models are classified into three superclasses,
namely, Flat-Thin Wall Component, Rectangular-
Cubic, and Solids of Revolution. Within each super-
class, models are further classified into clusters of
similar shapes. Figure 3 shows some example views of
3Dmodels in ESB. In order to ensure the usefulness of
weights combinations calculated byWCO, we equally
divide ESB database into two parts: Train and Test
sets, the former is used forWCO and the latter is used
as target database for retrieval experiments.

(ii) Princeton Shape Benchmark (PSB) [1]. It contains 1814
3D models totally, which are classified into Test and
Train parts. In our experiments, Train database is
used for WCO and Test database is used for retrieval
experiments.

(iii) National TaiwanUniversity (NTU)Database [2].NTU
database contains 1,833 3D models and only 549 3D
models are grouped into 47 classes and the remaining
1,284 models are assigned as the “miscellaneous.”
Thus, we only use the 549 classified ones for our
experiments.

4.1. Retrieval Performance Evaluation Metrics. To compre-
hensively evaluate the 3D model retrieval results, we employ
five metrics including precision-recall curve, Nearest Neigh-
bor (NN), First Tier (FT), Second Tier (ST), and Discounted
Cumulative Gain (DCG) [1]. Precision indicates how much
percentage of the top K models belongs to the same class as
the query model while recall means how much percentage
of a class has been retrieved among the top K retrieval list.
The precision-recall curve comprehensively demonstrates
retrieval performance, which is assessed in terms of average
recall and average precision. NN is defined as the percentage
of the closestmatches that are relevantmodels. FT is the recall
of the top 𝐶 − 1 list, where 𝐶 is the cardinality of the relevant
class of the query model. ST is the recall of the top 2(𝐶 − 1)
list. DCG is defined as the summed weighted value related
to it which combines precision and recall as well as ranking
positions.

4.2. Comparison Algorithms. To compare the performance of
our retrieval algorithmVSC WCO,we consider the following
four algorithms:
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Input: A classified 3D model databaseM;
Output: Optimal weights combinations for all classes inM;
(1) Initialize a population of particles with random positions and velocities;
(2) FOR (𝑖 = 1; 𝑖 ≤ 𝑁; 𝑖 + +)
(3) WHILE (𝑡 ≤ 𝑇 ‖ fitness𝑔𝑏𝑒𝑠𝑡 ̸= 1)
(4) FOR (𝑗 = 1; 𝑗 ≤ 𝑃; 𝑗 + +)
(5) FOR (𝑘 = 1; 𝑘 ≤ |𝐶𝑖|; 𝑘 + +)
(6) 𝑞 = 𝑚𝐶𝑖

𝑘
; //the kth model in 𝐶𝑖 is used as query model

(7) FOR (𝑙 = 1; 𝑙 ≤ |𝑀|; 𝑙 + +)
(8) 𝑑𝑙 = exp(𝑥𝑝𝑗1 ) × 𝐿1(ℎ𝑓𝑞 , ℎ𝑓𝑚𝑙 ) + exp(𝑥𝑝𝑗2 ) × 𝐿1(ℎ𝑒𝑞, ℎ𝑒𝑚𝑙 ) + exp(𝑥𝑝𝑗3 ) × 𝐿1(ℎ𝑐𝑞, ℎ𝑐𝑚𝑙 );
(9) End FOR
(11) 𝑅𝑘 = Ascending (𝑑1, 𝑑2, . . . , 𝑑|𝑀|−1);
(12) End FOR
(13) fitness𝑡𝑝𝑗 = ∑|𝐶𝑖 |

𝑘=1
FT(𝑅𝑘)/|𝐶𝑖|;

(14) IF (fitness𝑡𝑝𝑗 > fitness𝑝best𝑝𝑗 )

(15) {𝑥𝑝best𝑃𝑗1 , 𝑥𝑝best𝑃𝑗2 , 𝑥𝑝best𝑃𝑗3 } = {𝑥𝑃𝑗1 , 𝑥𝑃𝑗2 , 𝑥𝑃𝑗3 };
(16) fitness𝑝best𝑝𝑗 = fitness𝑡𝑃𝑗 ;
(17) End IF
(18) IF (fitness𝑡𝑝𝑗 > fitness𝑔best)
(19) {𝑥𝑔best1 , 𝑥𝑔best2 , 𝑥𝑔best3 } = {𝑥𝑃𝑗1 , 𝑥𝑃𝑗2 , 𝑥𝑃𝑗3 };
(20) fitness𝑔best = fitness𝑡𝑃𝑗 ;
(21) End IF
(22) End FOR
(23) t++;
(24) Update all particles according to Equation (10) and Equation (11);
(25) EndWHILE
(26) Output {𝑥𝑔best1 , 𝑥𝑔best2 , 𝑥𝑔best3 } as optimal weights combination for 𝐶𝑖;
(27) End FOR

Algorithm 1: Search optimal weighs combinations.

Query model q
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Train set VSC
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result to user
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Figure 2: The process of the proposed algorithm VSC WCO.
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Figure 3: Example views of 3D models in ESB, PSB, and NTU.

(i) D2: a classic shape-based retrieval method and the
most related method of VSC. We implemented D2
based on the original paper [14].

(ii) LF: a typical view-based retrieval method, which per-
formed well on ESB [3]. We performed experiments
based on their provided execution files [2].

(iii) ZFDR: a state-of-the-art hybrid retrieval algorithm,
which integrates a 3D model’s both visual and geo-
metric information from different aspects. For the
retrieval performance of ZFDR on ESB, PSB, and
NTU, we refer to [25].

(iv) PANORAMA: a state-of-the-art hybrid retrieval algo-
rithm, which utilizes a set of panoramic views.
According to Li and Johan [25], PANORAMA is
arguably the best retrieval method reported to date.
For the retrieval performance of PANORAMA on
ESB, PSB, and NTU, we refer to [22, 25].

4.3. Experiments Results and Analysis. In our experiments,
every model in Test set is used as query model and to avoid
bias we exclude this model from Test set when computing
the VSC distance. Figures 4 and 5 and Table 2 compare the
performance of our VSC WCO algorithm and the above-
mentioned four methods. To evaluate the effectiveness of
WCO, for comparison, we also list the performances when
using only theVSC shape descriptor. As can be seen in Figures
4 and 5 and Table 2, firstly, our shape descriptor VSC is better
than D2 and comparable to LF with lower computational
complexity. Secondly, after applying the WCO, VSC WCO
achieves significantly better performance than VSC. On
ESB, VSC WCO exceeds VSC in NN, FT, ST, and DCG by
2.4%, 13.4%, 12.2%, and 6.1%. On PSB, those metrics were

Table 2: Performance comparison: retrieval performance metrics
of VSC, VSC WCO, D2, LF, ZFDR, and PANORAMA on ESB, PSB,
and NTU databases.

Database Methods NN FT ST DCG

ESB

PANORAMA 0.86 0.49 0.64 0.79
ZFDR 0.84 0.47 0.61 0.77

VSC WCO 0.84 0.51 0.58 0.81
VSC 0.82 0.40 0.48 0.76
LF 0.82 0.41 0.54 0.75
D2 0.73 0.27 0.37 0.70

PSB

PANORAMA 0.75 0.48 0.60 —
ZFDR 0.70 0.44 0.55 0.70

VSC WCO 0.69 0.42 0.54 0.72
VSC 0.67 0.36 0.47 0.62
LF 0.66 0.38 0.49 0.63

NTU

PANORAMA 0.80 0.49 0.61 0.76
ZFDR 0.75 0.45 0.58 0.73

VSC WCO 0.67 0.43 0.54 0.69
VSC 0.65 0.37 0.46 0.61
LF 0.61 0.34 0.42 0.55

increased by 2.9%, 16.7%, 14.8%, and 16.1%. The correspond-
ing increments are 3.1%, 16.2%, 17.4%, and 13.1% on NTU.
This increase indicates that fixed weights combination for
VSC distance computation is not suitable for all querymodels
and the optimal weights combinations produced byWCO are
useful to improve the retrieval performance of VSC. Finally,
the performance of VSC WCO is substantially the same
as that achieved by the state-of-the-art algorithms, such as
PANORAMA and ZFDR. Furthermore, the average retrieval
time of VSC WCO on ESB, PSB, and NTU database are less
than the latter. Table 3 lists the timings of VSC WCO on
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Table 3: Run time information of VSC WCO on ESB, PSB, and
NTU.

Database t1 t2 t3
ESB 0.293 0.016 0.017
PSB 0.364 0.034 0.038
NTU 0.416 0.001 0.001

ESB, PSB, and NTU databases. In Table 3, 𝑡1 denotes the time
consumption of VSC extraction of query model; 𝑡2 denotes
the time consumption of finding the most similar class of
querymodel in Train set; 𝑡3 is time consumption of searching
similar models in Test set. On a common configuration
computer (CPU: Intel Pentium Dual-Core E5400@2.7GHz;
memory: 2.0GB), the average retrieval time of VSC WCO
is less than 0.5 s which enables real-time retrieval from large
repositories. This is a significant advantage of the VSC WCO
as it can be rendered more efficient by reducing its storage
requirements and time complexity. Altogether, VSC WCO
has considerable retrieval performance and is very efficient
in computation and comparison time.

In Table 4, we provide a few examples of queries and
the retrieved results to first 8 retrieval models from the ESB
database using D2, VSC, and VSC WCO. As illustrated in
Table 4, the performance of VSC WCO is better than VSC
and D2 in terms of both quantity and rankings of relevant
models.

4.4. Limitations. Our 3D CAD model retrieval algorithm
VSC WCOhas achieved good performance on ESB database.
However, there are still some limitations. Firstly, since the
class information of 3Dmodel database is a key condition for
the proposed Weights Combination Optimization method
WCO, VSC WCO only can be used to the already classified
3D model database. Secondly, the optimal weights combina-
tion to a query model q is determined by the most similar
class of q; therefore, if the most similar class is not the target
class, then our method VSC WCO will fail to get the right
models.

5. Conclusions and Future Work

In this paper, to improve the retrieval efficiency for 3D CAD
models in a classified 3D model database, we have proposed
a 3D model retrieval method called VSC WCO which is
based on the proposed 3D shape descriptor VSC andWeights
Combination Optimization scheme WCO. VSC descriptor
represents a 3D model with three distance histograms which
is computed by vertices classification based onTensorTheory.
WCO utilizes the existing class information and Particle
Swarm Optimization (PSO) to search optimal weights com-
binations for all classes. The retrieval experiments are con-
ducted on Engineering Shape Benchmark (ESB). We equally
divide the ESB database into two parts, one is used as Train
set for WCO to compute the optimal weights combinations
for every class in ESB, and the other one is used as Test set for
retrieval experiment. Several metrics are selected to evaluate
the retrieval capacity of our algorithm. Retrieval results on
ESB demonstrated that (1) the retrieval performance of the

proposed 3D shape descriptor VSC is much better than
shape-based descriptor D2 and comparable to view-based
descriptor Light Field with lower computational complex-
ity and, (2) after WCO is employed, the performance of
VSC WCO is close to the state-of-the-art algorithms, such as
PANORAMA and ZFDR. Furthermore, the average retrieval
time of VSC WCO on ESB database is much lower than the
latter.

Further research will focus on the following aspects: (1)
in order to improve the accuracy of the most similar class of
querymodel, we need to enhance the discrimination capacity
of proposed shape descriptor VSC; (2) develop a 3D model
clustering algorithm for applying our method VSC WCO on
unclassified 3D model databases.

Notations

𝑀: Classified 3D models database
which has several classes|𝑀|: Number of models in𝑀𝑁: Number of classes in𝑀𝐶𝑖: The 𝑖th class of𝑀|𝐶𝑖|: Number of models in 𝐶𝑖𝑚𝐶𝑖

𝑘
: The 𝑘th model of 𝐶𝑖𝑃: Number of particles in PSO𝑃𝑗: The 𝑗th particle of PSO𝑄: Query model𝑑𝑙: VSC distance between 𝑞 and𝑚𝑙

Ascending(𝑑1, 𝑑2, . . . , 𝑑|𝑀|−1): Sort all the models in𝑀 in
ascending order based on VSC
distances𝑅𝑘: Retrieval result when𝑚𝐶𝑖

𝑘
is used

as query model

𝑇: Maximum number of
iterations𝑡: Current number of iterations

fitness𝑡𝑝𝑗 : Fitness of 𝑃𝑗 in the 𝑡th
iteration

FT(𝑅𝑘): Retrieval performance of 𝑃𝑗
when𝑚𝐶𝑖

𝑘
is used as query

model, measured by metrics
First Tier which is expressed
as (13)𝑝best𝑃𝑗 : The best position achieved by𝑃𝑗 so far

{𝑥𝑝best𝑃𝑗1 , 𝑥𝑝best𝑃𝑗2 , 𝑥𝑝best𝑃𝑗3 }: Three components of𝑝best𝑃𝑗 ’s position
fitness𝑝best𝑝𝑗 : Fitness of 𝑝best𝑃𝑗𝑔best: The best position achieved by

any particle so far{𝑥𝑔best1 , 𝑥𝑔best2 , 𝑥𝑔best3 }: Three components of 𝑔best’s
position

fitness𝑔best: Fitness of 𝑔best.
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Table 4: Some retrieval examples on ESB database using D2, VSC, and VSC WCO.

Query
model Method First 8 similar models

1 2 3 4 5 6 7 8

D2

VSC

VSC WCO

D2

VSC

VSC WCO

D2

VSC

VSC WCO
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