Hindawi

Mathematical Problems in Engineering
Volume 2017, Article ID 6263726, 10 pages
https://doi.org/10.1155/2017/6263726

Research Article

Hindawi

Predicting Real-Time Crash Risk for Urban

Expressways in China

Miaomiao Liu"? and Yongsheng Chen'

'Research Institute of Highway, Ministry of Transport, 8 Xitucheng Road, Haidian District, Beijing 100088, China
2School of Transportation Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China

Correspondence should be addressed to Miaomiao Liu; liumiao-0605@163.com

Received 24 August 2016; Revised 18 November 2016; Accepted 30 November 2016; Published 30 January 2017

Academic Editor: Gennaro N. Bifulco

Copyright © 2017 Miaomiao Liu and Yongsheng Chen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We developed a real-time crash risk prediction model for urban expressways in China in this study. About two-year crash data and
their matching traffic sensor data from the Beijing section of Jingha expressway were utilized for this research. The traffic data in six
5-minute intervals between 0 and 30 minutes prior to crash occurrence was extracted, respectively. To obtain the appropriate data
training period, the data (in each 5-minute interval) during six different periods was collected as training data, respectively, and
the crash risk value under different data conditions was defined. Then we proposed a new real-time crash risk prediction model
using decision tree method and adaptive neural network fuzzy inference system (ANFIS). By comparing several real-time crash risk
prediction methods, it was found that our proposed method had higher precision than others. And the training error and testing
error were minimum (0.280 and 0.291, resp.) when the data during 0 to 30 minutes prior to crash occurrence was collected and the
decision tree-ANFIS method was applied to train and establish the real-time crash risk prediction model. The prediction accuracy

of the crash occurrence could reach 65% when 0.60 was considered as the crash prediction threshold.

1. Introduction

Because of the rapid increase of traffic flow and frequent crash
occurrence, traffic safety has become a severe problem for
rural roads and urban expressways in China [1]. Modeling
real-time crash risk prediction is an important approach to
identifying traffic condition causing crash, which can be used
in the active traffic management control to reduce traffic
accidents and ensure traffic safety. In China, due to the lack of
traffic flow detection devices in rural roadways, it is difficult to
collect real-time traffic flow data and predict real-time crash
risk for these roads. For most of urban expressways in China,
traffic detection devices, such as loop detector, microwave
sensor, and video detection system, have been well installed.
This makes it easier to detect and extract the traffic flow data.
Thus, in this study, we mainly focused on urban expressways
in China and established the real-time crash risk prediction
model for these roads.

Recently, many researchers have analyzed the interrela-
tionship between crash and traffic flow variables using loop

detector data or microwave sensor data, and almost all of
them emphasized that certain traffic conditions could be
associated with high crash likelihood.

In 2001, Oh et al. [2] established the first real-time crash
prediction model where they divided traffic dynamics into
two conditions: normal and disruptive. Then they applied
Bayesian model to assess the likelihood of future traffic flow
data falling into these two conditions. In 2005, Oh et al. [3]
analyzed 52 crash data variables and corresponding traffic
data from loop detectors and identified the real-time crash
likelihood by using nonparametric Bayesian approach. These
two studies of Oh et al. identified standard deviation of speed
to be the most significant variable. In the later study [4],
Oh et al. applied Probabilistic Neural Network (PNN) and
employed t-test on the mean and deviation of three variables,
occupancy, flow, and speed, to identify the crash indicator.
The results showed that the standard deviation of speed as
well as the average occupancy could be considered as the
predictors. Then the new real-time crash prediction model
was established by randomly selecting 30 crash data variables


https://doi.org/10.1155/2017/6263726

from their sample and testing their outcome and repeating
the process for 30 times. The threshold value and the accurate
prediction rate were, respectively, 38.2% and 44.9%.

In 2002, Lee et al. [5] pointed out the potential of real-
time crash prediction to be applied as a proactive road safety
management system and used a log-linear model to estimate
crash risks based on real-time traffic flow data collected
from freeway loop detector stations. They introduced a new
concept called crash precursors, which was defined as traffic
conditions that exist before the occurrence of a crash. Then
Lee et al. [6] basically reduced the number of assumptions
they made in the first study to make it more acceptable.
It was concluded that the coeflicient of variation in speed,
traffic density, and speed difference between upstream and
downstream loop detector stations were significantly corre-
lated with the crash risk. In the later study, Lee et al. selected
speed variations along a lane, traffic queue, and traffic density
at given road geometry, weather condition, and time of the
day as predictors and applied aggregated first-order log-
linear model to predict crash. The developed model was not
validated with another dataset and the prediction success was
represented with the overall model fit, statistical significance
of the coefficients, and the consistency of the coefficients with
the order of levels of crash precursors.

In 2004, Abdel-Aty and Pande [7] used a sample size of
148 crashes, of which 100 were used to generate the model
and the remaining 48 were used for validation. They used
the concept of logistic regression and odds ratio to develop
anew index called Hazard ratio, which essentially represents
the factor with which the risk of observing a crash in the
vicinity of the station of the crash will increase with unit
increase in the corresponding risk factor (here, the predictors
of crash). Lastly, they used Probabilistic Neural Network
(PNN) to distinguish between crash and noncrash situation.
They found the coeflicient of variation in the speed obtained
from the station near the crash and two stations immediately
preceding in the upstream direction prior to crash to be the
most suitable predictors. Although their study produced by
far the best results to predict crashes, the overall classification,
that is, for both crash and noncrash situations together, was
poor (62%). In a later study, Abdel-Aty and Abdalla [8]
used Generalized Estimating Equation method where they
included road geometry as variables as well. The study found
that high variability in speed for a period of 15 minutes
for a specific location increases the likelihood of crash and,
also, low variability in volume over 15 minutes at a given
location increases the crash likelihood in the downstream.
In addition, Abdel-Aty et al. [9] used matched case-control
logistic regression to analyze the relationship between crash
likelihood and real-time traffic flow characteristics. The
analysis results showed that the most significant factors
influencing the likelihood of crash occurrence were average
occupancy observed at the upstream station and coeflicient of
variation in speed at the downstream station. In 2005, Abdel-
Aty and Pande [10] collected the multiple speed derivatives,
including the logarithms of the coefficient of the variation
in speed for both crash and noncrash conditions. Then
they applied a Bayesian classifier based methodology, the
Probabilistic Neural Network (PNN) model, to predict crash
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occurrences on freeways and classify the collected data as
belonging to either crashes or no-crashes. Pande and Abdel-
Aty [11] collected the traffic surveillance data from a pair of
dual loop detectors and developed a crash risk prediction
model by using the classification tree and neural network.
They found that, based on this model, the hazardous traffic
conditions prone to lane-change related collisions could be
identified.

Recently, Hossain and Muromachi [12] divided express-
ways into several segments (basic freeway, upstream and
downstream of exits, and entrance ramps) and developed
separate crash risk prediction models for different segments
based on advanced ensemble learning methods such as
random forest and classification and regression trees. The
results showed that the contributing factors to crash risk
were quite different for different road segments. In 2012,
Xu et al. [13] conducted a K-means clustering analysis
to classify traffic flow into five different states. Then they
developed conditional logistic regression models to analyze
the relationship between crash risks and traffic states on
freeways. The results demonstrated that each traffic state
could be assigned with a certain safety level and the effects
of traffic flow characteristics on crash risks were different for
different traffic states.

The primary objective of this study is to divide freeway
traffic flow into different states and to evaluate the safety
performance associated with each state. Using traffic flow
data and crash data collected from a northbound segment
of the I-880 freeway in the state of California, United States,
K-means clustering analysis was conducted to classify traffic
flow into five different states. Conditional logistic regression
models using case-controlled data were then developed to
study the relationship between crash risks and traffic states.
Traffic flow characteristics in each traffic state were compared
to identify the underlying phenomena that made certain
traffic states more hazardous than others. Crash risk models
were also developed for different traffic states to identify
how traffic flow characteristics such as speed and speed
variance affected crash risks in different traffic states. The
findings of this study demonstrate that the operations of
freeway traffic can be divided into different states using traffic
occupancy measured from nearby loop detector stations,
and each traffic state can be assigned with a certain safety
level. The impacts of traffic flow parameters on crash risks
are different across different traffic flow states. A method
based on discriminant analysis was further developed to
identify traffic states given real-time freeway traffic flow data.
Validation results showed that the method was of reasonably
high accuracy for identifying freeway traffic states.

In 2013, Hosseinpour et al. [14] used adaptive neuro-
fuzzy inference system (ANFIS) for modeling traffic accidents
as a function of road and roadside characteristics. Then
the ANFIS model was compared with the Poisson, negative
binomial, and nonlinear exponential regression models. The
results showed that road width, shoulder width, land use,
and access points significantly affected accident frequencies
and the proposed ANFIS model had higher prediction
performance than the other three traditional models. Then,
Xuetal. [15] applied random parameters logistic regression to
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develop a real-time crash risk model and Bayesian inference
based on Markov chain Monte Carlo simulations was used for
model estimation. The parameters of traffic flow variables in
the model were allowed to vary across different traffic states.
Compared with the standard logistic regression model, the
proposed model significantly improved the goodness-of-fit
and predictive performance. In addition, Xu and Qu [16]
also showed and analyzed some basic descriptive statistics
of TTC (time to collision) samples, and used T-test to
analyze the effect of road environments, traffic conditions,
and vehicle types on TTC statistically. In 2015, Wang et al.
[17] presented a multilevel Bayesian logistic regression model
for crashes at expressway weaving segments using crash,
geometric, Microwave Vehicle Detection System (MVDS),
and weather data. The results showed that the mainline
speed at the beginning of the weaving segments, the speed
difference between the beginning and the end of weaving
segment, and logarithm of volume had significant impacts
on the crash risk of the following 5-10 minutes for weaving
segments. Sun et al. [18] also utilized Bayesian belief net
to build the real-time crash prediction model for the basic
freeway segments, and predicted the formation probability of
a hazardous traffic condition in 4-9 minutes in a 250-meter-
long freeway road section. The analysis results indicated that
the proposed method could be used for the urban freeway
management departments to understand the risk factors and
take immediate actions in advance to avoid traffic accidents
on the freeway. In 2016, Shi et al. [19] developed a multi-
level Bayesian framework to identify the crash contributing
factors on an urban expressway in the Central Florida area.
Multilevel and random parameters models were constructed
and compared with the negative binomial model under the
Bayesian inference framework. The results showed that the
models with random parameters could achieve the best
model fitting, and lower speed and higher speed variation
could significantly increase the crash likelihood on the urban
expressway.

As mentioned above, the previous studies have compre-
hensively analyzed traffic flow characteristics and crash data,
established various real-time crash risk prediction models
by using different methods, and have made considerable
achievements. However, there were quite few studies to
analyze real-time traffic flow data for urban expressways
in China and establish real-time crash prediction model
applicable to Chinese urban expressways. Thus, in this study,
we attempted to address these issues by developing a real-time
crash risk prediction model with readily available variables
and realize real-time risk assessment for urban expressways
in China.

Based on decision tree method and adaptive neural
network fuzzy inference system (ANFIS), we proposed a new
real-time crash risk prediction model. Then we compared
several other real-time crash risk prediction methods, such
as logistic regression, decision tree, and supported vector
machine (SVM). The manuscript was organized into five
sections. The introductory section has laid out the back-
ground and stated the purpose and objective of the study. Sec-
tion 2 described the activities involving data extraction and
processing. Section 3 defined real-time crash risk, presented

a self-containing introduction to modeling method, and
evaluated the established model by comparing the results of
several other real-time crash risk prediction methods. Sec-
tion 4 discussed the model building and evaluation process
and summarized the salient contributions and findings of the
study along with identifying the limitations and subsequent
future scopes.

2. Data Collection and Preparation

To accomplish the research objective, data were obtained
from a 39.7-kilometer segment on the Jingha Expressway in
Beijing, China. There are 20 microwave detectors and 16 video
detectors stations in upstream and downstream directions
along the selected expressway section with an average spacing
of 1.10 kilometers. The collected traffic flow and crash data was
recorded from January, 2013, to October, 2014. A total of 123
crashes were identified and used in the study.

The traffic data were obtained from Huabei Expressway
Corporation, LTD. The average speed, volume, and occu-
pancy in 30-second aggregation intervals were collected in
each lane. The 30-second raw detector readings from the
upstream station were aggregated into 5-minute intervals
and converted into the 9 traffic flow variables presented in
Notations. The variables in Notations consist of five-minute
observations. To identify hazardous traffic condition and
make preemptive measures possible [10, 12], we extracted
traffic data from the upstream station in six 5-minute inter-
vals between 0 and 30 minutes prior to crash occurrence. For
example, if a crash occurred at 8:00 am, the traffic data were
extracted from 7:30 to 8:00 am, and six five-minute intervals
were 7:30-7:35 am, 7:35-7:40 am, 7:40-7:45 am, 7:45-7:50
am, 7:50-7:55 am, and 7:55-8:00 am, respectively. For each
crash in the dataset, the researchers selected two 30-minute
traffic data (six five-minute intervals) without crashes from
the crash-free days during the same period. These intervals
were supplemented with the 9 traffic data variables to form
crash-free observations.

3. Methodology

3.1. Defining Real-Time Crash Risk. To obtain the appropriate
data training period, the data (in each 5-minute interval)
during six different periods (including 0 to 5 minutes, 0
to 10 minutes, 0 to 15 minutes, 0 to 20 minutes, 0 to 25
minutes, and 0 to 30 minutes prior to crash occurrence) was
collected as training data, respectively, and the crash risk
value under different data conditions was defined. In this
study, we assumed that the closer to the crash occurrence,
the higher the crash risk, and the crash risk value revealed
a linear decreasing trend from the first 5-minute interval
prior to crash occurrence to the last interval. In addition,
we considered that the crash risk value in the first and the
last 5-minute interval prior to crash occurrence was 1 and 0,
respectively.

That is to say, if we extracted traffic data (in each 5-minute
interval) during 0 to 5 minutes prior to crash occurrence
(i.e., the first 5-minute interval prior to crash occurrence) as
training data, the crash risk for a crash case in this period



could be considered as 1 and the crash risk for a noncrash
case could be considered as 0.

If we extracted traffic data during 0 to 10 minutes prior
to crash occurrence (i.e., the first and the second 5-minute
intervals prior to crash occurrence) as training data, the crash
risk for a crash case in this period could be considered as
1 and 0 during the first and the second 5-minute intervals
prior to crash occurrence, respectively, and the crash risk for
a noncrash case could be considered as “0” for the two 5-
minute intervals.

If we extracted traffic data during 0 to 15 minutes prior
to crash occurrence (i.e., the first and the third 5-minute
intervals prior to crash occurrence) as training data, the crash
risk for a crash case in this period could be considered as
1, 1/2, and 0 during the first to the third 5-minute intervals,
respectively, and the crash risk for a noncrash case could be
considered as 0 for the three 5-minute intervals.

If we extracted traffic data during 0 to 20 minutes prior
to crash occurrence (i.e., the first and the fourth 5-minute
intervals prior to crash occurrence) as training data, the crash
risk for a crash case in this period could be considered as 1,
2/3,1/3,and 0 during the first to the fourth 5-minute intervals,
respectively, and the crash risk for a noncrash case could be
considered as 0 for all the four 5-minute intervals.

If we extracted traffic data during 0 to 25 minutes prior to
crash occurrence (i.e., the first and the fifth 5-minute intervals
prior to crash occurrence) as training data, the crash risk
for a crash case in this period could be considered as 1, 3/4,
1/2,1/4, and 0 during the first to the fifth 5-minute intervals,
respectively, and the crash risk for a noncrash case could be
considered as 0 for all the five 5-minute intervals.

If we extracted traffic data during 0 to 30 minutes prior
to crash occurrence (i.e., the first and the sixth 5-minute
intervals prior to crash occurrence) as training data, the crash
risk for a crash case in this period could be considered as 1,
4/5, 3/5, 2/5, 1/5, and 0 during the first to the sixth 5-minute
intervals, respectively, and the crash risk for a noncrash case
could be considered as 0 for all the six 5-minute intervals.

3.2. Modeling Method

3.2.1. Identifying Main Factors Influencing the Crash Risk
Based on Decision Tree Method. To identify the most impor-
tant variables influencing real-time crash risk, decision tree
method was used to analyze the relationship between traffic
variables and real-time crash risk. Decision trees or clas-
sification trees are among the popular statistical tools that
emerged from the field of machine learning and data min-
ing. Classification trees classify observations by recursively
partitioning the predictor space. The resultant model can be
expressed as a hierarchical tree structure. Especially since
the introduction of the classification and regression trees
(CART) [20], decision trees have received wide use in a
variety of fields because of their nonparametric nature and
easy interpretation [21].

In the traffic field, the application of decision trees is also
extensive. For instance, De Ona et al. [22] employed decision
tree method to identify the key factors that affected bus transit
quality of service and to compare the key attributes identified

Mathematical Problems in Engineering

TABLE 1: The main factors influencing the crash risk under different
data training conditions.

Data selection period (prior to
crash occurrence)

The main factors influencing the
crash risk

0 to 5min Favg> ng’ Fvc’ Ovc’ Osd

0 to 10 min Favg’ Fsd’ Fvc’ Ovc’ Osd

0 to 15min Favg> Fi4 Fye» Oy

0 to 20 min Fog Foa» Feor Oaygr Osa> Opes Ve
0 to 25 min Favg> Fsd’ Fvcr Oavg’ Osd’ Ovc

0 to 30 min Favg’ Fig» Fye» Oy

before and after passengers reflect on the main aspects of
the system. Using 2005 to 2006 truck-involved accident data
from national freeways in Taiwan, Chang and Chien [23]
developed a nonparametric decision tree model to establish
the empirical relationship between injury severity outcomes
and driver/vehicle characteristics, highway geometric vari-
ables, environmental characteristics, and accident variables.
In this study, we chose decision tree method to analyze the
main factors that affected real-time crash risk. SPSS software
package (version 13.0; SPSS Inc., Chicago, IL, USA) was used
to conduct decision tree analyses. Then we considered all
of the variables in Notations as input parameters and took
the crash risk value (as defined in Section 3.1) as the output
parameter. Because the CART method could avoid overfitting
the model by “pruning the tree,” all decision trees in this
study were developed based on the CART approach. The Gini
criterion was used as a measure of split criteria. All trees were
trimmed automatically to the smallest subtree based on one
standard error as the specified maximum difference in risk.
Since the data size is not very large, the minimum number
of cases for parent nodes was set as 10 and the minimum
number of cases for child nodes was set as 3. By using SPSS,
we could obtain hierarchical tree structures, as shown in
Figure 1, and find out the main factors influencing the crash
risk. Table 1 shows the main factors influencing the crash risk
under different data training conditions (as shown in Table 1).
For detailed structure of decision tree, see De Ofia et al. [22].

3.2.2. Establishing the Real-Time Crash Risk Prediction Model
Based on ANFIS. Generally speaking, real-time crash risk
exhibits nonlinear characteristics because of the effects of
various factors. It is difficult to describe the real-time crash
risk using one particular formula. Previous studies have
demonstrated the general use of neural networks in nonlinear
mapping, reasoning, and prediction [24]. However, a neural
network has one disadvantage; that is, we cannot effectively
obtain the implicit rules in a network structure. For a fuzzy
logic system, it can be used to model human perception
in an uncertain and imprecise environment. However, the
fuzzy logic system is more complex; thus, it is difficult for
the human brain to understand the causality existing in such
system [25]. According to recent literature [26], an adaptive
neuro-fuzzy inference system (ANFIS) is a combination
of neural network and fuzzy logic approaches; hence, it
inherently has the advantages of both, such as having a good
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FIGURE 1: Decision tree result based on the data during 0 to 5 min prior to crash occurrence.
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learning mechanism and reasoning capability. Accordingly,
we can adopt ANFIS to model the real-time crash prediction
for urban expressway in China.

In general, ANFIS has a six-layer feedforward neural
network structure. Figure 2 shows the ANFIS structure for
a model with » inputs: x;,x,,...,x, and one output: P.
Explanation of each layer is as follows.

Layer 1 is the input layer. Neurons in layer 1 pass the
input signals to layer 2. Layer 2 is the fuzzification layer. In
this layer, the input variables can be divided into linguistic
variables. Layer 3 is called the rule layer. A corresponding
Sugeno-type fuzzy rule exists in each neuron in this layer.
Layer 4 is the normalization layer. Each neuron in layer 4
accepts inputs from all neurons in layer 3 and figures out the
normalized firing strength (i.e., the ratio of the firing strength
of a given rule to the sum of firing strengths of all rules). Layer
5 is called the defuzzification layer. The weighted consequent
value is determined for a given rule in the processing of the
defuzzification. Layer 6 is the output layer. The overall output
P can be determined by summing all the outputs from layer
5. For detailed structure of ANFIS, see Jang et al. [27].

To obtain the more accurate real-time crash risk predic-
tion model, we used the main factors influencing the crash
risk as the input variables (as shown in Table 1) and the
crash risk as the output variable to train ANFIS of real-time
crash risk in this study. All the input variables were fuzzy
variables, which should be described and measured using
linguistic rather than precise numerical values [26]. In this
study, each input variable was divided into the following
linguistic variables: negative big (NB), negative small (NS),
zero (ZO), positive small (PS), and positive big (PB). The
membership functions of all the input variables were initially
supplied exogenously. The output variable was the value of
real-time crash risk.

Then we used the fuzzy logic toolbox in MATLAB to
develop and test the real-time crash risk prediction models
under five different data training conditions. The specific
steps were described as follows.

Step 1. Generate and input training and testing data. We
chose 103 crash cases and 206 noncrash cases as training

samples for this study. The parameter data obtained from
the other 20 crash cases and 40 noncrash cases were used as
testing data.

Step 2. Identify the type of membership functions. In this
study, a Gaussian membership function was selected to
fuzzify all the input variables.

Step 3. Use the “genfis]” function to generate the original
fuzzy inference structure (FIS).

Step 4. Set the training parameters of ANFIS.
Step 5. Use the “anfis” function to train ANFIS.

Step 6. Use the “evalfis” function to test the obtained perfor-
mance of FIS.

Step 7. Determine whether the model simulation results meet
the requirements. If yes, the established model is the real-
time crash risk prediction model; if no, it is needed to adjust
the parameters of the membership function until the model
simulation to achieve the ideal effect.

3.3. Model Result. According to the method described in
Section Modeling method, we could obtain the input-output
curves and the training step-error curves of the real-time
crash risk prediction model (based on the data during 0 to
5 minutes prior to crash occurrence), as shown in Figures 3
and 4. And the training error could also be calculated from
the MATLAB program.

Similarly, we could obtain all the input-output curves
and the training step-error curves of the real-time crash risk
prediction model under other data selection conditions.

3.4. Model Test

3.4.1. Comparison Analysis. To determine the validity and
accuracy of our model, we selected several other real-time
crash risk prediction methods, including logistic regression,
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FIGURE 4: Training step-error curves of the real-time crash risk
prediction model.

decision tree, and SVM, to establish the real-time crash risk
prediction models and compared the model results. Similarly,
for different methods, the same 103 crash cases and 206
noncrash cases were used as training samples, and the same
20 crash cases and 40 noncrash cases were used as testing
data.

Modeling with Logistic Regression. As we had already sepa-
rated the collected data into two categories (crash data and
noncrash data), we could build a binary logistic regression
model based on that. The crash indicator was 1 if a crash
occurred. If noncrash occurred, the crash indictor was 0. The
probability of a crash (i.e., the crash risk in this study) could
be estimated according to R-package. For detailed instruction
of this method, see [28].

Modeling with Decision Tree. As mentioned above, decision
tree method had been used to analyze the main factors
that affected real-time crash risk in this study. In addition,
decision tree method could also be utilized to establish real-
time crash risk prediction model. Similarly, we considered all
of the variables in Notations as input parameters and took
the crash risk value as the output parameter. And the CART
approach was used to develop decision trees and the Gini
criterion was used as a measure of split criteria. By using SPSS,

we could obtain hierarchical tree structures and save model
parameters and model rules under different data training
conditions. Then model results could be calculated by calling
parameters and rules of the model. For detailed information
about decision tree, see De Ona et al. [22].

Modeling with SVM. Support vector machine (SVM) was
originally designed based on statistical learning theory and
the structural risk minimization. With SVM, we could find
a separating hyperplane by minimizing the distance of mis-
classified points to the decision boundary. The linear kernel
was considered in modeling, and then the SVM models for
predicting real-time crash risk could be established by using
R-package. Detailed instruction of SVM could be seen in [29].

According to the methods above, we could obtain differ-
ent real-time crash risk models. Table 2 shows the errors of
different models under different data training conditions.

Table 2 showed that, in most cases, both training error and
testing error based on our proposed method (decision tree-
ANFIS) were smaller comparing with other methods. And
the training error and testing error were minimum (0.280 and
0.291, resp.) when the data during 0 to 30 minutes prior to
crash occurrence was collected and the decision tree-ANFIS
method was applied to train and establish the real-time crash
risk prediction model. In other words, our proposed method
had higher precision than others in most cases, which might
be more appropriate to predict real-time crash risk for urban
expressways of China.

3.4.2. Prediction Effect. On the basis of our proposed decision
tree-ANFIS model, the predicted crash risk value for the
20 crash and 40 noncrash testing cases could be obtained.
Figure 5 shows the observed and predicted crash risk value
for parts of the testing cases.

It was seen from Figure 5 that, according to our proposed
model, the predicted crash risk value could reflect the change
of the actual crash risk very well, and when the crash risk
value was predicted to reach 0.60, one crash usually occurred.
Thus, we could define the threshold of the real-time crash risk
prediction as 0.60. Once the predicted crash risk was higher
than 0.60, we could consider that a crash would happen. For
the 20 crash testing cases, the testing results showed that,
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TABLE 2: The errors of different models under different data training conditions.

. . . Logistic regression Decision tree SVM Decision tree-ANFIS
Data selection period (prior
to crash occurrence) Training Testing Training Testing Training Testing Training Testing
error error error error error error error error
0 to 5min 0.457 0.462 0.456 0.541 0.450 0.427 0.448 0.466
0 to 10 min 0.462 0.465 0.361 0.485 0.364 0.359 0.361 0.383
0 to 15 min 0.463 0.478 0.320 0.334 0.325 0.322 0.322 0.337
0 to 20 min 0.465 0.459 0.303 0.328 0.314 0.314 0.310 0.313
0 to 25 min 0.466 0.490 0.299 0.307 0.303 0.312 0.303 0.309
0 to 30 min 0.464 0.458 0.292 0.303 0.302 0.302 0.280 0.291
12 crash risk prediction methods (including logistic regression,
1 decision tree, and SVM), we validated that
Q
= 08
z , (1) in most cases, our proposed model had smaller
2 06 training error and testing error than other models; it
g 0.4 indicated that the model we established had higher
© oa precision, which might be more suitable to predict the
’ real-time crash risk on urban expressways in China;

0 n n n n n n 1 1 1
012345678 91011121314151617181920

Case number

—— The observed crash risk value A Crash occurrence

—— The predicted crash risk value

FIGURE 5: The observed and predicted crash risk value for parts of
testing cases.

if we used 0.60 as the crash prediction threshold, 13 crash
cases could be predicted. The prediction accuracy of the crash
occurrence was 65.0%. In addition, for the 40 noncrash cases,
only 3 cases of them were predicted as “crash.” That is, the
false alarm rate for predicting crash occurrence was 7.5%.
However, the higher crash prediction accuracy and operation
efficiency of the proposed model indicated that we could
utilize decision tree-ANFIS method to assess the real-time
crash risk for urban expressways in China.

4. Conclusion

In this study, we aimed to predict real-time crash risk for
urban expressways in China and identify traffic condition
causing crash. Based on decision tree method and ANFIS, we
proposed a new real-time crash risk prediction model. Deci-
sion tree method was used to identify the most important
variables influencing real-time crash risk. ANFIS was applied
to establish the real-time crash risk prediction model.

To obtain the appropriate data training period, the data
(in each 5-minute interval) during six different periods was
collected as training data, respectively, and the crash risk
value under different data conditions was defined. Then we
used decision tree-ANFIS method to establish the real-time
crash risk prediction models under different data training
conditions. By comparing the results of other three real-time

(2) the model error was minimum when the data during
0 to 30 minutes prior to crash occurrence was chosen
and our proposed model was used to establish the
real-time crash risk prediction model;

(3) according to our proposed method, the prediction
accuracy of the crash occurrence could reach 65.0%,
and the false alarm rate was 7.5%;

(4) this study can be applied to monitor real-time traffic
risk on urban expressways in China, forecast the
crash occurrence promptly, and assist traffic control
decisions such as variable speed limit and warning
messages through variable message signs to enhance
safety.

Nevertheless, this study exhibited several limitations. We
did not analyze the influence of geometric design and wea-
ther condition on the real-time crash risk prediction. Further-
more, time related variables were not considered in model-
ing. In our future research, we will examine more urban exp-
ressways to analyze the effects of various factors on real-time
crash risk prediction.

Notations

Variables Considered for the Models

F,yg: Average 30-second vehicle counts at
the upstream station (veh/30s)
F: Standard deviation of 30-second
vehicle counts at the upstream station
(veh/30s)
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F,.: Variation coeflicient of 30-second vehicle
counts at the upstream station (%)
Vivg: Average 30-second speed at the upstream

station (km/h)
V4 Standard deviation of 30-second speed at
the upstream station (km/h)

V.. Variation coeflicient of 30-second speed at
the upstream station (%)
O,yg: Average 30-second occupancy at the

upstream station (%)
O,4: Standard deviation of 30-second
occupancy at the upstream station (%)
Variation coefficient of 30-second
occupancy at the upstream station (%).
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