
Research Article
A Production Planning Model for Make-to-Order Foundry Flow
Shop with Capacity Constraint

Xixing Li,1,2 Shunsheng Guo,1,2 Yi Liu,3 Baigang Du,1,2 and Lei Wang1,2

1Hubei Digital Manufacturing Key Laboratory, Wuhan University of Technology, Wuhan 430070, China
2School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
3School of Mechanical and Electronic Engineering, Wuhan Donghu University, Wuhan 430070, China

Correspondence should be addressed to Shunsheng Guo; guoshunsheng@whut.edu.cn

Received 30 July 2016; Revised 12 October 2016; Accepted 7 November 2016; Published 16 January 2017

Academic Editor: Junqiang Wang

Copyright © 2017 Xixing Li et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The mode of production in the modern manufacturing enterprise mainly prefers to MTO (Make-to-Order); how to reasonably
arrange the production plan has become a very common and urgent problem for enterprises’managers to improve inner production
reformation in the competitive market environment. In this paper, a mathematical model of production planning is proposed to
maximize the profit with capacity constraint. Four kinds of cost factors (material cost, process cost, delay cost, and facility occupy
cost) are considered in the proposedmodel. Different factors not only result in different profit but also result in different satisfaction
degrees of customers. Particularly, the delay cost and facility occupy cost cannot reach the minimum at the same time; the two
objectives are interactional. This paper presents a mathematical model based on the actual production process of a foundry flow
shop. An improved genetic algorithm (IGA) is proposed to solve the biobjective problem of the model. Also, the gene encoding
and decoding, the definition of fitness function, and genetic operators have been illustrated. In addition, the proposed algorithm is
used to solve the production planning problem of a foundry flow shop in a casting enterprise. And comparisons with other recently
published algorithms show the efficiency and effectiveness of the proposed algorithm.

1. Introduction

Casting enterprise is a typical enterprise of MTO production;
the requirements of products’ quality and delivery are higher.
The demand quantity prefers single and small batch which
is not conducive to stock-based production, and time limit
of casting enterprise is a long-term problem. Therefore, the
timely delivery rate is generally relatively low inmany casting
enterprises [1]. In order to improve the timely delivery rate, a
research of an actual foundry flow shop has been taken; it is
a medium-sized manufacturing enterprise and the practical
manufacturing process is shown in Figure 1. Casting unit
number is automatically created in the commissioning date
of order by the single assignment program. At the stage of
production preparing, all of the manufacturing tasks can be
divided into single piece production by process route. At
the stage of production planning, the content of the single
piece production will become rich and perfect with the
whole ongoing processes (frommodeling to finished product

storage). If there is a requirement of adding or adjusting
the process of a single piece in the following manufacturing
process, it should be realized in the way of modifying the
corresponding process route ormanufacturing processing. At
the stage of product sales, the life processing of the single
piece is entering end gradually, and it contains two states: one
is “complete,” which means that customers have confirmed
the order and its manufacturing processing life is completed,
and the other one is “waiting for disposal,” which means
that there is some repair or rework of the product and the
manufacturing processing is not completed.

The production process of foundry enterprise is vari-
ous and complex, as well as various physical changes and
chemical changes at the same time [2]. Therefore, reasonable
production planning is the key element of foundry enterprise;
it is not only the main component to ensure the stable
operation of production but also an effective guarantee to
complete production target.The order-driven foundry sector
suffers strong competitive pressure at the regional and global
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Figure 1: Actual manufacturing process.

levels as well as ecological pressure due to high energy
consumption in foundry furnaces [3].More efficientmethods
of elaborating production planning can directly influence
sector competitiveness and energy expenses through the
effective rationing of furnace loads and stock in process levels;
it can effectively reduce energy expenses and direct cost. In
addition, the reduction of stocking process levels can improve
quality and lead time of product. However, the research of
production planning in order-driven foundries has been little
explored [4].

Based on the actual manufacturing process of foundry
flow shop, many factors have to be considered when making
the production planning, such as human resource, facility
resource, technology resource, and capacity resource [5].
Because the important degrees of these factors are different
from each other in different enterprises, in order to sum-
marize the common characteristics of arranging production
planning of foundry enterprise, assume that the aim of
production planning is maximizing the profit in this paper,
which is based on a certain amount of orders with capacity
constraint of processing unit. The remainder of this paper
is organized as follows. In the next section, the relevant lit-
erature related to production planning is reviewed. Problem
description and optimization model are developed in Sec-
tion 3. Section 4 details the proposed improved genetic algo-
rithm. A case analysis and comparison with other algorithms
are illustrated in Section 5. Conclusions are given in Section 6.

2. Literature Review

Production planning problem is a typical optimization prob-
lem, which is an important theoretical significance and
economic interests in foundry industry [6–8].The producing
iron castings problem is the motivation for present work in

foundry enterprise. In recent years, experts and scholars have
put many researches’ focus on the scheduling optimization
algorithm and proposed some effective methods or models,
such as multiobjective evolutionary algorithms [9] (DLP,
Deterministic Linear Programming [10], ACO, Ant Colony
Optimization [11], ABC, Artificial Bee Colony [12], AIA,
Artificial Immune Algorithm [13], UGF, Universal Genera-
tion Function [14], and MIP, Mixed-Integer Programming
[15]) and decision support optimization and simulation (SLP,
System Layout Planning [16], MIND, Method for Analysis of
Industrial Energy Systems [17], M&FS, Mass and Fuzzy Sets
[18], SDST, Spreadsheet Decision Support Tool [19], SDSM,
SchedulingDecision SupportModel [20], TOFPS, Two-phase
Order Fulfillment Planning Structure [21], and ERP&NN,
ERP System including Neural Network [22]).

Gauri [23] demonstrated that the product-mix planning
problem for batches of melt can be modeled mathemati-
cally. Weighted integer goal programming formulations were
developed to determine the optimal product-mix for the
immediate next heat in a small scale iron foundry, which
could be useful for general iron foundries; however, the
presented approach for postoptimality analysis was quite
tedious, so development of a useful algorithm and neces-
sary software was needed for easy postoptimality analysis.
Teixeira Jr. et al. [24] proposed a binary integer model for
production scheduling problems inmarket-driven foundries.
The objective was to minimize the cost of manufactured
products based on balancing and synchronizing themolding,
pouring, and finishing steps, which aimed at eliminating high
stock levels and rationing the use of production resources
and foundry furnaces. Synchronization among the three
production phases directly reduced production cycle time
and indirectly improved the quality of products. Matičević et
al. [25] developed a new mathematical model for scheduling
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foundry operations based on the Manufacturing Resource
Planning, Just in Time, and Optimized Production Technol-
ogy concepts. More recently, Camargo et al. [26] considered
the production planning problem in small foundries and
proposed the heuristic to solve the problem in a hierarchi-
cal way, combined the genetic algorithm with a knapsack
problem algorithm to explore a larger set of alloy sequences,
but did not consider the multiobjective function which could
reduce both waste penalties and costs of setup, inventory, and
backlogging. Gravel et al. [27] presented a genetic algorithm
for the solution of an industrial scheduling problem in an
Alcan aluminum foundry situated in Québec and sought the
best processing sequence for n orders onmparallelmachines.
Gomaa [28] developed a computer aided foundry charge
optimization system which could be used to minimize the
charge materials and energy costs for operating a foundry
melting facility during the intermediate-term and short-
term planning periods (yearly, monthly, or weekly produc-
tion plan). Landmann and Erdmann [29] chose a heuristic
approach to find a solution to the problem, and a fuzzy logic
techniquewas used in a higher level of abstraction originating
from knowledge and experience identified in a qualitative
research.

In these literatures, scholars used different algorithms or
hybrid algorithms to realize production planning problems
optimization for foundry enterprise, but GA is rarely used.
As we know, GA is the most widely used evolutionary
algorithmof production planning problem. It has good global
search capability based on its self-organization, self-adaption,
and self-learning, but it may converge too fast and limit
the search to a local optimum prematurely if there was
no effective method of population initialization. Recently,
more and more papers begin to take research on this topic.
Chang et al. [30] proposed amining gene structure technique
integrated with the two-phase subpopulation GA for parallel
machine scheduling problem, and the mining problem of
elite chromosomes was formulated as a linear assignment
problem and a greedy heuristic using threshold to eliminate
redundant information. Wang and Tang [31] presented an
improved adaptive GA for solving the minimum makespan
problem of production planning, which was inspired by
hormone modulation mechanism, and then the adaptive
crossover probability and adaptive mutation probability were
designed. Kurdi [32] proposed a new hybrid islandmodel GA
to solve the production planning problem with the objective
of makespanminimization, and a new naturally inspired self-
adaptation phase strategy was proposed which was capable
of striking a better balance between diversification and
intensification of the search process; in the proposed self-
adaptation phase strategy, the best individuals were recruited
to perform a local search using Tabu Search. Huang and Süer
[33] proposed a dispatching rule based genetic algorithmwith
fuzzy satisfaction levels to solve the multiobjective manufac-
turing production planning problem, and the objective was
to develop a decision making platform which appropriately
handles conflicts among different performance measures in
a manufacturing system. Rahman et al. [34] considered a
make-to-stock production system, where three related issues
must be considered: the length of a production cycle, the

batch size of each product, and the order of the products in
each cycle. To deal with these tasks, they proposed a genetic
algorithm based lot production planning approach with an
objective of minimizing the sum of the setup and holding
costs for permutation flow shop problems.

While because of the competition environment is becom-
ing more and more fierce, the customers’ demands are
becoming more and more personalized in practical foundry
flow shop, so the profit space of enterprise is becoming
more and more smaller and the production structure is also
changing; the traditional approaches of arranging production
planning could not be effective.The foundry enterprises have
to focus on two aspects: one is on-time delivery date of orders
and the other is higher profit rate of orders. So themotivation
of this research can be concluded as follows:

(1) Usually, themain constraint problems of making pro-
duction planning for most manufacturing enterprises
are human resource, outsourcing resource, manufac-
turing capacity, and so on. In foundry enterprise, the
key constraint problem is the modeling (molding and
core making) and melting capacity of melting pot, so
one motivation is to propose an arranged production
planning model for the order-driven foundry enter-
prise with modeling and melting capacity constraint
of processing unit.

(2) Many useful heuristic algorithms were used to solve
the multiobjective optimization problems, and dif-
ferent algorithms have different advantages of solv-
ing a practical problem. For solving the production
planning problem, GA is the most frequently used
algorithm. So the other motivation is to introduce
an improved GA to solve the proposed production
planning model, and the objective function is to
reduce the total cost of production.

3. Problem Description and
Optimization Model

3.1. ProblemDescription. Customers randomly submit orders
with specific item type, quantity, and alloy.When the produc-
tion planning manager negotiates with the customers about
delivery date, usually it will obtain an unachievable date that
will lead to the delay of delivery and very likely to lose future
orders. While it is the most important point to achieve the
best profit under the condition of satisfying the customers’
demand, the product plan makers have to try their best to cut
down the manufacturing cost (material cost, processing cost,
delay cost, and so on) in maximum extent.

In order to make a feasible production planning which
could meet the resource allocation circumstances at a lowest
cost [33, 34], there are two parameters that must be con-
sidered. One is resource allocation quantity (Raq), which
contains facility resource, human resource, time resource,
and so on.The other one is process route (Pr), which contains
modeling,melting, cleaning, casting separating, welding, and
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so on (the details are illustrated in Table 2). They can be
expressed in the form of vector:

Raq = (𝑅𝑄1, 𝑅𝑄2, 𝑅𝑄3, . . . , 𝑅𝑄𝑝, . . . , 𝑅𝑄𝑠) ,
Pr = (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑖, . . . , 𝑃𝑡) .

(1)

Also, there are some special problems that exist in the
actual manufacturing environment; for example, the produc-
tion capacity of the processing unit will not be changed in a
period of time, a process must be completed in one time, and
the quality of product is usually bigger and not convenient to
transport once the processing is unqualified and there is little
possibility of repair. So, these problems must be taken into
consideration when making the production planning.

3.2. Mathematical Model. According to the above analysis,
the amount of order is fixed before making production
planning, so the profit maximization is often taken as the
optimization goal of making production planning, that is, the
cost minimization. In the actual manufacturing environment
of foundry flow shop, the capacity of processing units is
unchanged in its life period, such as the melting pot; its
volume is fixed, so it is different froma generalmanufacturing
enterprisewhich just only considers the human resource, out-
sourcing resource, and transportation resource whenmaking
production planning. In this paper, an optimizationmodel of
making production planning is constructed, which is based
on the modeling and melting capacity constraint of process-
ing unit; the objective is cost minimization. Before construct-
ing the model, some assumptions are given out as follows:

(1) Make the production planning weekly and the object
is the orders which were signed last week.

(2) The important degrees of customers will not be taken
into account when making the production planning,
and they are just focusing on the component of
product.

(3) The capacity constraint of processing unit is the key
element which has been taken into consideration in
this paper; the human resource constraint will not be
considered.

(4) The processing units must be checked, making sure
that they are good before executing the plan task, and
the breakdown of processing units will not happen
during the whole life of production plan.

(5) Ideally, there is no priority among the orders, and
different orders have different delivery dates.

(6) Thedepreciation cost or consumption cost of process-
ing facility during the whole life of production plan
will not be taken into account.

Before formulating amathematicalmodel of the problem,
the notations used throughout the remainder of this paper are
defined in Notations.

3.2.1. Total ConsumptionCost. Thegoal of resource allocation
is to satisfy the acquirement of production task and decrease

the total consumption cost (𝑇𝐶𝑐) including material cost
(𝑀𝑐), process cost (𝑃𝑐), delay cost (𝐷𝑐), and occupy cost (𝑂𝑐)
of processing unit, and 𝑇𝐶𝑐 can be illustrated as follows:

𝑇𝐶𝑐 = 𝑀𝑐 + 𝑃𝑐 + 𝑂𝑐 + 𝐷𝑐. (2)
In practical manufacturing environment of foundry

enterprises, the demands for raw materials of different order
tasks are the same; in order to reduce the mutual influence
of each order task when arranging the production planning,
the weight value (𝑊𝑖𝑔𝑀, 0 < 𝑊𝑖𝑔𝑀 < 1, ∑𝑡𝑖=1𝑊𝑖𝑔𝑀 = 1)
of 𝑀𝑐𝑖 is introduced when calculating 𝑀𝑐; in the same way,𝑊𝑖𝑔𝑃 (0 < 𝑊𝑖𝑔𝑃 < 1, ∑𝑡𝑖=1𝑊𝑖𝑔𝑃 = 1), 𝑊𝑝𝑔𝑂 (0 < 𝑊𝑝𝑔𝑂 <
1, ∑𝑠𝑝=1𝑊𝑝𝑔𝑂 = 1), and 𝑊𝑖𝑔𝐷 (0 < 𝑊𝑖𝑔𝐷 < 1, ∑𝑡𝑖=1𝑊𝑖𝑔𝐷 = 1)
of 𝑃𝑐𝑖, 𝑂𝑐𝑝, and 𝐷𝑐𝑖 are introduced, so (2) can be reformed
into the following equation:

𝑇𝐶𝑐 = 𝑡∑
𝑖=1

𝑊𝑖𝑔𝑀 ∗ 𝑀𝑐𝑖 +
𝑡∑
𝑖=1

𝑊𝑖𝑔𝑃 ∗ 𝑃𝑐𝑖 +
𝑠∑
𝑝=1

𝑊𝑝𝑔𝑂 ∗ 𝑂𝑐𝑝

+ 𝑡∑
𝑖=1

𝑊𝑖𝑔𝐷 ∗ 𝐷𝑐𝑖.
(3)

As follows, (4) to (8) have illustrated the value of each
variable in (3).

(1) 𝑀𝑐. There are different unit prices of different kinds of
material, so this paper adopts (4) to summarize different
material costs of different production tasks:

𝑀𝑐𝑖 =
𝑘∑
𝑗=1

(𝑀𝑐𝑖𝑗 ∗ 𝜙𝑖) (4)

𝑀𝐶𝑖𝑗 = 𝑊𝑖𝑗 ∗ 𝑅𝑗
𝑅𝑇𝑖 , (5)

where 𝜙𝑖 = {0, 1} and 𝜙𝑖 = 1 represents 𝑃𝑡𝑝 𝑖 containing
material 𝑗; otherwise it does not, for 𝑖 = 1, 2, . . . , 𝑡, 𝑗 =1, 2, . . . , 𝑚.

(2) 𝑃𝑐. There are different unit costs of different kinds
of processes, and different production tasks have different
processes:

𝑃𝑐𝑖 =
𝑚∑
𝑐=1

(𝑃𝑐𝑖𝑐 ∗ 𝜆𝑖) , (6)

where 𝜆𝑖 = {0, 1} and 𝜆𝑖 = 1 represents 𝑃𝑡𝑝 𝑖 containing
procedure c; otherwise it does not, for 𝑖 = 1, 2, . . . , 𝑡, 𝑐 =1, 2, . . . , 𝑚.

(3) 𝑂𝑐. As the same batch of planning must be completed
before entering into next processing unit and the production
times of different plans are different from each other, there
will be some processing units in the state of waiting which
could result in the facility occupy cost:

𝑂𝑐𝑝 = 𝑂𝑝 ∗ 𝑂𝑇𝑝
𝑂𝑇𝑝 =

𝑡∑
𝑖=1

(max (𝑂𝑇𝑃𝑖𝑝) − 𝑂𝑇𝑃𝑖𝑝) . (7)
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(4) 𝐷𝑐. Different kinds of factors will be taken into consider-
ation whenmaking the production plan, so it will delay some
orders’ delivery date and that will also result in the delay cost:

𝐷𝑐𝑖 = 𝐷𝑖 ∗ 𝐷𝑇𝑖,
𝐷𝑖 = ceil(∑𝑚𝑐=1max (𝑇𝑃𝑐) ∗ 𝜆 − ∑𝑚𝑐=1 𝑇𝑃𝑖𝑐 ∗ 𝜆

24 ) , (8)

where ceil(𝑥)means obtaining theminimum integer which is
greater than 𝑥.
3.2.2. Profit of Production Planning. Once all sales orders
have been signed, the total amount (𝑂𝑡) of all orders is
determined which is obtained by (9). In Section 3.2.1, it is
assumed that there are only four kinds of costs which have
been taken into account in this mathematical model, which
are material cost (𝑀𝑐), process cost (𝑃𝑐), delay cost (𝐷𝑐), and
occupy cost (𝑂𝑐), so the profit of all sales orders (𝑃𝑓, that
is, the profit of production planning) is obtained by (10a).
According to (2), (10a) can be reformed into (10b) which is
shown as follows:

𝑂𝑡 = 𝑡∑
𝑖=1

𝑂𝑡𝑖, (9)

𝑃𝑓 = 𝑂𝑡 − 𝑇𝐶𝑐, (10a)

𝑃𝑓 = 𝑂𝑡 − 𝑀𝑐 − 𝑃𝑐 − 𝐷𝑐 − 𝑂𝑐. (10b)

3.2.3. Capacity Constraint. In order to enhance the avail-
ability of the optimization model, there are some constrains
that must be considered. According to the actual situation of
foundry flow shop, the production capacity is determined, so
actual production and processing capacity must be consid-
ered in the process of task arrangement. The volume of the
furnace is certain, so itmust be taken into considerationwhen
modeling (molding and core making) and melting. Equation
(11) is the sumofmodeling quantities (𝑊𝑖) of production tasks𝑖 which should be less than the production capacity of the
processing unit (Cpu-Modeling) when modeling, and (12) is
the sum of demand quantity of material of each production
task which belongs to the same batch should be less than
the production capacity of the processing unit when melting
(Cpu-Melting).

sum (𝑊𝑖) ≤ Cpu-Modeling, (11)

sum (𝑊𝑖𝑗) ≤ Cpu-Melting. (12)

4. Solution Approach

4.1. Improved Genetic Algorithm (IGA). The genetic algo-
rithm is a random global search algorithm which means that
the process of biological evolution in nature and simulation
of the survival of the fittest and also its scalability and
robustness are better than other optimization algorithms,
so it is often used to solve the optimization problem [35–
38]. While traditional genetic algorithm is easy to converge

prematurely and falls into the local optimum, one of the
reasons is that it will cause many disadvantages by using the
roulette method when parent solutions engender offspring
solutions; the main disadvantages could be divided into two
parts [39]:

(1) Some individuals with superior fitness can be evalu-
ated rapidlywhichwill cause the population tomature
early and fall into local optimum.

(2) There is much randomness in the process of evolu-
tion, and the unelected better individuals will cause
the degradation of the population.

In production planning problems of foundry industries,
different scholars have proposed many different approaches
by IGA. Wu et al. [40] tackled the issue by considering a
two-machine flow shop problem with a truncated learning
consideration, where the objective function is to minimize
the makespan, and a branch-and-bound algorithm is first
developed for the approximate optimal solution; then four
genetic heuristic-based algorithms were proposed for the
approximate optimal solution. Bandyopadhyay and Bhat-
tacharya [41] proposed a modified genetic algorithm with a
fuzzy variable crossover algorithm to minimize the value of
total cost and bullwhip effect of a biobjective supplier selec-
tion problem. In comparisonwith amixed-integer linear pro-
gramming solver, genetic algorithm with problem-specific
operators was found to provide faster (with a subquadratic
computational time complexity) and more reliable solutions
to very large (more than 1 million integer variables) casting
sequence optimization problems [42]. Production planning
problem considers the determination of machine assignment
for each operation, which has been proven to a NP-hard
problem, so Thammano and Teekeng [43] proposed a novel
metaheuristic algorithm which was a modification of the
genetic algorithm, and the proposed algorithm introduced
two new concepts to the standard genetic algorithm: (1) fuzzy
roulette wheel selection and (2) the mutation operation with
tabu list. Worapradya and Thanakijkasem [44] developed
an optimization model by integrating two main planning
phases of traditional scheduling, (1) planning cast sequence
and (2) scheduling of steel-making and timing of all jobs;
at the same time a novel procedure was given for genetic
algorithm chromosome coding which mapped Gantt chart
and hierarchical chromosomes.

Production planning based on the resource allocation
belongs to discrete optimization problem; in the space of
discrete solutions, the approximate optimal solution is not
necessary in the range from subapproximate optimal solution
to better solution and maybe there is just a little step
between approximate optimal solution and worst solution.
Therefore, the paper illustrates the IGA from two aspects:
one is adopting different evolution modes for the solutions
with different fitness to ensure the diversity of population
and the other one is selecting different genetic operators in
the different phase of algorithm which can improve adaptive
ability and better approach the approximate optimal solution
in a finite number of iterations.Themain differences between
the IGA and the parallel genetic algorithm (PGA) are iterative
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process and genetic operators: (1) the iterative process of
IGA is the same as the traditional GA which is serial; there
is only one initial population and the evolution process is
continuous from one generation to next generation, while
the iterative process of PGA is parallel and there are at
least two different initial populations at beginning, which
can ensure the populations evolution is in parallel model;
(2) the kind of genetic operators of IGA can be divided
into selection operator, crossover operator, and mutation
operator, while another kind of operator must be introduced
into PGA which is defined as transport operator; it plays a
key role in constructing the communication bridge among
different initial populations; (3) the values of genetic operator
in IGAare alternative in different evolution phases, while they
are always the same in the iterative process of PGA. Moore
[45] has proposed an accurate parallel genetic algorithm
to schedule tasks on a cluster; the key element is that the
parallel scheduler used M-ary encoding and included a
shared communication bus constraint. Ku et al. [46] used
parallel simulated annealing and genetic algorithms based on
a coarse-grained model to derive solutions for solving the
static facility layout problem with rectangle shape areas. The
parallel implementation of simulated annealing based genetic
algorithm enabled a quick search for the approximate optimal
solution. Trajkovski [47] presented parallel genetic algorithm
that was used for the task of evolving imperative sort
programs; the individual programs with simple assembler
code were illustrated and the effect of different parameters
on quality of the programs and time needed for finding the
solution were reported. In conclusion, the flowchart of IGA
is shown in Figure 2 and the details are illustrated as follows.

4.2. Chromosome Encoding. Chromosome encoding refers to
transforming the feasible solution from its solution space to
search space of genetic algorithm; chromosome represents a
possible solution and its coding mode usually can be divided
into four types: binary coding, real coding, symbol coding,
and decimal coding. Taking into consideration the actual
model, this paper adopts the decimal coding and an entire
chromosome coding which contains production task coding,
production task process coding, and material type coding.
The detailed coding scheme is shown in Table 1.

For example, the production planning with chromosome
(PtpC) is {10, 3, 7, 9, 6, 2, 4, 8, 1, 5}, and according to the
capacity constrain of processing unit, the scheduling order is{(Ptp-1,Ptp-7: 1), (Ptp-3,Ptp-6: 2), (Ptp-5,Ptp-9: 3), (Ptp-8: 4),
(Ptp-2, Ptp-10: 5), (Ptp-4: 6)}which can be decoded into {(10,
3: 1), (7: 2), (9, 6, 2: 3), (4, 8: 4), (1: 5), (5: 6)}which is shown in
Figure 3; the meaning of (10, 3: 1) is that the processing order
of Ptp-10 and Ptp-3 is first, and (Ptp-7: 2) means processing
order of Ptp-7 is second; the remainders can be explained in
the same way.

Assume that there are eleven basic processes; that
is, the value of 𝑚 is “11.” If Ptp-i contains process 𝑚
(𝑃𝑚), the decoded corresponding value is “1”; otherwise,
the value is “0”; for example, the processes of Ptp-
10 are 𝑃1, 𝑃2, 𝑃3, 𝑃5, 𝑃6, 𝑃8, 𝑃10, 𝑃11, so the decoded corre-
sponding value of {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6, 𝑃7, 𝑃8, 𝑃9, 𝑃10, 𝑃11} is
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Initialize population
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EndFitness evaluation

Improvement in
multigenerational

iteration
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Crossover operator Pc1

Mutation operator Pm1
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Crossover operator Pc2

Mutation operator Pm2

Y

N

Y

N

Chromosome encoding

Figure 2: The flowchart of IGA.

{1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1}. The material type of Ptp-10 is 𝑀1,
and the decoded corresponding value of material is {1}.
4.3. Initialize Population. Initializing population of genetic
algorithm has a great influence on the convergence speed and
solution quality, and it is a key step in the process of genetic
algorithm.

(1) Diversity of Population.The function Randperm(𝑡) is cited
to initialize population in many cases which can produce
unrepeated set, which is a Matlab Function and is presented
to describe the diversity as follows:

𝑃 = Randperm (𝑡) . (13)

Namely, randomly generate a set of numbers and the
production planning is ranked according to these numbers’
order. For instance, if 𝑡 = 10, while 𝑃 = (10, 3, 7, 9, 6, 2, 4, 8,1, 5), so the order of production task is (Ptp-10, Ptp-3, Ptp-7,
Ptp-9, Ptp-6, Ptp-2, Ptp-4, Ptp-8, Ptp-0, Ptp-5).

Meanwhile, the algorithm will fall into local optimum
because of unreasonable initialization, so the richness of
population diversity must be taken into account during
the chromosomes initialization, and, in order to ensure the
diversity of population, the hamming distance, the adequacy
coefficient, and the index of maximum and minimum level
[48] are proposed to calculate a survival probability for
the individuals; while, in this paper, the hamming distance
is represented by the fitness value of population to solve
the problem of diversity of population, it sets the value
into 5% which is the profit rate of total orders, and the
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Figure 3: The scheduling order.

Table 1: Chromosome encoding.

Number Coding name Coding scheme

1 Production task coding 1, 2, 3, . . . , 𝑡. The number is clustered according to a certain order to form an individual of the
production task.

2 Production task process coding 1, 2, 3, . . . , 𝑚. The number is clustered according to a certain order to form an individual of the
production task process.

3 Material type coding 1, 2, 3, . . . ,𝑀𝑇. The number is clustered according to a certain order to form an individual of the
material type.

4 Decision variables

𝑉1, 𝑉2. The proposed IGA is modified in two aspects: one is introducing two different evolution
phases in the iterative process, and the other one is adopting different genetic operators in

corresponding evolution phase. In order to divide the two different evolution phases clearly and
accurately, the decision variables have been introduced and there are two conditions (𝑉1 and 𝑉2)
for switching two phases. 𝑉1 represents the number of successive generations; 𝑉2 represents the

profit rate of order.

lower individual will be substituted with another random
approximate optimal individual.

(2) Size of Population. In order to avoid the premature conver-
gence and decrease the calculation amount, the population
size cannot be too small or too large, and according to the
actual application, the general population size is set into
different value which is usually between 20 and 100.

4.4. Fitness Evaluation. Fitness function of genetic algorithm
is transformed from the objective function of problems.
The pros and cons of each chromosome quality in genetic
algorithm are evaluated by using fitness function.The greater
fitness value of chromosome is, the better quality of chro-
mosome is. The minimum value (min𝐷𝑂) of total cost of
production planning is obtained by (14). Because the total
amount of all orders (𝑂𝑡) is fixed, in order to standardize

calculation process of IGA, the maximum profit rate of all
orders (max Pr) is defined as the objective of IGA which is
shown as (15):

min𝐷𝑂 = min (𝑇𝐶𝑐)
= min (𝑊𝑔𝑂 ∗ 𝑂𝑐) + min (𝑊𝑔𝐷 ∗ 𝐷𝑐)

+ min (𝑊𝑔𝑀 ∗ 𝑀𝑐) + min (𝑊𝑔𝑃 ∗ 𝑃𝑐) ,
(14)

max𝑃𝑟 = 𝑂𝑡 − min𝐷𝑂
𝑂𝑡 ∗ 100%. (15)

According to the proposed weight values of different factors
in Section 3.1, (15) can be reformed into the following
equation:

max𝑃𝑟 = 𝑂𝑡 − ∑𝑠𝑝=1𝑊𝑝𝑔𝑂 ∗ 𝑂𝑐𝑝 − ∑𝑡𝑖=1𝑊𝑖𝑔𝐷 ∗ 𝐷𝑐𝑖 − ∑𝑡𝑖=1𝑊𝑖𝑔𝑀 ∗ 𝑀𝑐𝑖 − ∑𝑡𝑖=1𝑊𝑖𝑔𝑃 ∗ 𝑃𝑐𝑖
𝑂𝑡 ∗ 100%. (16)

4.5. Two Different Phases. The convergence speed and effi-
ciency of genetic algorithm are affected by the set of genetic
operators (selection operator Ps, crossover operator Pc, and
mutation operator Pm). The set of selection operator has a

great effect on the convergence speed of algorithm, and the
set of crossover operator and mutation operator will affect
the ability of searching solution of algorithm. Therefore, in
order to improve the adjustment ability and performance



8 Mathematical Problems in Engineering

of algorithm [49–51], this paper adopts two different sets of
genetic operators for the different phases of algorithm.

In the first phase, Ps is set to a larger value (0.7 < 𝑃𝑠 <1) and Pc and Pm are set to a relative smaller value. An
approximate optimal solution or a subapproximate optimal
solutionmore easily with larger Pswill be obtained.The value
of Pc and Pm in the first phase of algorithm is relatively
smaller, and the global search ability of algorithm is mainly
affected by Pc and Pm, so when the algorithm is running
in a certain phase, it will search the approximate optimal
solution, repetitively, in a subspace. So the genetic operators
should be adjusted and the genetic algorithm would enter
into the second search phase for eliminating the premature
convergence of search; namely, Ps is set into a smaller value(0 < 𝑃𝑠 < 0.3), and Pc and Pm must be set into a larger
value, which can make more effective solutions involved in
the crossover operator andmutation operator; it will generate
more new solutions.

Based on the changing of approximate optimal solution
and judging rules, the two different search phases will be
adopted in circulation. In the calculating process of one
phase, different operators must satisfy the constraint, which
is formulated in (17). It not only can ensure the diversity of
population but also could avoid falling into local approximate
optimal solution:

𝑃𝑠 + 𝑃𝑐 + 𝑃𝑚
= 1{ Phase 1: 0.7 < 𝑃𝑠 < 1, 0 < 𝑃𝑐 + 𝑃𝑚 ≤ 0.3,

Phase 2: 0 < 𝑃𝑠 < 0.3, 0.3 ≤ 𝑃𝑐 + 𝑃𝑚 ≤ 1.
(17)

4.6. Selection Operator. The stochastic tournament strategy
[52–54] and elite preservation strategy [55–57] are adopted
in this paper of selection operator.The stochastic tournament
strategy is implemented on the whole individuals, randomly
chose a series of individuals, and retained the individual
which has highest fitness to next generation.The elite preser-
vation strategy is implemented on the global approximate
optimal individuals to replace the worst individual in next
generation, and the process can be illustrated as follows:

(1) Selecting 𝑁 individuals from a group randomly and
comparing their fitness value, the individual with
the highest fitness should be retained to the next
generation.

(2) Repeating the above process𝑀 times, as a result, there
will be 𝑀 individuals from next generation.

4.7. Crossover Operator. The main purpose of crossover
operator [58] is to generate better offspring by combining the
genetic alleles of two selected parents from the population
with probability Pc; the crossover position is generated ran-
domly and the crossover progress can be shown in Figure 4
and it can be illustrated as follows.

Firstly, randomly generate the crossover position (here
are two intersections: 7-9-6-2-4, 2-1-8-9-3) for PtpC-1 and
PtpC-2 and keep the middle serial number sequence
unchanged.

10 3 7 9 6 2 4 8 1 5

4 6 2 1 8 9 3 10 5 7

10 5 7 4 6 2 1 8 9 3

8 1 5 10 3 7 9 6 2 4

10 5 7 9 6 2 4 1 8 3

5 10 2 1 8 9 3 7 6 4

8 3 7 9 6 2 4 10 5 1

6 4 2 1 8 9 3 5 10 7

PtpC-1 parent

PtpC-2 parent

PtpC-1 offspring

PtpC-2 offspring

Keep original position

Restart sorting

10 5 7 4 6 2 1 8 9 3
8 1 5 10 3 7 9 6 2 4

Randomly determine
crossover position

and exchange position

Switch the sequence

Figure 4: The crossover operator.

Secondly, record the serial number sequence of PtpC-2
which is starting from the second intersection (10-5-7); when
arriving at the end of the gene, return to the initial position
(4-6-2-1-8-9-3) of a chromosome, and continue to record the
serial number sequence of PtpC-2 until reaching the second
intersection which is called PtpC-2-1 (10-5-7-4-6-2-1-8-9-3);
and in the same way, we can obtain PtpC-1-1 (8-1-5-10-3-7-9-
6-2-4).

Thirdly, switch the sequence of PtpC-1-1 and PtpC-2-1,
and obtain PtpC-1-1 (10-5-7-4-6-2-1-8-9-3) and PtpC-2-1 (8-
1-5-10-3-7-9-6-2-4);

Fourthly, according to the remained middle serial num-
ber sequence of PtpC-1 (7-9-6-2-4), remove the same serial
numbers from PtpC-1-1 (10-5-7-4-6-2-1-8-9-3) and the rest
sequence of PtpC-1-1 is (10-5-1-8-3).

Fifthly, insert the remained middle serial number
sequence of PtpC-1 (7-9-6-2-4) into the rest sequence (10-5-1-
8-3) of PtpC-1-1 and the position of (7-9-6-2-4) is unchanged,
and then we can obtain the PtpC-2 offspring (8-3-7-9-6-2-4-
10-5-1).

Sixthly, in the same way, PtpC-2 offspring (6-4-2-1-8-9-3-
5-10-7) is obtained.

4.8. Mutation Operator. While the selection operator and
crossover operator are the main operators of genetic algo-
rithm, the mutation operator can change the diversity of
the population and generate some useful offspring which
will improve the local search ability of population. This
paper adopts the position variation of the mutation opera-
tor in probability, randomly generating the mutation genes
sequence and then selecting new genes from the related gene
domain [59–61]. In addition, the value of Pm is usually set
value in [0.001, 0.005].
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where o is the number of processing orders;
u is the number of processing units

(a, b): a = 1, 2, . . . , o, b = 1, 2, . . . , u,

Figure 5: Gantt chart of an approximate optimal solution set of Ptp-n order.

4.9. Stopping Rule. Themaximumvalue of the objective func-
tion is difficult to be determined; in order to avoid infinite
loop of algorithm, the appropriate number of iterations needs
to be set as the termination of algorithm, which means that
when the number of iterations (𝐼𝑔𝑒𝑛) is reaching the set value
(max 𝐼𝑔𝑒𝑛), the algorithm stops calculating.

𝐼𝑔𝑒𝑛 > max 𝐼𝑔𝑒𝑛. (18)

5. Illustrative Example and
Performance Analysis

In order to demonstrate the application of the proposed
model and algorithm, the authors investigate the actual
production process of a foundry company in Anhui province
of China. The products of the company are mainly casting
productions according to customers’ demand for the produc-
tion, and it is a typical small- andmedium-sized enterprise of
sand casting production; there are about 400 employees; its
annual output is about 10000 tons and quarterly production
capacity is about 3000 tons. As usual, a completed prod-
uct will undergo many different processes like modeling,
melting, cleaning, dividing, and so on, and as production
capacity of the processing units is different, making a flexible
production plan is very important. During the process of
the algorithm’s implementation, the integer encoding type is
adopted for gene encoding in Tables 2 and 3, and different
processes of different orders are shown in Table 4; from
Process-1 to Process-11 is consistent with the details of process
which are illustrated in Table 2.While themolding and coring
making are different processes, the processing times of them
may be different, but, in the case, the molding and core
making are continuous processes and are done by the same
team, so in order to better achieve the approximate optimal
results, we combined them as one process “modeling.”

5.1. Computational Outcomes. The parameters of proposed
IGA are population size, generation number, selection ratio,

Table 2: The component of actual process parameters and process-
ing unit.

Name Coding 𝑃𝑐𝑖𝑐 (¥) 𝑂𝑘 (¥)
Modeling (molding and core making) 1 40 200
Melting 2 30 150
Cleaning (cleaning and heat
preservation) 3 16 140

Separating (casting separating) 4 28 150
Welding 5 28 200
Tempering (heat treatment) 6 32 180
Descaling 7 33 220
Shot blasting 8 30 160
Polishing 9 35 150
Machining 10 12 200
Delivering (packing and shipping) 11 20 120

crossover ratio, and mutation ratio, which are shown in
Table 5 after running some pilot tests. There are two condi-
tions of switching two phases of genetic algorithm and one of
them must be satisfied:

(1) There are successive same five generation approxi-
mate optimal solutions for the genetic algorithm.

(2) The profit rate of order is less than 5%.

The IGA has been coded in Matlab R2013a and runs on
a 2.6GHz Intel(R) Core(TM) i5-3230M CPU with 4G RAM
in Windows 7 platform. After executing the Matlab codes
with input parameters, an approximate optimal solution set
is {(Ptp-1, Ptp-7: 1), (Ptp-3, Ptp-6: 2), (Ptp-5, Ptp-9: 3), (Ptp-8:
4), (Ptp-2, Ptp-10: 5), (Ptp-4: 6)} which is shown in Figure 5;
the meaning of (Ptp-1, Ptp-7: 1) is that the processing order
of Ptp-1 and Ptp-7 is first, and (Ptp-3, Ptp-6: 2) means that
processing order of Ptp-3 and Ptp-6 is second; the remainders
can be explained in the same way. The profit rate of this
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Table 3:The component production planning information of total amount of the orders, material, unit price of material, casting weight, and
yield of casting.

Ptp-𝑛 Order total
(¥) Material coding Unit price of material

(¥)
Casting weight

(T) Yield of casting Actual input raw material weight
(T)

1 104000 2 1600 20 68% 30
2 114000 1 1500 25 70% 36
3 120600 2 1600 30 68% 45
4 98000 2 1600 32 66% 49
5 120000 2 1600 28 75% 34
6 134400 2 1600 22 71% 31
7 108000 1 1500 34 72% 48
8 124200 2 1600 30 65% 47
9 128900 2 1600 26 62% 42
10 134600 2 1600 27 74% 37

Table 4: The component of production planning’s process.

Ptp-𝑛
1 2 3 4 5 6 7 8 9 10

Process time (hours) of different process

Process-1 36 42 32 24 36 36 48 48 40 25
Process-2 20 22 18 20 15 20 18 22 22 18
Process-3 24 24 48 24 24 24 72 48 24 24
Process-4 16 12 12 14 16 16 14 12 12 10
Process-5 24 24 44 24 44 24 84 84 44 24
Process-6 25 28 32 25 25 30 20 25 25 25
Process-7 0 24 0 20 18 32 0 24 16 14
Process-8 20 14 24 20 20 16 16 22 24 10
Process-9 24 0 20 20 0 18 18 24 24 9
Process-10 100 140 0 120 120 0 0 0 80 200
Process-11 22 28 12 16 20 20 24 24 20 19
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Figure 6: Convergence curves of improved GA (best profit rate is
15.05%).

approximate optimal solution is 15.05% and the convergence
curve is shown in Figure 6; the comparison of signed delivery
date and actual delivery date is illustrated in Table 6.

5.2. Comparison Experiment. To demonstrate the effective-
ness of IGA, the comparison experiment has been carried out
with comparing the obtained results with traditional genetic
algorithm (Matičević et al., 2008 [25]), memetic algorithm

(MA) (Gao et al. 2011 [62]), PGA (Ku et al. 2011 [46]), Iterative
Backward List Scheduling Algorithm (IBLSA) (Jiang et al.
2015 [63]), and Tabu Search (TS) (Costa et al. 2015 [64]). The
results of calculation based on the IGA in 30 calculation times
are shown in Table 7 and the best profit rate is 15.05%. Table 8
presents the compared resultswhich refer to the average profit
rate and best profit rate. It can be observed from Table 8
that the proposed genetic algorithm is significantly better
than the other four compared algorithms. The algorithm
exhibiting the next best performance is TS algorithm, which
clearly performs better than the other three algorithms. At the
same time, the real result from company manager has been
obtained and the value of best profit rate is 9.15%, which is
lower than the results of five optimization algorithms.

The best result of traditional genetic algorithm is 14.45%
and the convergence curve is shown in Figure 7, and the
actual profit rate is 9.15%, which is offered by the company
manager in actualmanufacturing environment. Although the
quality of the final solution obtained for both approaches
is approximately equivalent for profit rate of production
planning which is shown in Table 8, there is a slight difference
among the approximate optimal value returned by them. In a
more precise way, the proposed IGA can find a better solution
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Table 5: The specific parameters.

Phase Population size Generation number Cpu-Modeling (T) Cpu-Melting (T) 𝑃𝑠 𝑃𝑐 𝑃𝑚
1 40 100 80 80 0.85 0.145 0.005
2 40 100 80 80 0.25 0.745 0.005

Table 6: The comparison of delivery dates.

Ptp-𝑛 Ptp-1 Ptp-2 Ptp-3 Ptp-4 Ptp-5 Ptp-6 Ptp-7 Ptp-8 Ptp-9 Ptp-10
Signed delivery date (day) 20 20 24 25 22 26 19 24 25 29
Actual delivery date (day) 19 34 19 38 26 19 19 27 26 34
Delay days (day) −1 14 −5 13 4 −7 0 3 1 7

Table 7: The results of IGA.

Number The approximate optimal solution sets of Ptp-𝑛 Profit rate
1 (7, 1: 1) (2, 6:2) (4: 3) (10: 4) (3, 5: 5) (8: 6) (9: 7) 14.30%
2 (3, 1: 1) (6, 9: 2) (4: 3) (10, 5: 4) (8: 5) (2: 6) (7: 7) 13.12%
3 (1, 3: 1) (5: 2) (7, 6: 3) (2, 10: 4) (4: 5) (9: 6) (8: 7) 12.32%
4 (1, 3: 1) (6, 5: 2) (2: 3) (7: 4) (9: 5) (8: 6) (10: 7) (4: 8) 14.93%
5 (3, 1: 1) (6, 9: 2) (10: 3) (4: 4) (5: 5) (7: 6) (8: 7) (2: 8) 13.41%
6 (7, 1: 1) (2, 6: 2) (5, 3: 3) (9: 4) (8: 5) (4: 6) (10: 7) 11.96%
7 (1, 7: 1) (3, 6: 2) (5, 9: 3) (8: 4) (2, 10: 5) (4: 6) 15.05%
8 (1, 3: 1) (4: 2) (10, 9: 3) (6, 5: 4) (8: 5) (2: 6) (7: 7) 13.12%
9 (1, 3: 1) (9, 6: 2) (4: 3) (10, 5: 4) (7: 5) (8: 6) (2: 7) 13.41%
10 (1, 3: 1) (4: 2) (10, 9: 3) (6, 5: 4) (7: 5) (2: 6) (8: 7) 13.41%
11 (3, 1: 1) (9: 2) (8, 6: 3) (5, 2: 4) (7: 5) (10: 6) (4: 7) 14.39%
12 (3, 1: 1) (8, 6: 2) (2: 3) (7: 4) (5, 9: 5) (4: 6) (10: 7) 14.01%
13 (3, 1: 1) (9, 6: 2) (5: 3) (7: 4) (10: 5) (4: 6) (8: 7) (2: 8) 13.57%
14 (3, 1: 1) (9, 2: 2) (6, 4: 3) (8: 4) (5, 10: 5) (7: 6) 8.06%
15 (3, 1: 1) (6, 2: 2) (9: 3) (8: 4) (4: 5) (10, 5: 6) (7: 7) 12.06%
16 (3, 1: 1) (6, 9: 2) (5: 3) (7: 4) (2: 5) (8: 6) (10: 7) (4: 8) 15.01%
17 (3, 1: 1) (2: 2) (8, 6: 3) (9: 4) (7: 5) (5, 10: 6) (4: 7) 14.43%
18 (3: 1) (8: 2) (2, 1: 3) (6, 4: 4) (10, 5: 5) (9: 6) (7: 7) 9.29%
19 (3, 1: 1) (7, 6: 2) (10: 3) (4: 4) (5: 5) (9, 2: 6) (8: 7) 13.50%
20 (1, 3: 1) (6, 7: 2) (2, 9: 3) (10: 4) (4: 5) (5: 6) (8: 7) 10.79%
21 (3, 1: 1) (8: 2) (9, 6: 3) (5, 10: 4) (4: 5) (2: 6) (7: 7) 14.30%
22 (1, 7: 1) (9, 6: 2) (5, 3: 3) (10: 4) (4: 5) (8: 6) (2: 7) 13.57%
23 (3, 1: 1) (8: 2) (2: 3) (4, 6: 4) (5, 9: 5) (10: 6) (7: 7) 10.41%
24 (1, 3: 1) (10: 2) (4, 6: 3) (5, 2: 4) (7: 5) (9: 6) (8: 7) 14.05%
25 (7, 1: 1) (3, 6: 2) (9, 2: 3) (4: 4) (10, 5: 5) (8: 6) 10.96%
26 (3, 1: 1) (5, 6: 2) (4: 3) (10, 2: 4) (7: 5) (9: 6) (8: 7) 15.01%
27 (7, 1: 1) (6, 3: 2) (10: 3) (4: 4) (5, 9: 5) (8: 6) (2: 7) 13.66%
28 (1, 7: 1) (6, 3: 2) (2: 3) (8: 4) (5, 9: 5) (10: 6) (4: 7) 14.28%
29 (7, 1: 1) (5, 3: 2) (6, 2: 3) (10: 4) (4: 5) (9: 6) (8: 7) 11.32%
30 (7, 1: 1) (2, 6: 2) (4: 3) (10: 4) (3, 5: 5) (8: 6) (9: 7) 11.35%

Table 8: The results comparison.

Algorithms IGA Traditional GA MA PGA IBLSA TS Real result from company
Calculation times 30 30 30 30 30 30 ×
Average profit rate 13.31% 12.93% 13.01% 13.17% 13.12% 13.24% ×
Best profit rate 15.05% 14.45% 14.67% 14.88% 14.76% 14.91% 9.15%
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Figure 7: Convergence curves of traditional GA (best profit rate is
14.45%).

set compared to traditional genetic algorithm and the real
result of companymanager in terms of statistical significance.

According to the results of proposed mathematical
model, the approximate optimal solutions might be varied
to decrease the production cost and the enterprise manager
can select it to arrange production planning in a practice
situation. Furthermore, if the required data is gathered,
the proposed model could be easily coded and applied by
industrial/computer engineer who is familiar with operations
research and optimization software like Matlab. Also, an
expert system with user-friendly interface could be also
designed to facilitate the proposed model by the nonexpert
personnel of the enterprise managers.

6. Conclusion and Future Work

With the changing of product mode of foundry enterprise,
the personalized demands of customers are more and more
obvious and the status of customers is becoming higher.
Almost the whole foundry enterprises are reconstructing the
production structure, so how to reasonably and effectively
arrange the production plan is the key problem. Combined
with analysis of former researches and literatures, based on
the practical manufacturing environment of foundry enter-
prise, an optimization mathematical model of production
planning is proposed and the objective is to promote the
profit rate of a certain amount of orders. In order to obtain the
approximate optimal solution, a modification of traditional
genetic algorithm is introduced.The IGA ismainly illustrated
in two aspects: one is adopting two different phases of the
process of algorithm with the different genetic operators
being set separately for different phases and the other one
is using two different converting rules for two different
phases of algorithm; one rule is that according to the actual
requirement of foundry enterprise the profit rate of orders
must be higher than 5% and the other rule is that five times
approximate optimal solutions are continuously appearing.
Finally, an example and comparison with other algorithms
are given to illustrate the proposed model and IGA. The
experimental results have shown that the proposed approach
is able to achieve better profit rate of orders in actual foundry
industry more effectively.

In the aspect concerning the limitations of this research,
it is important to notice that the constraints of this

mathematical model are not the same as the actual situation
of foundry enterprise, whereas there are human resource
limitations, facility limitations, and transportation cost, so
more factors could be taken into account in the model of
production planning. A simple algorithm is often used to
solve the approximate optimal solution of the mathematical
problem; when more factors are introduced into the model
which will increase the complexity, a hybrid algorithm
should be used to solve it. Concerning the limitations of this
research proposed in previous section, the suggestions for
further research are listed as follows:

(1) More different factors could be introduced into the
mathematical model of production planning, such as
the human cost and transportation cost.

(2) A hybrid algorithm could be used to solve the pro-
duction planning problem, for example, combining
the advantage of Tabu Search algorithm for the
higher local optimal solution with genetic algorithm,
which could avoid fast convergence and promote the
efficiency of algorithm.

Notations

𝑠: The number of processing units𝑡: The number of production orders𝑚: The number of procedures𝑘: The number of types of materials𝑃𝑡𝑝 𝑖: The production task 𝑖, for 𝑖 = 1, 2, . . . , 𝑡𝜆: 𝜆 = {0, 1} where 𝜆 = 1 represents 𝑃𝑡𝑝 𝑖
containing procedure 𝑐; otherwise it does
not, for 𝑖 = 1, 2, . . . , 𝑡, 𝑐 = 1, 2, . . . , 𝑚𝑅𝑄𝑝: The resource number of processing units 𝑝𝑃𝑖: The process route of production task 𝑖, for𝑖 = 1, 2, . . . , 𝑡𝑊𝑖𝑔𝑀: The corresponding weight value of 𝑀𝑐𝑖𝑊𝑖𝑔𝑃: The corresponding weight value of 𝑃𝑐𝑖𝑊𝑖𝑔𝐷: The corresponding weight value of 𝐷𝑐𝑖𝑊𝑝𝑔𝑂: The corresponding weight value of 𝑂𝑐𝑝𝑀𝑐𝑖: The total cost of material of 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡𝑀𝑐𝑖𝑗: The cost of material 𝑗 of 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡, 𝑗 = 1, 2, . . . , 𝑘𝑊𝑖𝑗: The demand quantity of material 𝑗 of𝑃𝑡𝑝 𝑖, for 𝑖 = 1, 2, . . . , 𝑡, 𝑗 = 1, 2, . . . , 𝑘𝑅𝑗: The unit price of material 𝑗, for𝑗 = 1, 2, . . . , 𝑘𝑅𝑇𝑖: The yield of casting of 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡𝑃𝑐𝑖𝑐: The unit cost of procedure 𝑐 in 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡, 𝑐 = 1, 2, . . . , 𝑚𝑂𝑐𝑝: The occupy cost of processing unit 𝑝, for𝑝 = 1, 2, . . . , 𝑠𝑂𝑝: The unit occupy cost of processing unit 𝑝,
for 𝑝 = 1, 2, . . . , 𝑠𝑂𝑇𝑝: The occupy time of processing unit 𝑝, for𝑝 = 1, 2, . . . , 𝑠
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𝑂𝑇𝑃𝑖𝑝: The cost time of processing unit 𝑝 of 𝑃𝑡𝑝 𝑖
for 𝑖 = 1, 2, . . . , 𝑡, 𝑝 = 1, 2, . . . , 𝑠𝐷𝑐𝑖: The delay cost of 𝑃𝑡𝑝 𝑖, for 𝑖 = 1, 2, . . . , 𝑡𝐷𝑖: The delay time (in days) of 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡𝐷𝑇𝑖: The unit cost of delay time (in days) of𝑃𝑡𝑝 𝑖, for 𝑖 = 1, 2, . . . , 𝑡𝑇𝑃𝑐: The maximum time cost of procedure 𝑐,
for 𝑐 = 1, 2, . . . , 𝑚𝑇𝑃𝑖𝑐: The time cost of procedure 𝑐 of 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡, 𝑐 = 1, 2, . . . , 𝑚𝑂𝑡𝑖: The total amount of the order 𝑃𝑡𝑝 𝑖, for𝑖 = 1, 2, . . . , 𝑡.
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Matéria, vol. 18, no. 4, pp. 1563–1575, 2013.

[19] U. S. Sakalli and B. Birgoren, “A spreadsheet-based decision
support tool for blending problems in brass casting industry,”
Computers and Industrial Engineering, vol. 56, no. 2, pp. 724–
735, 2009.

[20] K. L. Choy, Y. K. Leung, H. K. H. Chow et al., “A hybrid schedul-
ing decision support model for minimizing job tardiness in
a make-to-order based mould manufacturing environment,”
Expert Systems with Applications, vol. 38, no. 3, pp. 1931–1941,
2011.

[21] Y.-Y. Chen, “The order fulfillment planning problem consid-
ering multi-site order allocation and single-site shop floor
scheduling,” Journal of Intelligent Manufacturing, vol. 25, no. 3,
pp. 441–458, 2014.

[22] R. Izabela and J. Mieczysaw, “Hybrid artificial intelligence sys-
tem in constraint based scheduling of integratedmanufacturing
ERP systems,” in Hybrid Artificial Intelligent Systems, vol. 7209
of Lecture Notes in Computer Science, pp. 229–240, Springer,
Berlin, Germany, 2012.



14 Mathematical Problems in Engineering

[23] S. K. Gauri, “Modeling product-mix planning for batches of
melt under multiple objectives in a small scale iron foundry,”
Production Engineering, vol. 3, no. 2, pp. 189–196, 2009.

[24] R. F. Teixeira Jr., F. C. F. Fernandes, and N. A. Pereira, “Binary
integer programming formulations for scheduling in market-
driven foundries,” Computers and Industrial Engineering, vol.
59, no. 3, pp. 425–435, 2010.
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