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Ant colony optimization (ACO) algorithms have been successfully applied to identify classification rules in data mining. This paper
proposes a new ant colony optimization algorithm, named hmAntMiner,_,.,, for the hierarchical multilabel classification problem
in protein function prediction. The proposed algorithm is characterized by an orderly roulette selection strategy that distinguishes
the merits of the data attributes through attributes importance ranking in classification model construction. A new pheromone
update strategy is introduced to prevent the algorithm from getting trapped in local optima and thus leading to more efficient
identification of classification rules. The comparison studies to other closely related algorithms on 16 publicly available datasets

reveal the efficiency of the proposed algorithm.

1. Introduction

In the last few decades, various techniques have been success-
tully proposed to solve classification problems in the fields of
machine learning and data mining [1-3]. However, most of
the existing classification techniques are designed to handle
data with binary or nominal class labels (where class labels
are independent). They cannot handle problems with mul-
tiple class labels organized in hierarchical structure (CHS)
[4]. Such problems are commonly known as hierarchical
classification with regard to the one-level flat classification
problems.

Due to the complex structure of hierarchical multilabel
classification problems, they are more difficult to solve than
the flat single label classification problems. The samples
may be assigned to several classes that form a hierarchical
structure, for example, a tree or directed acyclic graph [5],
at the same time. Some difficulties are inherent for those
problems. Firstly, because of the hierarchical structure of
classes, less nodes are available at the bottom of the tree than
that at the top. As such, it is more difficult to classify the
nodes if the tree is deep. Secondly, samples classified in the
lower levels of the hierarchy must satisfy the parent-child
relationships; that is, they should also fall within the parent

classes. Finally, a sample can also be classified to multiple
classes that have no parent-child relationship.

Recently, many bioinspired heuristic algorithms have
been designed to solve optimization problems and success-
fully applied in data classification problems [6-8]. Among
them, ant colony optimization (ACO) algorithms have shown
promising performance in mining classification rules in the
form of “IF (term;) AND (term,) AND ---(term,) THEN
(class).” The rules identified by ACO algorithms not only
perform well in terms of the predictive accuracy, but also
can be easily expressed in natural language and thus lead
to good comprehensibility [9]. Nevertheless, the exponential
increasing of data volume and types in the fields of machine
learning and data mining has posed great challenges for ACO
algorithms to deal with hierarchical multilabel classification
problems especially in terms of computation efficiency and
robustness.

In this paper, a novel ACO-based algorithm named
hmAntMiner 4., is presented to identify classification rules
for the hierarchical multilabel classification problem in pro-
tein function prediction. hmAntMiner 4., is equipped with
an orderly roulette selection strategy and a new pheromone
update strategy to enhance the capability of handling large-
scale problems and the robustness. Particularly, in the orderly
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Input: training samples

Output: adiscovered list of rules
(1) examples «— all training examples;
(2) Rule_set «— ¢
(3) while [training samples| > maxim
(4) Initialize Pheromones(), Heuristic
(5) t«0;
(6) while t < maximum iterations an

(20) end while
(21) return Rule_set;

(7) for n < 1 to ants_size do

(8) rule,, < Create Rule(examples);
9) Prune(rule,,);

(10) Evaluate rule,;

(H) 7’1’lleitemtion-best — rulen;

(12) end for

(13) Update Pheromones(rule;,,, qion-pest)s
(14) Evaluate rule,,,, .iion-pests

(15) ruleglobal—besl — ruleiteratiun—hest;

(16) t—t+1;

(17) end while

(18)  Traing set < Taining set — Covered(rule,, examples);
(19)  Rule_set — Rule_set + rule jppap.pests

um uncovered do
Information(examples), rule o pests

d no stagnation do

ArgoriTHM I: The pseudocode of AntMiner algorithm.

roulette selection, the data attributes are sorted such that the
algorithm can distinguish the pros and cons of each attribute
and construct good classification model more efficiently. The
new pheromone update strategy is designed to guide the ants
to find better global optimal solutions, which strengthens
the degree of pheromone update to avoid falling into local
optimum. To evaluate the performance of the proposed
algorithm, eighteen publicly available datasets are employed.
Two closely related decision-tree-based algorithms (CLUS-
HSC and CLUS-SC) [10] and two ACO-based algorithms
(hmAntMiner [11] and hmAntMiner-C [12]) are involved in
the comparison study. hmAntMiner 4., shows superiority
in terms of prediction accuracy and comprehensibility of
classification model.

The remainder of this paper is organized as follows.
Section 2 reviews ACO algorithms for classification rules
discovery and the existing algorithms in hierarchical mul-
tilabel classification for protein function prediction. The
proposed algorithm is also described in Section 2 where
the details of the orderly roulette selection strategy and
the new pheromone update strategy are provided. Section 3
presents the experimental results of the comparison studies
on publicly available datasets. Finally, Section 4 concludes
this study and some future directions are discussed.

2. Materials and Methods

2.1. ACO for Classification

2.1.1. ACO for Flat Single Label Classification Problems. ACO
has been widely used in the flat single label classification

problems. The AntMiner algorithm proposed by Parpinelli
et al. [13] represents one of the most well-known ACO-
based classifiers. In AntMiner, a heuristic search method is
introduced to identify the rule information in the dataset and
a sequential covering strategy to discover a rule. Based on the
discovered rules, the classified training samples are removed
and the training set is reduced. The remaining samples are
used for further rule discovery and the process iterates until
no enough training samples are available. Particularly, the
process of AntMiner is outlined in Algorithm 1.

First, the rule set is initialized to be empty, and each
ant starts to build a rule by adding one term at a time.
The pheromone and heuristic values of the new term decide
whether it should be added to the rule set. To calculate the
heuristic values of one term, the entropy and normalized
information gain [14] are used. The rule is applied to the
dataset by a majority vote mechanism and the irrelevant rule
terms are pruned to raise the accuracy [15]. Then the next rule
is constructed by other artificial ants. After all the ants have
built their rules, the best rule in that iteration is identified and
the pheromone is updated based on that basis [16]. If the best
rule is better than the global best rule, the global best rule
will be set to be equal to the local best rule. Otherwise, the
iteration best rule will be discarded. The global best rule up
till now is used to remove the examples correctly covered and
the next global best rule is found using the remaining training
examples. This process of constructing a global best rule is
repeated until the maximum number of iterations is reached,
or the current constructed best rule is the same as the best one
constructed by a specified number of previous iterations. The
outer global rule set growing iteration stops if the number of
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(a) Tree hierarchy

(b) DAG hierarchy

FIGURE 1: Representation of class labels in hierarchical classification.

remaining examples is less than a threshold. The output of this
algorithm is an ordered set of rules, which is used to classify
the test dataset.

Many variants of AntMiner have been proposed to
improve the performance of classification. For example,
AntMiner2 [17] and AntMiner3 [18] use a simple heuris-
tic function, which adopts a density estimation in rules
discovery and is calculated only once for each term, to
replace the relatively complex heuristic in AntMiner. More-
over, to encourage exploration, AntMiner3 presents a new
pheromone update method, in which the pheromone is
updated and evaporated only for those predefined conditions
occurring in the rules. In an enhanced version of AntMiner
(AntMiner+), the class label is selected before the ants build
their rules and a class-specific heuristic function is imposed
to enable the ants to know the class of an extracting rule
[19]. The relative importance of the pheromone and heuristic
values is adjusted by two important ACO parameters o and
B. A new AntMiner variant, namely, AntMiner-CC, considers
the relationship between the term selected previously and
the next candidate term by utilizing a new heuristic function
[20] based on the correlation of dataset attributes, given
the preselected class label and its potential to maximize the
correct coverage.

AntMiner,,. [21] proposed by Liang et al. adopts a
new heuristic information function considering both the
correlation and coverage for the purpose to avoid deceptive
high accuracy. cAnt-Miner [22] and its improved version [23]
introduce continuous attributes handling strategy and new
rule sequential covering strategy, respectively, to enhance
the performance of rule identification. Smaldon and Freitas
[24] improved AntMiner to produce an unordered set of
classification rules. ACORI [25] uses an optimization method
to find the near optimal order of rules in the decision list.
pcAnt-Miner [26] embeds several extensions into the original
AntMiner algorithms. Multiple pheromone level types are
considered when the rule’s consequent class is selected prior
to the antecedent of the rule construction.

AntMiner can also be improved by mixing with other
heuristic optimization algorithms or classifiers. For example,
by combining the strengths of AntMiner and particle swarm

optimization [27], a resultant hybrid algorithm provides a
very promising performance thanks to their specific capabil-
ities in handling continuous attribute and nominal attribute-
value construction. Ant-Tree-Miner [28] induces decision
tress rather than a set of rules, which is consequently quite
different from AntMiner and its variants. The advantage of
the decision trees is that the model it represents is easy
to understand in a graphical form and the ACO algorithm
outputs a set of classification rules. Boryczka and Kozak
proposed an ACDT algorithm [29] which can make agents-
ants interact during the construction decision trees via
pheromone values to generate solutions efficiently. In a real
world application, Feng et al. combined SVM method with
the clustering based on self-organized ant colony network to
take the advantages of both while avoiding their weaknesses
and then used this algorithm to classify network activities as
normal or abnormal [30].

2.1.2. ACO for Hierarchical Multilabel Classification. In hier-
archical classification, the class labels are naturally organized
as a class hierarchy/taxonomy, which typically are repre-
sented as a tree or directed acyclic graph (DAG), as shown
in Figures 1(a) and 1(b). In the hierarchy, the nodes represent
the class labels and edges represent the relationship between
the class labels. Different class hierarchy structures impose
different restrictions on the graph; for example, in DAG a
node can have more than one parent. To predict a class label in
the hierarchy, the classifier should also predict all the ancestor
class labels.

It is clear that the edges between the parent and the
children node represent IS-A relationship in the hierarchy.
The nodes at the top levels of that hierarchy are easier to
predict because they represent more general class labels,
whereas the nodes at the bottom levels are more difficult to
predict, because more information is needed to distinguish
them. For these reasons, the classifier should look for a
tradeoff between generality and specificity in the hierarchical
classification. An example is given in Figure 2 for the class
classification of human. If we predict an item as “Human,” it
is 100% correct. However, predicting the lower level specific
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Attribute 1~ Attribute 2 Attribute 3
Vi Vo Vi
Vi Vo Vi,
Vis Vs Vi3
Vi Vo Vi
Vis Vs Vs
Vis Vas Vs

Class labels
Human Asian Mongol
Human Asian  Malaysian
Human African  Ethiopian
Human African Bantu
Human Caucasoid  Greek
Human Caucasoid  English

African

Caucasoid

| Mongol |

|Malaysian| |Ethi0pian| | Bantu | | Greek |

| English |

FIGURE 2: Hierarchy structure of human classes.

class is more important in this setting and it is more liable to
make the wrong prediction.

Hierarchical multilabel classification problems can be
handled by constructing a baseline classifier for each class
label, also known as local approach, or considering all the
hierarchically related classes on a whole, that is, global
approach. For example, Koller and Sahami [31] proposed
a local classifier approach algorithm that works by train-
ing a decision tree for each class label individually. For a
given item, a baseline decision tree is used to predict the
presence/absence of the corresponding class labels. Chen et
al. [32] extended the decision tree classifier to predict the
hierarchical class labels, where the best attributes are selected
using an extended entropy measure. Vens et al. [10] inves-
tigate two local approaches based on decision tree, namely,
CLUS-HSC and CLUS-SC, and a global approach, CLUS-
HMG, to classify the labels in the hierarchy simultaneously.
Particularly, CLUS-HMC is based on the theory of predictive
clustering tree framework [33], and each node in the tree
is conceived as a cluster. Generally, local approaches tend
to be more computationally demanding as a classifier must
be trained many times. Moreover, the misclassifications at
higher levels are propagated and affect the classification of
lower level labels [34]. Global approaches can overcome the
aforementioned problems by considering all the hierarchi-
cally related classes at once. However, global approaches are
more difficult to model than local approaches.

ACO-based approaches have also been increasingly used
to deal with hierarchical multilabel classification problem

in a global manner. Chan and Freitas [35] proposed a new
ACO algorithm, named MuLAM (Multilabel AntMiner), to
discover a multilabel classification rule which can predict
one or more class labels at a time. Otero et al. [5] proposed
hAntMiner (Hierarchical Classification AntMiner) for hier-
archical classification problem, which is an extension of the
flat classification AntMiner algorithm. In hAntMiner, a hier-
archical rule evaluation measure, heuristic information, and
an extended rule representation are used for classification.
hAntMiner is further extended to hmAntMiner [11] to han-
dle hierarchical multilabel classification problem of protein
function prediction. A new heuristic function based on the
Euclidean distance is introduced in AmAntMiner to discover
an ordered list of hierarchical multilabel classification rules.
The experimental results presented in [11] demonstrate the
superiority of hmAntMiner to other local/global methods
including CLUS-HSC, CLUS-SC, and CLUS-HMC. Khan
and Baig [12] proposed an hmAntMiner variant, namely,
hmAntMiner-C by introducing search space simplification
mechanisms, more accurate correlation based heuristic func-
tion, and new representation of pheromone matrix and evap-
oration process. In this work, we also improve hmAntMiner
by introducing an orderly roulette selection strategy and a
new pheromone update strategy. The resultant algorithm,
namely, imAntMiner, is described in the following sec-
tion.

order

2.2. The Proposed hmAntMiner 4. Algorithm. Following the
general structure of ACO algorithm, some modifications
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Input: protein training examples

(1) decision_list — ¢;

(5) Initialize Pheromone();
(6) rulegb — ¢

(26) end while
(27) return decision_list;

Output: classification model decision_list

(2) examples — protein training examples;
(3) while |examples| > max_uncovered_examples and not converged do
(4) Calculate New Heuristic Information(examples);

(7) i—1;

(8) while not (i > max_number_iterations OR Rule_Convergence) do
9) rule;, — ¢;

(10) for n < 1 to colony_size do

(11) /] use the new roulette selection strategy

(12) rule, « Orderly_roulette_selection_strategy_CreateRule(examples);
(13) Prune(rule,,);

(14) if Quality(rule,) > Quality(rule;) then

15) ruley, «— rule,;

(16) end if

17) end for

(18) /] use the new pheromone update strategy

(19) Intensive_Update_ Pheromone(rulegb);

(20) if Quality(ruley,) > Quality(rule,) then

(21) ruley, — ruley;

(22) end if

(23)  end while

(24) decision_list < decision_list + rulegb;

(25) examples — examples — Covered(rulegb, examples);

ALGORITHM 2: Pseudocode of hmAntMiner,

are made in hmAntMiner, ., to construct each list of
rules. Firstly, we design a new roulette selection strategy
to distinguish the merits of the data attributes through
attributes importance ranking. So each ant can find a better
rule. Secondly, we use a new pheromone update strategy
to strengthen the degree of pheromone update and give
the ant a better guide. That update strategy uses the global
best rule instead of the local optimal rule. Finally, the new
algorithm utilizes a large number of uncharacterized proteins
in the analysis and does better to determine their functions
in the biological process. The result of hmAntMiner, 4.,
algorithm is an ordered list of hierarchical multilabel classi-
fication rules to predict protein functions. The pseudocode
of hmAntMiner, 4, algorithm is described in Algorithm 2.
The rule building process continues until all ants have built
their own rules. Then the Klosgen measure [36] is used
to evaluate the constructed rules so the precision can be
corrected for the class distribution. hmAntMiner, 4., reduces
the computational cost by only considering the relevant term
of the iteration best rule. The global best rule is updated after
multiple assessments to help the ants find better rules in the
next iteration.

The details of hmAntMiner, 4., are provided as follows.
As shown in Algorithm 2, in line (1), it starts with an empty
decision list. Then in lines (3)-(26), in the outer while loop,

order lgorithm.

the algorithm iteratively adds one rule at a time to the
decision list until the termination criteria are satisfied. In
lines (8)-(23), an inner while loop is executed, and in each
iteration a rule is constructed by an ACO procedure. All ants
choose data attributes to be added to their current partial
rule by the orderly roulette selection strategy. In line (13), the
duplicate data attributes are pruned in the rule. The quality
of the rules in the current iteration is evaluated and a best
rule in this iteration is selected as the iteration best rule,
as described in lines (14)-(16). The pheromone trails are
updated in line (19) using the global best rule based on the
intensive pheromone update strategy to guide ants to search
for better rules. In lines (20)-(22), if the iteration best rule
is better than the global best rule, the iteration best rule will
be selected as the global best rule. Then the global best rule
constructed covered is added to the decision list of rules and
the covered training examples (training examples that satisfy
the antecedent of the global best rule) are removed from the
training set in lines (24)-(25). The procedure of creating a rule
is repeated until the accuracy on validation begins to reduce
and the rest of protein training samples are examples less
than the predefined max uncovered examples. This prevents
the classification model from the noise in the training data
and the separate validation set can be monitored during the
training phase.
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IF

THEN

aa_rat_pair_a_h > 0.058

AND aa_rat_pair_t_c > 0.1055
AND aa_rat_pair_c_w < 0.0695
AND aa_rat_pair_a_e < 0.2960
AND aa_rat_pair_t_h > 0.0275

G00000226: 0.10, GO0000943: 0.50,
GO0001302: 0.10, GO0003647: 1.00,
G00003676: 0.50, GO0003723: 0.50,

GO0045185: 0.10, GO0046907: 0.20,
GO0051234: 0.20, GO0051235: 0.10,
GO0051649: 0.20, GO0051651: 0.10

FIGURE 3: Example of the consequent of a rule discovered by hmAntMiner,

2.2.1. Hierarchical Multilabel Rule Consequent. The outputs
of many previous algorithms are usually a single path in
the consequent construction graph, that is, a trail from the
root class label down to the leaf class label in the class
hierarchy. But for protein prediction it will not work in
that form. To apply those outputs to protein prediction
problems, the examples covered by the rule (examples that
satisfy the rule antecedent) can be used as the information to
determine the rule consequent. The consequent of a rule in
hmAntMiner ., algorithm is computed by a deterministic
procedure as follows:

class,; = M, ¢))
’ |Set, |

where Set, represents the set of examples covered by rule r,
which generates a vector of length m (m is the number of
class labels) as a result of that rule. label, is the ith component
of the class vector. [Set, & label;| is the number of examples
belonging to the ith class of the class hierarchy that is covered
by rule r. The class i, a vector of length i, represents the
proportion of examples which are covered by rule r in a
particular ith class.

Based on the previous definition, each element of a vector
is a continuous value ranging from 0.0 to 1.0, rather than
single value 1 or 0, that is, true or false value of a particular
class label. The value is a probability of the examples covered
by a rule satistfying the antecedent to belong to the corre-
sponding ith class of the hierarchy. Figure 3 shows an example
of aresult of a rule discovered by hmAntMiner, 4., algorithm.
The predictor attributes in the IF statement are amino acid
ratios from the protein sequence and the THEN part are Gene
Ontology terms representing the class labels. Following each
GO term is the probability of the sequence belonging to that
GO term class label.

2.2.2. Hierarchical Multilabel Rule Construction

(1) Heuristic Information Function. In hmAntMiner4.,, the
heuristic function incorporates a distance-based information

order*

using the class hierarchy. The variance of the one set of
examples covered by the term is incorporated in the heuristic
information. A numeric vector of length m represents the
class label of each example. If the ith component of the class
label vector is 0 it means the example does not belong to
that class, and the same logic applies to the 1's case. We
use a weighted Euclidean distance to represent the distance
between the class label vectors as follows:

Ed (v, v,) = Zw (L) - (Vl,i - Vz,i)2> )
i=1

where w(l;) is the weight of the ith class label and v, ; and v,
represent the ith class value of two examples, respectively. We
use the average square distance between each of example class
labels and the set’s mean class vector to represent the variance
of a set of examples as follows:

[Setr| —\2
Ed (v, v
var (Sety) = L Ed(vov) |SetT(| o¥) , 3)

where Set; is the set of examples covered by a term T and
v is the set’s mean class label vector. Finally, the heuristic
information of a term T is given by

var,., — var (Set
77’1" — ( T) , (4)

Valnax

where var,,, is the sum of the best and the worst variance
values of all terms. The definition ensures assigning values
greater than zero to the worst terms, which otherwise would
prevent them from being selected by an ant.

Moreover, hmAntMiner, 4, also uses a class-specific
weighting scheme, where the weight is defined as follows:

1Pl
Zi:l w(pi), (5)
|2l

where wj is set to 0.75, p; is the parent class label set of the
class label I, and w(p;) is the weight associated with the ith

w(l) =w,-
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m Candidate node 4
m Candidate node 5
m Candidate node 6

® Candidate node 1
m Candidate node 2
m Candidate node 3

Candidate node 1 m Candidate node 11
Candidate node 2 = Candidate node 12
Candidate node 3 m Candidate node 13
Candidate node 4 m Candidate node 14
Candidate node 5 Candidate node 15
Candidate node 6 m Candidate node 16
Candidate node 7 m Candidate node 17
Candidate node 8 Candidate node 18
Candidate node 9 Candidate node 19

Candidate node 20
(b)

Candidate node 10

FIGURE 4: Roulette selection strategy.

parent class label of the class label I. According to (5), classes
in the higher part of the class hierarchy have bigger weights
than the class label in the lower part in the hierarchy.

(2) A New Roulette Selection Strategy. In the search process
of ACO, artificial ants constantly choose nodes through the
guidance of pheromone and heuristic information and even-
tually search for a best solution. Each node corresponding
to the heuristic information value is calculated based on (4).
The pheromone values associated with an edge between two
nodes accumulate constantly in the iteration process of ant
colony optimization. The probability of selection of node is
given by the following formula:

7;; () n; (£)

bl
;co:talll nest values Ty ( t) M ( t)

pij () = (6)

where 7;(f) is the concentration of pheromone between node;
and node; for the tth ant, 11j(t) is the value of the heuristic
information in node;, 7;(t) is the amount of pheromone
concentration between node; and node;, where k is a value
increasing from 1 to the total number of next attribute values,
and 7, (¢) is its current value of the heuristic function. All

the selected nodes belong to those attributes that have not
become prohibited.

Based on (6), each ant uses the roulette selection strategy
to select effective nodes. Roulette selection is also known as
selection operator; that is, the probability of an individual
being selected is proportional to its fitness function value, as
shown in the following formula:

P = F
COYLF

where 7 is the number of candidate nodes; the fitness value
of each candidate node is F;. The larger the value of P, the
greater the probability of ith node being selected.

For example, one of the candidate nodes, in Figure 4(a),
represents the area of one piece of the pie chart. The area
of the block is proportional to the fitness value of the
candidate nodes. As the number of protein data attributes
increases like Figure 4(b), the roulette selection strategy tends
to be trapped in random selection. This paper proposes
an orderly roulette selection strategy; all nodes are in an
orderly sequence according to the probability of each node.
In this way, artificial ants can differentiate the merits of the
node. Orderly roulette selection strategy removes the poor

7)



candidate nodes; that is, only the better candidate nodes
are selected, such that all artificial ants can select excellent
candidate nodes more efficiently and generate better rules.

(3) Hierarchical Multilabel Rule Evaluation. Using a distance-
based measure, the variance gain can be applied to compute a
rule quality measure. The basic idea to evaluate a rule r using
the variance gain measure is to virtually divide the training
set S into two partitions: the set of examples covered by the
rule  (S,) and the set of examples not covered by the rule r
(S-,). Then the variance gain of rule r relative to S is computed
as follows:

var_gai = - |
_gain (r, S) = var (S) § var (S,)

(8)

5.
- var (S.,).

The variance can naturally cope with hierarchical multil-
abel data, taking into account the relationships and similari-
ties between class labels. And it favors rules that partition the
training set into more homogeneous sets of examples. At last,
rules that cover a more homogeneous set of examples, as well
as leaving a more homogeneous set of examples uncovered,
are preferred.

(4) A New Pheromone Update Strategy. The pheromone values
are associated with an edge between two vertices in the
graph. Because the number of protein data attributes is large,
artificial ants are difficult to converge to optimal solution.
In the pheromone matrix, the decrease of the pheromone
concentration is accomplished by pheromone evaporation.
Over time, the amount of pheromone on all the edges reduces
by an evaporation factor p, while the global best rule based
on its quality reinforces its pheromone concentration. The
quality of a rule is shown as follows:

TP + FP TP P
Q- ( )-( e
P+ N TP+FP P+ N

where TP and FP, respectively, refer to the numbers of correct
and incorrect examples covered by the rule that have the same
class label. P is the total number of examples whose class
labels are the selected class. N is the total number of examples
belonging to other classes. Equation (9) is used to evaluate all
the rules.

The pheromone update formula is given as follows:

T (t+1) =17 (t) + Qpese> (10)

where Q. is quality of the global best rule, 7;(¢) is the
concentration of pheromone released by the ith ant in the tth
iteration. In our new pheromone update function, the update
amplitude of pheromone concentration of the global best rule
increases more than in the original version. The pheromone
on the better rules accumulates faster and more, at the same
time, which strengthens the convergence of the algorithm.

Mathematical Problems in Engineering

3. Experimental Results

In this section, the experimental setting is first introduced
and then the performance of the proposed hmAntMiner, 4.,
algorithm is evaluated using 16 publicly available datasets
[10], which include two different class hierarchy structures:
the tree structure, that is, the FunCat dataset, and the DAG
structure, the Gene Ontology (GO) dataset. The DAG struc-
ture represents a more complex hierarchical organization,
where a particular node of the hierarchy can have more than
one parent. In contrast, in tree structures, each node has only
one parent. The average numbers of class labels of FunCat
and GO datasets are 489 and 3932, respectively. The average
numbers of labels per example in FunCat and GO datasets are
8.5 and 34.2, respectively. The detailed information of the two
datasets is provided in Table 1.

In the experiments, 2/3 of each dataset is used for training
and the remaining 1/3 is used for testing. The proposed algo-
rithm hmAntMiner 4., is compared with two closely related
decision-tree-based algorithms (CLUS-HSC and CLUS-SC)
[10] and two ACO-based algorithms (hmAntMiner [11] and
hmAntMiner-C [12]). CLUS-SC is a local approach that
induces a decision tree for each class label individually to deal
with hierarchical multilabel classification problems. CLUS-
HSC is also a local approach to construct decision trees
in a top-down fashion to predict the functions of protein
data. hmAntMiner is a global approach than can discover
an ordered list of hierarchical multilabel classification rules
based on ant colony optimization. hmAntMiner-C is an
improved version of hmAntMiner. We use the same training
and test partitions for all algorithms in the experiments to
guaranty a fair comparison.

3.1. Performance Metric and Parameters Setting. To evaluate
the proposed algorithms, the main consideration is the
classification accuracy, which is the percentage of correctly
classified test samples. The comprehensibility of the classifiers
[37, 38] is accessed by the number of discovered rules and
the number of terms per rule, which are used as indirect
performance metrics.

Generally, more iterations and ants can help get a better
result. However, simply increasing those two parameters
may cause a great raise in execution time but a small
gain in accuracy. To overcome this problem, we use F-
Race [38] racing procedure to identify optimal parameter
settings. For the two parameters mentioned above, three
different values for each are tested. The number of ants is
selected from {10, 100, 1000} while the number of iterations
is chosen in {10,100,1000}. These nine combinations of
parameters are commonly used in ACO-based algorithms
[39]. Our experiments show that when the maximal number
of iterations is set to 10, the algorithm obtains best tradeoft
between convergence and time consumption. Besides, the
number of ants is set to 10, which ensures that more ants
are employed to find a better solution. It is validated in
lots of experiments that the remaining parameters set to 10,
respectively, can obtain higher accuracy while maintaining
a reasonable execution time [11]. All the parameter settings
for our proposed algorithm are shown in Table 2, while the
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TABLE 1: Summary of the protein datasets used in the experiments.

Dataset Training set Testing set Attributes Classes

FunCat
cellcycle 2476 1281 77 500
derisi 2450 1275 63 500
eisen 1587 837 79 462
expr 2488 1291 551 500
gaschl 2480 1284 173 500
pheno 1009 582 69 456
seq 2580 1339 478 500
spo 2437 1266 80 500

GO
cellcycle 2473 1278 77 4126
derisi 2447 1272 63 4120
eisen 1583 835 79 3574
expr 2485 1288 551 4132
gaschl 2477 1281 173 4126
pheno 1005 581 69 3128
seq 2568 1332 478 4134
spo 2434 1263 80 4120

TABLE 2: Parameter settings for hmAntMiner ., algorithm.
Parameter Value
Max uncovered examples 10
Max number of iterations 10
Rule convergence 10
Min examples per rule 10
Ant colony size 10

parameter settings of CLUS-SC and CLUS-HSC are set as
recommended in their papers [10].

3.2. Precision-Recall Curves to Evaluate Classification Model.
In information retrieval [40] and hierarchical multilabel
classification [10], PR (precision-recall) curves are frequently
used for its suitability to deal with highly skewed datasets
(much more negative examples than positive ones). PR curve
plots a precision value against recall value. The precision
value is the number of correct predictions divided by the
total number of predictions. The recall value is the number
of correct predictions divided by the total number of positive
examples, that is, examples belonging to the predicted class
label. Those two values only take the positive values into
account, so the number of negative predictions does not
influence the evaluation. As mentioned above, the lower level
classes are more difficult to have a true positive result. PR
curves ignore the true negative examples so this explains
how well a rule predicts the presence of a particular class
label.

3.3. Comparisons of hmAntMiner, 4., with Various Classifica-
tion Algorithms. In this subsection, the performance of our
algorithm (hmAntMiner,.,) is compared with two classical
classification algorithms (CLUS-HSC and CLUS-SC) and
two ACO-based classification algorithms (hmAntMiner and
hmAntMiner-C). Our algorithm is implemented in Java. The
software myra-3.7 [41] is adopted, while a Java Library for
Multilabel Learning [42] is used to run CLUS-HSC and
CLUS-SC. The results in Table 3 show the average accuracy
achieved by the cross-validation procedure followed by the
standard error of all algorithms in the corresponding datasets.
The experimental results concerning the size of the con-
struction classification model are summarized in Table 4,
where the smallest model size on each dataset is marked
with boldface. The results of CLUS-HSC and CLUS-SC are
measured with the average numbers of leaf nodes in the
generated decision tree. The size of classification model of the
remaining algorithms is obtained by recording the average
number of rules.

Vargha-Delaney A-test [43] is used to measure the sta-
tistical significance of the experimental result. It is a non-
parametric effect magnitude test to differentiate between two
samples of observations. Its return value is a probability value
between 0 and 1, indicating the probability that a randomly
selected observation from X is bigger or smaller than a
randomly selected sample from Y, which also represents
the degree to which the two samples are overlapped. A p
value in interval [0, 0.29] or [0.71, 1.0] indicates a significant
difference between X and Y. In other cases, no significant
difference is observed. In Tables 5 and 6, the symbols “+” and
“—” are used to denote that himAntMiner 4., is significantly
better or worse than the corresponding compared algorithm,
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TaBLE 3: The AU(PRC) value obtained on the test set by each algorithm across all datasets used in our experiments.

Dataset hmAntMiner, 4., hmAntMiner-C hmAntMiner CLUS-HSC CLUS-SC
FunCat
cellcycle
AU(PRC) 0.160 + 0.001 0.154 £ 0.001 0.154 £ 0.001 0.111 0.106
Rank 1 2 2 4 5
derisi
AU(PRC) 0.169 £ 0.001 0.167 £ 0.001 0.161 £ 0.002 0.094 0.089
Rank 1 2 3 4 5
eisen
AU(PRC) 0.188 + 0.002 0.175 £ 0.002 0.180 + 0.003 0.127 0.132
Rank 1 3 2 5 4
expr
AU(PRC) 0.182 + 0.003 0.167 £ 0.002 0.175 £ 0.002 0.127 0.123
Rank 1 3 2 4 5
gaschl
AU(PRC) 0.187 £ 0.002 0.173 £ 0.002 0.175 £ 0.003 0.106 0.104
Rank 1 3 2 4 5
pheno
AU(PRC) 0.163 + 0.001 0.163 + 0.001 0.162 £ 0.001 0.152 0.149
Rank 1 2 3 4 5
seq
AU(PRC) 0.175 £ 0.002 0.166 + 0.002 0.181 + 0.002 0.091 0.095
Rank 2 3 1 5 4
spo
AU(PRC) 0.179 £ 0.002 0.167 £ 0.001 0.174 £ 0.002 0.103 0.098
Rank 1 3 2 4 5
GO
cellcycle
AU(PRC) 0.352 £ 0.001 0.430 £ 0.001 0.332 +£0.002 0.371 0.252
Rank 3 1 4 2 5
derisi
AU(PRC) 0.348 £ 0.002 0.437 £ 0.001 0.334 £ 0.003 0.349 0.218
Rank 3 1 4 2 5
eisen
AU(PRC) 0.383 +0.001 0.450 + 0.002 0.376 + 0.002 0.365 0.270
Rank 2 1 3 4 5
expr
AU(PRC) 0.383 £ 0.002 0.440 + 0.001 0.351 £ 0.003 0.351 0.249
Rank 2 1 3 3 5
gaschl
AU(PRC) 0.367 £ 0.002 0.442 + 0.001 0.356 £ 0.002 0.351 0.239
Rank 2 1 3 4 5
pheno
AU(PRC) 0.340 £ 0.001 0.427 + 0.001 0.337 £ 0.001 0.416 0.316
Rank 3 1 4 2 5
seq
AU(PRC) 0.368 + 0.002 0.450 + 0.002 0.366 + 0.003 0.282 0.197
Rank 2 1 3 4 5
spo
AU(PRC) 0.341 £ 0.002 0.441 + 0.001 0.341 £ 0.003 0.371 0.213
Rank 3 1 3 2 5
A. rank 1.81 1.81 2.75 3.56 4.88
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TABLE 4: The classification model size obtained on the test set by each algorithm across all datasets used in our experiments.

Dataset hmAntMiner, ., hmAntMiner-C hmAntMiner CLUS-HSC CLUS-SC
FunCat
cellcycle
Size 14.000 + 1.528 30.867 + 1.606 28.667 + 1.623 4037 9671
Rank 1 3 2 4 5
derisi
Size 15.300 + 0.907 07.000 + 0.561 19.333 +£ 1.661 3520 7807
Rank 2 1 3 4 5
eisen
Size 11.500 + 0.522 24.267 + 1.926 19.000 + 0.981 2995 6311
Rank 1 3 2 4 5
expr
Size 19.000 + 0.760 27.933 + 1.987 30.600 + 1.466 4711 10262
Rank 1 2 3 4 5
gaschl
Size 16.800 + 0.952 21.400 + 2.086 24.867 + 1.701 4761 10447
Rank 1 2 3 4 5
pheno
Size 3.200 £ 0.200 06.400 + 0.335 7.400 + 0.767 777 1238
Rank 1 2 3 4 5
seq
Size 15.600 + 0.670 17.467 + 1.473 20.067 + 1.152 4923 10443
Rank 1 2 3 4 5
spo
Size 13.800 + 0.629 7.7333 + 0.740 15.800 £ 1.172 3623 8527
Rank 2 1 3 4 5
GO
cellcycle
Size 19.300 + 1.023 26.800 + 1.642 35.400 + 1.594 19085 36260
Rank 1 2 3 4 5
derisi
Size 14.500 + 1.249 09.533 + 1.064 22.533 +1.939 16693 31175
Rank 2 1 3 4 5
eisen
Size 16.500 + 0.969 25.333 +2.072 18.200 + 0.823 14384 24844
Rank 1 3 2 4 5
expr
Size 16.100 + 0.809 21.000 + 1.670 28.600 + 1.778 20812 38313
Rank 1 2 3 4 5
gaschl
Size 18.500 + 0.982 21.733 + 1.442 27.933 +0.918 20070 37838
Rank 1 2 3 4 5
pheno
Size 3.100 £+ 0.640 05.467 + 0.307 7.133 £ 0.792 5691 6213
Rank 1 2 3 4 5
seq
Size 17.500 + 0.895 15.467 + 1.490 18.067 £ 1.016 21703 38969
Rank 2 1 3 4 5
spo
Size 24.100 + 1.729 07.333 £ 0.760 26.333 +2.520 15552 35400
Rank 2 1 3 4 5
A. rank 1.31 1.88 2.81 4 5
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TABLE 5: Summary of the comparisons of the hmAntMiner,
Delaney A-test in terms of predictive accuracy.

order algorithm (control) with the remaining algorithms according to the Vargha-

Dataset hmAntMiner-C hmAntMiner CLUS-HSC CLUS-SC
FunCat
cellcycle + + + +
derisi + + + +
eisen + + + +
expr + + + +
gaschl + + + +
pheno = = + +
seq + = + +
spo + = + +
GO
cellcycle - + = +
derisi - + = +
eisen - + + +
expr - + + +
gaschl - + + +
pheno - + - +
seq - = + +
spo - = - +
Better/Similar/Worse 7/1/8 11/5/0 12/2/2 16/0/0

TABLE 6: Summary of the comparisons of the imAntMiner,
Delaney A-test in terms of classification model size.

order Algorithm (control) with the remaining algorithms according to the Vargha-

Dataset hmAntMiner-C hmAntMiner CLUS-HSC CLUS-SC

FunCat
cellcycle + + + +
derisi - + + +
eisen + + + +
expr + + + +
gaschl + + + +
pheno + + + +
seq + + + +
spo - = + +

GO
cellcycle + + + +
derisi - + + +
eisen + = + +
expr + + + +
gaschl + + + +
pheno + + + +
seq - = + +
spo - = + +

Better/Similar/Worse 11/0/5 12/4/0 16/0/0 16/0/0
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respectively. Symbol “=” suggests the results of the two
compared algorithms are similar.

From the results shown in Table 3, hmAntMiner, 4,
obtains the best overall predictive accuracy in FunCat dataset
and the second best accuracy in GO dataset. hmAntMiner-
C wins in GO dataset, whereas it is not comparable to
hmAntMiner 4., in FunCat dataset. To represent the search
space topology, hmAntMiner-C uses the layering of attribute-
value pair, as a grid and DAG topology, which leads to much
simpler search space than its competitors. It is not surprising
that hmAntMiner-C outperforms other algorithms in GA
datasets that are organized in DAG structure. On each
dataset, the “Rank” value indicates the performance ranking
of the corresponding algorithm among all algorithms. The
last row “A. rank” denotes the average rank on all datasets.
The A. rank of hmAntMiner 4., is 1.81, which is equal to that
of hmAntMiner-C. hmAntMiner, CLUS-HSC, and CLUS-SC
achieve A. rank values of 2.75, 3.56, and 4.88, respectively. It
is observed from the last row in Table 3 that imAntMiner,, 4.,
and hmAntMiner-C perform the best in terms of predictive
accuracy.

Besides predictive accuracy, we also compare the average
classification model sizes of different algorithms. For rules
discovery classification algorithms, the number of rules
reflects the size of the rule list, because each rule is correlated
with a class label. In decision tree algorithms, the leaf nodes
are noted by class labels, which reflect the classification
model size. In Table 4, the size of hmAntMiner, 4., is the
smallest in all the datasets. Also in the last row of Table 4, the
hmAntMiner 4., achieves the lowest average ranks, which
means a better average performance than other algorithms.

Statistical test of the performance difference between
hmAntMiner-C, hmAntMiner, CLUS-HSC, CLUS-SC,
and hmAntMiner, 4., is shown in Tables 5 and 6. The
results present the summary of the comparisons of the
hmAntMiner 4., algorithm (our algorithm with the best
average rank) with the remaining algorithms used in our
experiments according to the Vargha-Delaney A-test in
terms of predictive accuracy and classification model size.
For each algorithm, the test results obtained by Vargha-
Delaney A-test are reported on both FunCat and Gene
Ontology datasets. The last row “Better/Similar/Worse”
indicates the number of datasets on which the proposed
algorithm is significantly better than, similar to, and
significantly worse than the other algorithms, respectively. In
Table 5, hmAntMiner, ., shows comparable performance to
hmAntMiner-C and statistically better performance than the
other compared algorithms in terms of prediction accuracy.
Regarding the classification model size, as shown in Table 6,
hmAntMiner 4., is observed to obtain significantly smaller
model size than the other algorithms in most of the test
datasets. Overall, the hmAntMiner, 4. obtains the best
compromise of prediction accuracy and classification model
size considering both tree and DAG hierarchical structures.

4. Conclusion and Future Work

In this paper, we propose hmAntMiner,4.,, a novel ACO-
based classification algorithm with a high predictive accuracy
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and low model size. Some new features are introduced to the
proposed algorithm. Firstly, a new roulette selection strategy
is designed to distinguish the merits of the data attributes
through attributes importance ranking. In this way, each
ant can search for a better rule efficiently. Secondly, a new
pheromone update strategy is presented to strengthen the
degree of pheromone update and complete a better guide to
the ants. hmAntMiner, 4., can cope with the large increase in
the number of uncharacterized proteins available for analysis
and the importance of determining their functions in order
to improve the current biological knowledge. These new
features are implemented in our algorithm and 16 publicly
available datasets are used to evaluate the classification
performance of hmAntMiner ... When compared with the
other four closely related classification algorithms, including
hmAntMiner-C, hmAntMiner, CLUS-HSC, and CLUS-SC,
hmAntMiner 4., performs superiorly or competitively in
terms of predictive accuracy and obtains preferable com-
prehensibility. In the future work, other components like
local search [44-47] and differential operators [48] can be
introduced to hmAntMiner, 4., to improve the efficiency of
the algorithm.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (Grants nos. 61471246 and
61672358), Innovation Foundation for Higher Education
of Guangdong, China (Grant no. 2016KTSCXI121), Guang-
dong Foundation of Outstanding Young Teachers in Higher
Education Institutions (Grant no. Yq2013141), Guangdong
Special Support Program of Top-Notch Young Profession-
als (Grant no. 2014TQO01X273), and Shenzhen Scientific
Research and Development Funding Program (Grant no.
ZYC201105170243A).

References

(1] J. Han, J. Pei, and M. Kamber, Data mining: concepts and tech-
niques, Elsevier, 2011.

[2] A. Keramati, R. Jafari-Marandi, M. Aliannejadi, I. Ahmadian,
M. Mozaffari, and U. Abbasi, “Improved churn prediction in
telecommunication industry using data mining techniques,”
Applied Soft Computing Journal, vol. 24, pp. 994-1012, 2014.

[3] E Zandi, “A bi-level interactive decision support framework to
identify data mining-oriented electronic health record architec-
tures,” Applied Soft Computing Journal, vol. 18, pp. 136-145, 2014.

[4] A. A. Freitas and A. C. de Carvalho, “A tutorial on hierarchical
classification with applications in bioinformatics,” in Research
and Trends in Data Mining Technologies and Applications, Idea
Group, D. Taniar, Ed., 2007.

[5] E E.B. Otero, A. A. Freitas, and C. G. Johnson, “A Hierarchical
classification ant colony algorithm for predicting gene ontology
terms,” Lecture Notes in Computer Science (including subseries



14

(6]
(7]

(8

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5483, pp. 68-79, 2009.

A. P. Engelbrecht, Computational intelligence: an introduction,
John Wiley & Sons, 2007.

A. P. Engelbrecht, Fundamentals of computational swarm intel-
ligence, John Wiley & Sons, 2006.

B. Javidy, A. Hatamlou, and S. Mirjalili, “Ions motion algorithm
for solving optimization problems,” Applied Soft Computing
Journal, vol. 32, pp. 72-79, 2015.

B. Minnaert and D. Martens, “A comment on ‘correlation
as a heuristic for accurate and comprehensible ant colony
optimization-based classifiers;” IEEE Transactions on Evolution-
ary Computation, vol. 18, no. 5, pp- 790-791, 2014.

C. Vens, J. Struyf, L. Schietgat, S. DZeroski, and H. Block-
eel, “Decision trees for hierarchical multi-label classification,’
Machine Learning, vol. 73, no. 2, pp. 185-214, 2008.

F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “A hierarchical
multi-label classification ant colony algorithm for protein func-
tion prediction,” Memetic Computing, vol. 2, no. 3, pp. 165-181,
2010.

S. Khan and A. R. Baig, “Ant colony optimization based hier-
archical multi-label classification algorithm,” Applied Soft Com-
puting, vol. 55, pp. 462-479, 2017.

R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining
with an ant colony optimization algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 4, pp. 321-332, 2002.
M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey
on parallel ant colony optimization,” Applied Soft Computing
Journal, vol. 11, no. 8, pp. 5181-5197, 2011.

P.N. Tan, Introduction to data mining, Pearson Education India,
2006.

S. Hodnefjell and I. Costa Jr., “Classification rule discovery with
ant colony optimization algorithm,” in International Conference
on Intelligent Data Engineering and Automated Learning, pp.
678-687, 2012.

B.Liu, H. A. Abbass, and B. McKay, “Density-based heuristic for
rule discovery with ant-miner;” in The 6th Australia-Japan Joint
Workshop on Intelligent and Evolutionary System, pp. 180-184,
2002.

B.Liu, H. A. Abbas, and B. McKay, “Classification rule discovery
with ant colony optimization,” in IAT, vol. 3, pp. 83-88, 2003.
D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck,
and B. Baesens, “Classification with ant colony optimization,”
IEEE Transactions on Evolutionary Computation, vol. 11, no. 5,
pp. 651-665, 2007,

A.R. Baig, W. Shahzad, and S. Khan, “Correlation as a heuristic
for accurate and comprehensible ant colony optimization based
classifiers,” IEEE Transactions on Evolutionary Computation,
vol. 17, no. 5, pp- 686-704, 2013.

Z. Liang, J. Sun, Q. Lin, Z. Du, J. Chen, and Z. Ming, “A novel
multiple rule sets data classification algorithm based on ant
colony algorithm,” Applied Soft Computing Journal, vol. 38, pp.
1000-1011, 2016.

FE E. B. Otero, A. A. Freitas, and C. G. Johnson, “Ant-Miner:
an ant colony classification algorithm to cope with continuous
attributes,” in International Conference on Ant Colony Optimiza-
tion and Swarm Intelligence, vol. 5217, pp. 48-59, 2008.

F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “A new
sequential covering strategy for inducing classification rules
with ant colony algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 17, no. 1, pp. 64-76, 2013.

(24]

(26]

(27]

(31]

(32]

(33]

[34]

(37]

Mathematical Problems in Engineering

J. Smaldon and A. A. Freitas, “A new version of the ant-miner
algorithm discovering unordered rule sets,” in Proceedings of the
8th Annual Genetic and Evolutionary Computation Conference
2006, pp. 43-50, July 2006.

S. Asadi and J. Shahrabi, “ACORI: A novel ACO algorithm for
rule induction,” Knowledge-Based Systems, vol. 97, pp. 175-187,
2016.

K. M. Salama, A. M. Abdelbar, E E. B. Otero, and A. A. Freitas,
“Utilizing multiple pheromones in an ant-based algorithm for
continuous-attribute classification rule discovery;,” Applied Soft
Computing Journal, vol. 13, no. 1, pp. 667-675, 2013.

N. P. Holden and A. A. Freitas, “A hybrid PSO/ACO algorithm
for classification,” in Proceedings of the 9th Annual Genetic and
Evolutionary Computation Conference, GECCO 2007, pp. 2745-
2750, July 2007,

E E. B. Otero, A. A. Freitas, and C. G. Johnson, “Inducing
decision trees with an ant colony optimization algorithm,”
Applied Soft Computing Journal, vol. 12, no. 11, pp. 3615-3626,
2012.

U. Boryczka and J. Kozak, “Enhancing the effectiveness of Ant
Colony Decision Tree algorithms by co-learning,” Applied Soft
Computing Journal, vol. 30, pp. 166-178, 2015.

W. Feng, Q. Zhang, G. Hu, and J. X. Huang, “Mining network
data for intrusion detection through combining SVMs with ant
colony networks,” Future Generation Computer Systems, vol. 37,
pp. 127-140, 2014.

D. Koller and M. Sahami, “Hierarchically classifying docu-
ments using very few words,” in Proceedings of the Fourteenth
International Conference on Machine Learning, pp.170-178, San
Francisco, CA, USA, 1997.

Y.-L. Chen, H.-W. Hu, and K. Tang, “Constructing a decision
tree from data with hierarchical class labels,” Expert Systems
with Applications, vol. 36, no. 3, pp. 4838-4847, 2009.

H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction
of clustering trees,” in Proceedings of the I5th ternational
Conference on Machine Learning, J. Shavlik, Ed., pp. 53-63,1998.
C.N.Silla Jr. and A. A. Freitas, “A survey of hierarchical classi-
fication across different application domains,” Data Mining and
Knowledge Discovery, vol. 22, no. 1-2, pp. 31-72, 2011.

A. Chan and A. A. Freitas, “A new ant colony algorithm for
multi-label classification with applications in bioinfomatics,”
in Proceedings of the 8th Annual Conference on Genetic And
Evolutionary Computation, pp. 27-34, Seattle, Wash, USA, July
2006.

B. Minnaert, D. Martens, M. De Backer, and B. Baesens, “To
tune or not to tune: rule evaluation for metaheuristic-based
sequential covering algorithms,” Data Mining and Knowledge
Discovery, vol. 29, no. 1, pp. 237-272, 2015.

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B.
Baesens, “An empirical evaluation of the comprehensibility of
decision table, tree and rule based predictive models,” Decision
Support Systems, vol. 51, no. 1, pp. 141-154, 2011.

N. R. Daud and D. W. Corne, “Human readable rule induction
in medical data mining;” Lecture Notes in Electrical Engineering,
vol. 27, no. 1, pp- 787-798, 2009.

E E. B. Otero, A. A. Freitas, and C. G. Johnson, “Handling
continuous attributes in ant colony classification algorithms,”
in Computational Intelligence and Data Mining (CIDM’09), pp.
225-231, IEEE Symposium, 2009.

C. D. Manning and H. Schutze, Foundations of Statistical Natu-
ral Language Processing, MIT Press, Cambridge, Mass, USA, 1st
edition, 1999.



Mathematical Problems in Engineering

[41]

(42]

(45]

[47]

(48]

E E. Otero, A Collection of Ant Colony Optimization (ACO)
Algorithms for the Data Mining Classification Task, 2013,
Available at: https://github.com/febo/myra.

A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, and I.
Vlahavas, “An empirical study of multi-label learning methods
for video annotation,” in Proceedings of the 7th International
Workshop on Content-Based Multimedia Indexing, CBMI 2009,
pp. 19-24, grc, June 2009.

A. Vargha and H. D. Delaney, “A critique and improvement of
the CL common language effect size statistics of McGraw and
Wong,” Journal of Educational and Behavioral Statistics, vol. 25,
no. 2, pp. 101-132, 2000.

Z. Zhu, Y.-S. Ong, and M. Dash, “Wrapper-filter feature selec-
tion algorithm using a memetic framework,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37,
no. 1, pp. 70-76, 2007.

Z. Zhu, J. Xiao, J.-Q. Li, E Wang, and Q. Zhang, “Global
path planning of wheeled robots using multi-objective memetic
algorithms,” Integrated Computer-Aided Engineering, vol. 22, no.
4, pp. 387-404, 2015.

Z. Zhu, J. Xiao, S. He, Z. Ji, and Y. Sun, “A multi-objective
memetic algorithm based on locality-sensitive hashing for
one-to-many-to-one dynamic pickup-and-delivery problem,”
Information Sciences, vol. 329, pp. 73-89, 2016.

Z.Zhu, S. Jia, S. He, Y. Sun, Z. Ji, and L. Shen, “Three-dimen-
sional Gabor feature extraction for hyperspectral imagery clas-
sification using a memetic framework,” Information Sciences,
vol. 298, pp. 274-287, 2015.

Z.Liang, K. Hu, Q. Zhu, and Z. Zhu, “An enhanced artificial bee
colony algorithm with adaptive differential operators,” Applied
Soft Computing, vol. 58, pp. 480-494, 2017.

15


https://github.com/febo/myra

Advances in
Op ranons Research

Advances in

DeC|5|on SC|ences

Journal of

Ap ||ed Mathemancs

Algebra

Journal of
bability and Statistics

The Scientific
Wo‘rld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of

Mathematics

Journal of

clﬂhMbhemahcs

in Engmeermg

Mathematical Problems

Journal of

tion Spaces

Abstract and
Applied Analysis

International Journal of

Stochastic Analysis

International Journal of
D|fferent|a| Equations

Discrete Dynamics in
ure and Society

Optimization




