
Research Article
A Migration Method of MPI Program Combining Local Library
Replacement and Instruction Translation

Nan Li, Jianmin Pang, and Zheng Shan

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, Henan 450002, China

Correspondence should be addressed to Jianmin Pang; jianmin_pang@hotmail.com

Received 18 December 2016; Revised 10 April 2017; Accepted 20 April 2017; Published 4 June 2017

Academic Editor: Alberto Borboni

Copyright © 2017 Nan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Binary translation acts as a main method used to solve software compatibility among different instruction set architectures (ISAs),
yet themain objects that the binary translator deals with are serial programs but not parallel programs.We propose a hybridmethod
combining local library replacement and instruction translation based on a formal model built to describe the equivalent when
migrating MPI programs between different clusters. The shared codes in a MPI program (MPI library function call) are treated
by executing local libraries, and the other parts are done by dynamic binary translation. Also, during the course of dealing with
local library functions, we propose a method of program flow redirection by designing two algorithms along with hierarchically
encapsulating local libraries. A framework called MPI-QEMU is designed to implement migrating MPI program of 64 bits from
X86-64/Linux platform to the domestic SW platform which is verified by experiment.

1. Introduction

Dating back to the 1960s, the binary translation technology
[1–3] was generated and developed as a tool for equivalent
migration of programs. Binary translation is defined as an
equivalent migration process of the instruction sequence
from one machine to another. Binary translation can be
divided into three types according to the way of translation
[4]: interpretive execution, static translation, and dynamic
translation [5]. Interpretive execution applies the one-by-
one instruction simulation; static translation applies the
mode of “executing after translating”; dynamic translation
applies the mode of “executing while translating.” With
the production of multicore processors, this enabled the
combination of parallel processing and binary translation to
further improve the efficiency of program migration [6]. For
example, PQEMU [7] uses the multithreading mechanisms
for translation; HQEMU [8] uses multiple cores to run the
binary translator and dynamic optimizer, respectively, in a
multicore platform, so as to implement the coordination of
the translator and LLVM-based optimizer. As the new ISA
computer system increasingly attaches great importance to
high performance applications, binary translation is applied
to the processing of a parallel program and the CUDA

program [9]. The work [10] proposes a dynamic binary
translation framework, Ocelot, based onMCUDA [11], which
implements the dynamic translation of the CUDA program
to a multicore CPU platform. The work [12] points out the
related research lacking in implicit synchronization process-
ing in the process of translating the CUDAprogram to amul-
ticore platform and puts forward the implicit synchronous
detection method based on dependency analysis. The author
proposes a method of dividing and conquering in [13] and
uses static translation to implement migrating CUDA binary
program to the domestic SW platform [14].

MPI (Message Passing Interface) [15] program has been
occupying a large share in the parallel program market, the
successful migration of which has an important demon-
stration and guidance significance. However, little related
research was carried out both at home and abroad, and there
is almost no research result that can be used as a reference.
As a result, the migration of the MPI program faces some
difficulties and challenges.The first is how to properly deploy
the MPI program binary translator. The processing object of
the traditional binary translator is a serial program, whose
runtime environment is a standalonemachine, so such trans-
lator will be deployed under the environment of standalone
machine, while theMPI program is a parallel program,whose

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 6547638, 10 pages
https://doi.org/10.1155/2017/6547638

https://doi.org/10.1155/2017/6547638


2 Mathematical Problems in Engineering

runtime environment is a cluster; the premise of program
running is to deploy a copy of theMPI program on each node
of the cluster, which requires a binary translator deployed
on each node. Therefore, as a whole, there are multiple MPI
program binary translators working at the same time and
each translator is independent to translate the MPI program
on the same node. The second challenge is how to ensure
synchronism and consistency among theMPI processes at the
time of dynamic translation. The translator is only in charge
of loading and dynamic translation of the MPI program on
the node, and it does not need to interact with the MPI
program or with the translator on other nodes.Therefore, the
translator itself does not have to be aMPI program. Although
the translator encapsulated into the MPI process can also be
used as a solution, there is no need to do so considering the
additional encapsulation and communication cost. Indeed,
it is the MPI process that performs real message interaction
which is translated by the translator on different nodes. Inter-
action among MPI processes is implemented by calling the
MPI library function. If the instruction translation is applied
to process the MPI library function, the dynamic generation
of the translation codes makes it very difficult to maintain
the communication among the MPI processes synchronous
and consistent in time and space. In addition, when there
are a large number of MPI library functions contained by
the MPI program to be translated, this may cause inefficient
translation and there will be repeated translation of the same
library functions. Thus, the processing of the MPI library
function is the key to the migration of the MPI program and
is also the focus of this paper.

In viewof this, this paper carries out a study on the passive
MPI program migration. Firstly, it puts forward a formal
representation of the binary translation of the MPI program,
based on which a MPI program migration model MPI-
QEMU is designed, so as to propose a migration method of
MPI program combining code-sharing local library replace-
ment and instruction translation. It can combine the dynamic
instant translation and processes message interaction proto-
col, to intercept and redirect themessage interaction function
call during the course of dynamic translation. And, also, it
shields the interaction details among the MPI processes and
implements the transparency processing of the MPI library.

Aiming at solving the dynamic binary translation of the
MPI program, the main contributions made by this paper
include the following:

(1) This paper proposes a formal representation method
of the MPI program binary translation, which provides theo-
retical support for the MPI program equivalent migration.

(2) A migration method of MPI program combining the
local library replacement and the instruction translation is
designed to solve the migration of the MPI program.

(3) This paper proposes a method of program flow
redirection during the course of dynamic translation, to
implement the local replacement of library function call.

(4) A project called MPI-QEMU is designed which
implements migrating MPI binary application from X86
platform to the domestic SW platform, which expands the
scope of the software supported by a domestic supercomputer
to a certain extent.

Section 2 of this paper gives the formal representation of
the MPI program binary translation; Section 3 introduces a
migration method of MPI program combining local library
replacement and instruction translation; Section 4 expounds
the implementation process of local library replacement;
Section 5 shows the experimental data. In this paper, the
installation platform of the binary translation system is called
the local platform; the platform to be simulated is called
source platform; the program to be translated is called source
program and it is a binary executable file; the translated
program is called the local program; in addition, the domestic
SW (ShenWei) processormentioned in this paper is aChinese
processor with independent research and development and
has been used in a Chinese supercomputer system. On
November 14, 2016, the Chinese Sunway TaihuLight super-
computer using the SW processor won the championship in
new ranking published by the site https://Top500.org in Salt
Lake City, USA; the proposed approach in this paper requires
Linux as the OS and is not OS-independent.

2. The Formal Representation of the MPI
Program Migration

MPI is a parallel process message interaction interface widely
used in distributed memory architecture. In fact, it is a
standard specification of a message passing function library,
to define such interface library in the form of independent
language. It supports a variety of programming languages like
C, C++, and Fortran, with different versions of implementa-
tion onmultiple platforms; the predefinedmessage operation
function is used to complete the sending and receiving of
information and implement the parallel processing of tasks.

Indeed, the migration of the MPI program is to make a
MPI program run on different architecture clusters keeping
the semantic consistency. In order to better understand the
migration of the MPI program and find a solution, this
section uses the formalism method. First of all, the problem
of MPI program running on a single cluster is represented by
formalization, to introduce quintuple array representing the
cluster and the instruction sequence interpretation function
representing the program running on a cluster; secondly,
according to the computable equivalence theory of Turing
machine, the mapping of the program among the clusters
is represented by formalization, that is, the equivalence
of a program running on different clusters. Through the
mapping process from the source platform instructions to the
local platform instructions, a binary translator prototype for
general programmigration among the clusters is represented.
Then, the composition of the MPI program is represented
by formalization, based on which the binary translator is
improved. Finally, the method of MPI program migration is
derived.

2.1. The Program Running on a Cluster. The MPI program
mainly runs in a cluster environment, which usually consists
of multiple computing nodes; the abstract representation of
the clusters needs to consider the machine state of multiple
nodes. In order to share information between the processes
of different computing nodes, the data must be sent, received,

https://Top500.org


Mathematical Problems in Engineering 3

or broadcasted through the network; the interaction between
the nodes is the fundamental characteristic to distinguish
between the cluster and a group of independent computers.
The cluster𝐶 composed of𝐾 nodes can be represented by the
following quintuple array:

𝐶 = (𝑆𝑘, 𝐼𝑘, 𝜃𝑘, 𝐴, 𝛼) . (1)

In the formula,

𝑆𝑘 = 𝑆1×𝑆2×⋅ ⋅ ⋅×𝑆𝑘 represents the state of the cluster,
a Kd Cartesian product composed of the state of 𝐾
nodes;
𝐼𝑘 = 𝐼1 × 𝐼2 × ⋅ ⋅ ⋅ × 𝐼𝑘 represents the instruction set of
the cluster, a Kd Cartesian product composed of the
instruction set of𝐾 nodes;
𝜃𝑘 = 𝜃1×𝜃2×⋅ ⋅ ⋅×𝜃𝑘 : 𝑆𝑘×𝐼𝑘 → 𝑆𝑘 represents the state
transition of the cluster, an interpretation function of
the cluster to the instruction set in a state;
𝐴 represents the cluster interactions, including all
instructions that can change the state of the cluster;
the interactions between the nodes of the cluster
are implemented by the elements of the set and the
message is sent or received through the elements of
the set;
𝛼 : 𝑆𝑘×𝐴 → 𝑆𝑘 represents the interpretation function
of the cluster to the message interaction in a state.

Since all 𝑎 ∈ 𝐴 operations of the cluster can be simulated
by the 𝐼𝑘 sequences, the representation of a cluster can be
simplified. Let 𝐶 = (S, I,Θ) represent the cluster composed
ofm computing nodes, in which

S = 𝑠1×𝑠2×⋅ ⋅ ⋅×𝑠𝑚 represents the set of cluster states;
I = 𝑖1×𝑖2×⋅ ⋅ ⋅×𝑖𝑚 represents the set of the instruction
vectors of the cluster;
Θ = 𝜃1 × 𝜃2 × ⋅ ⋅ ⋅ × 𝜃𝑚 : I × S → S represents the
interpretation function of the cluster to execute the
instruction vector.

When the cluster executes the program, a continual
instruction sequence that needs to be executed can be
represented as follows:

Θ (I𝑛+𝑘, . . . ,Θ (I𝑛+1,Θ (I𝑛, 𝑠𝑛))) = 𝑠𝑛+𝑘,
I𝑛, I𝑛+1, . . . , I𝑛+𝑘 ∈ I.

(2)

Let 𝑡 = ⟨I𝑛, I𝑛+1, . . . , I𝑛+𝑘⟩ represents an orderly sequence
of the instruction vectors, 𝑡 ∈ I∗; the implementation process
of 𝑡 can be represented by the following function:

Θ
∗ : I∗ × S → S. (3)

So, the execution process of the instruction vector with
the length of 𝑘 can be represented as

Θ
∗ (t, s𝑛) = s𝑛+𝑘, (4)

where the functionΘ∗ represents the running of the program
in the cluster.

CG s(G,n)

t∗
G

∗
G (t, s(G,n))

ΩS

ΩS

ΩI

ΩS (s(G,n))

ΩI (t) ∗
H

CH

∗
H (ΩI (t) , ΩS (s(G,n)))

Figure 1: Formal representation of migrating general programs
between clusters.

2.2.TheMapping of the Program among the Clusters. It can be
obtained by the computable equivalence of Turing machine
that any programs running on a universal Turing machine
can be computed by another universal Turing machine. To
apply the theory to the cluster environment, we can conclude
that a program running on the cluster of the source platform
can be simulated by the local cluster, and the simulation
process is implemented by executing the source platform
instructions on a local platform. The instructions execution
can lead to the change of state of the cluster. To this end, the
state mapping function and instruction sequence mapping
function are, respectively, defined as follows:

Ω𝑠 : S𝐺 → S𝐻: mapping the cluster state of source
platform to that of the local platform.
Ω𝐼 : I∗𝐺 → I∗𝐻: mapping the instruction sequence of
the program in the source platform cluster to that of
the local platform.

Let 𝐶𝐺 represent the cluster of source platform; let 𝐶𝐻
represent the local cluster; let 𝑆(𝐺,𝑛) represent the initial state
of 𝐶𝐺; and let t represent the instruction sequence of the
program on 𝐶𝐺. Figure 1 shows the process of a program
of source platform cluster mapped to a local cluster. 𝐶𝐺
uses Θ𝐺

∗ to explain and execute t, causing the change in
𝐶𝐺 state; Ω𝑠 maps 𝑆(𝐺,𝑛) to derive the initial state of 𝐶𝐻,
Ω𝑠(𝑆(𝐺,𝑛));Ω𝐼maps t to derive the instruction sequence of𝐶𝐻,
Ω𝐼(t);𝐶𝐻 usesΘ𝐻∗ to explain and executeΩ𝐼(t), causing the
change in C𝐻 state. As shown by the dotted box of Figure 1,
the process of transformation from t to Ω𝐼(t) is actually
an instruction translation process, which outlines a binary
translator prototype for general program migration among
the clusters.

2.3. The Composition of the MPI Program. The foregoing
section introduces the migration of general program among
the clusters. However, the special nature of the MPI program
determines that the instruction translation cannot be simply
regarded as the migration method of the MPI program.

MPI program running on the cluster contains a lot of
interaction operations. Each interaction operation corre-
sponds to a MPI function of the platform; these interaction
operations have a limited number but are called frequently.
Since the MPI is an open-source cross-platform agreement,
these interaction operations are shared.

Let 𝑊𝐺 represent the program of the source program
𝐶𝐺; let𝑊𝐻 represent the program of the local program 𝐶𝐻;



4 Mathematical Problems in Engineering

let 𝑊share represent the cross-platform part of the program.
𝑊share may vary with different platforms. So, we define it
depending on the platform.

Definition 1. Wshare(C𝐺,C𝐻) = {𝑤: the cross-platform part
matching the source code of𝑊𝐺 in the source platform 𝐶𝐺}.

Correspondingly, Wshare(C𝐻,C𝐺) is the cross-platform
part in the platform 𝐶𝐻.

Let Ωrep be the injective function from the sequence
Wshare(C𝐺,C𝐻) to the corresponding sequence Wshare(C𝐻,
C𝐺):

Ωrep :Wshare (C𝐺,C𝐻) →Wshare (C𝐻,C𝐺)

∀𝑤 ∈Wshare (C𝐺,C𝐻) , Ωrep (𝑤) ∈Wshare (C𝐻,C𝐺) .
(5)

Since the sequence 𝑤 and the sequence Ωrep(𝑤) are
compiled from the same codes shared, they have the same
program semantics and function.

Therefore, in the migration of the MPI program from the
source platform 𝐶𝐺 to a local platform 𝐶𝐻, the translation
replacement function Ωrep() instead of instruction transla-
tion can be used for the𝑊share part.

Definition 2. Wprivate(C𝐺,C𝐻) = {𝑤: the private part match-
ing the source code of W𝐺 in the source platform C𝐺, not
shared with the local platform C𝐻}.

According to Definitions 1 and 2,

W𝐺 =Wshare ∪Wprivate,

𝜙 =Wshare ∩Wprivate.
(6)

W𝐺 represents the program of source platform and
consists of Wshare and Wprivate, which can be processed by
different strategies, so as to derive the migration method of
the MPI program.

2.4. The MPI Program Migration. The program logic of MPI
executable file in the source platform is unique and difficult
to analyze, but the behavior of calling the shared library
function is predictable. When the MPI program is migrated
from the source platform 𝐶𝐺 into the local platform 𝐶𝐻,
different strategies are applied for the Wshare part and the
Wprivate part, which together constitute theMPI program.The
translation replacement functionΩrep() is used for theWshare
part, while the instruction translation function Ω𝐼() is used
for the Wprivate part, for processing. The binary translation
function is defined as follows:

Ωtrans (𝑤) =
{
{
{

Ω𝐼 (𝑤) , 𝑤 ∈Wprivate

𝐼prologe, Ωrep (𝑤) , 𝐼epiloge, 𝑤 ∈Wshare.
(7)

When simulating to execute the program of the source
platform in the local platform 𝐶𝐻, for the Wprivate part, the
Ω𝐼 function is directly used to translate the instructions of
the source platform to the local platform; for theWshare part,
the local library provided by the local platform is used for

processing, that is, to implement it through the function
Ωrep. In the local platform, some additional processing work
shall be done to ensure the consistency of data during the
course of platform switching. 𝐼prologe represents the operation
of switching the local platform 𝐶𝐻 to the source platform;
𝐼epiloge represents the operation of switching back to 𝐶𝐻 after
the simulated execution of the corresponding code. The two
instruction sequences are often used to store the register state
to memory, pass the parameters to the mapped instructions,
and preread the register values and memory information;
usually, there are only a few instructions like these, which are
frequently called in dynamic binary translation. The above
model makes it possible to migrate the MPI program.

3. A Migration Method of MPI Program
Combining Local Library Replacement and
Instruction Translation

3.1. The Migration Model of the MPI Program. As mentioned
in the above section, the migration of the MPI program can
be classified for processing according to the code types of the
constituent part, based on which the migrationmodel shown
in Figure 2 is established. The model ignores the underlying
implementation details and shows a method combining the
local library replacement and instruction translation from
the macro perspective. The MPI program in the source
platform to be translated can be deemed to be composed of
several parts divided by the MPI function; during the course
of migrating the MPI program, for the MPI function call,
it belongs to the part of cross-platform, so that it can be
processed byΩrep function (i.e., the local library replacement
method); for the non-MPI function call, it can be processed
byΩ𝐼 function (the traditional dynamic translationmethod).

3.2. The Framework and Implementation Process of Migrating
MPI Program. Based on this model, this paper constructs a
framework for migrating MPI program called MPI-QEMU
on the basis of the open-source dynamic binary translator
called QEMU. MPI-QEMU can call local MPI library func-
tions through the method of software instrumentation, and
the system framework design is as shown in Figure 3.

The implementation of MPI-QEMU is as follows: firstly,
the MPI executable file to be migrated is loaded into the local
memory through the loading module, during which infor-
mation extraction is carried out against the MPI function
calls, so as to store the related message of MPI function call
in the executable file into the special structure, for example,
function name, function call address, and function address.
Then, taking basic block as a unit, the source binary file
is disassembled to generate the corresponding intermediate
code; in case of the MPI function calls, the program control
flow is redirected according to the function call address
identified in the loading process, to generate and execute the
instruction sequence that calls the localMPI library function.
Otherwise, the intermediate instruction is translated to local
instructions for execution in accordance with the rules of
translation; during the course of execution, the basic block
translated is stored in the code cache for reuse.



Mathematical Problems in Engineering 5

Source platform

Nonshared
code

code

MPI function MPI function

MPI function MPI function

Local platform

Code
replacement

module

Instruction
translation 

module

Binary translator
for the MPI program

Nonshared

...
...

ΩI

ΩＬ？Ｊ

Figure 2: The migration model of the MPI program.

Cache
management

Decoding
module

Loading
module

Local MPI library

MPI
executable file

Identification
and storage

MPI calling
interception

Control
center

Executing
moduleLocal packaging

for MPI calling Translating
module

Optimizing
module

Figure 3: The framework of MPI-QEMU.

On the local platform, the MPI executable file is executed
in a simulated environment realized by the dynamic binary
translator without considering the implementation details
of the underlying library; when MPI-QEMU processes the
calling of the MPI library function, it is to use the local MPI
library function to simulate executing instead of dynami-
cally translating them without the consideration of message
sending and receiving. Accordingly, under this framework,
the dynamic binary translation is the combination of the
executable file and the local library; the executable file
indirectly calls the local codes to implement the message
interaction.

4. The Implementation of Local
Library Replacement

The processing of MPI library function is the key to
implement the MPI program migration. This paper puts
forward a method of program flow redirection, to iden-
tify the MPI function call in the process of disassembling

struct func_info{
char ∗ func_name;
unit64_t func_call_addr;
unit64_t func_addr;
struct func_info ∗ next;
}:

Algorithm 1: Information storage structure on library function
calls.

instruction and transform the program into local execution.
It mainly includes three stages: the first is the library function
identification and storage at the program loading stage, to
identify the library function call through parsing program
and cache the name of library function, call address, and
other key information.The second is the opcode interception
at the translation stage, comparing the opcode information
obtained by the disassembling instruction with the cache
information; if the instruction type is the call for MPI library
function, the program will go to place of the local MPI func-
tion encapsulation; otherwise, the instruction translation will
be done.The third is the calling of local MPI library function
for execution at the execution stage.

4.1. Library Function Identification and Storage. At the pro-
gram loading stage, all library functions of the program are
identified and cached; the cache information includes the
name of the library function, the library function call address,
and the MPI function address. The traditional implementa-
tion is to use the open-source tools of the Linux platform such
as Readelf andObjdump to carry out auxiliary parsing, which
needs the manpower’s participation. This paper designs and
implements an automatic parsing extraction algorithm of
library function. Through reverse parsing of MPI executable
program, the corresponding information is stored in the
data structure called func_info, with its format shown in
Algorithm 1. In Algorithm 1, the func_name represents the
name of the library function; func_call_addr represents the



6 Mathematical Problems in Engineering

//function: identify and store dynamic linked library
function when loading executable file
//input: executable file handle, .sym section head,
.rel.plt section pointer, .plt section pointer

//output: library function message queue (func_info)
init func_info
set null func_info
Foreach elf_rel_plt in .rel.plt

create a rela_plt_func_info object
func_addr = extract the offset address of elf_rel_plt
func_name = extract the .sym name

Endfor
Foreach elf_plt in .plt

add_var = 32-bit data after moving the elf_plt address
16 bits to right + elf_plt address + 6
if (func_addr = = add_var)
func_call_addr = elf_plt address + index ∗ (unit width)
Endfor

Algorithm 2: Automatic extraction algorithm of library function information.

//function: intercept opcode to redirect program flow
//input: the code segment of executable file (.text), list of
library function, current environment (env)
//output: instructions calling local library function
Foreach insn in .text
switch insn
case: call insn
if (the address of calling instruction is in the func_info)

generate instructions of moving local argument
generate instructions of calling local library function
generate ret instruction of storing library function

break;
case
⋅ ⋅ ⋅

default
⋅ ⋅ ⋅

break
Endfor

Algorithm 3: Opcode interception algorithm.

function call address; func_addr represents the function
address; next represents the next structure variable.

The extraction and storage of the library function call
information are completed through two loops at the program
loading stage. An empty func_info queue is initialized prior
to the start of the loop; each time, a member of the .rel.plt
section is read in the first loop and a new object is added to
the func_info queue (representing a dynamic link function);
the offset field value of the extracted members is taken as
the function address of such object; then, the offset of the
member in the .rel.plt is reused to calculate the corresponding
position in .sym section and the name field value is extracted
as the function name.The second loop is to modify the func-
tion call address of each object in the func_info queue; before
eachmodification, consistency validationmust be carried out
for the function address. When the function address of the

object to be processed is consistent with the function address
calculated by the .plt field, the address of the current mem-
bers, index, and its width are used to compute the function
call address. The algorithm design is shown in Algorithm 2.

4.2. Opcode Interception. At the translation stage, an opcode
interception algorithm is designed to implement the redirec-
tion of the program flow.The disassembly of each instruction
will judge whether it is MPI function call. When the MPI
function call is determined, the program jumps to the local
MPI function encapsulation for execution, without instruc-
tion translation; the library function call information which
has been cached into func_info structure is used for pro-
cessing; otherwise, the traditional instruction translation will
be carried out. Algorithm 3 shows the opcode interception
algorithm.



Mathematical Problems in Engineering 7

Table 1: Experimental environment.

Ms Mt
CPU Intel(R) Core(TM) 2 Quad CPU Q9500 @ 2.83GHz SW410 processor
OS Fedora 2.6.27.5-117.fc10.i686 NeoKylin 3.8.0
Compiler gcc-4.3.2 gcc-4.5.3
Frequency of the processor 2.5 GHz 1.6GHz
Number of processor cores 4 4
Cache sizes of the processor L2 cache 4M L2 cache 4M
Amount of memory 4G 4G
Amount of storage 500G 500G
MPICH 3.1.2 3.1.2

Table 2: Test cases and the result of correctness test.

Test cases Explanation Correctness
IMB-MPI1 MPI-1 functions 100%
IMB-EXT One-way interaction capabilities in MPI-2 100%
IMB-NBC Interaction overlapping nonblocking MPI-3 functions 100%
IMB-RMA Remote memory access 100%
NPB-IS Two-dimensional large integer order base on the bucket sort 100%
NPB-CG The best feature of large sparse symmetric positive definite matrix approximation 100%
NPB-EP Test float computing 100%
NPB-FT Discrete Fourier transform 3D problem 100%

When the translation is carried out taking the basic
block as a unit, each instruction is disassembled to get the
opcode and identify the instruction type. If it is the library
function call (e.g., the opcode of call instruction in the x86
platform is E8), the function name will be checked if it
exists in the cache array and contains the mpi_ as a prefix;
if yes, parameter passing will be carried out to generate
local MPI function call instruction. During the course of
call instruction interception, the call instruction operand and
the address of its next instruction are used to compute the
call address of current library function. According to the
keyword, search in the cache array; if it is found successfully,
it shall be the MPI function call instruction.

4.3. Local Library Function Encapsulation and Call. The
library function call is implemented by executing the local
library encapsulated in advance, which means that the MPI
function shall be encapsulated before the execution. This
paper applies a method of hierarchical encapsulation of
library function as follows: implementation language →
the MPI library function name → parameter type, number
of parameters, and return value type; such division can
gradually narrow the scope of search when matching library
function, so as to improve the hit rate. In the process of
implementation, the parameters passing and return values
processing shall be carried out with the help of context. Due
to the limited number of functions contained in the MPI
library, there is a small amount of work to do, which can be
implemented by referring to the MPI library of a platform.

Due to the complexity and diversity of library functions,
a series of issues, such as the parameter acquisition, return
value capture, format character string analysis, and data
element acquisition of the structure, need to be processed
in the library function encapsulation. The library function
encapsulation is a challenging job.When theMPI program to
be translated contains a large number ofMPI library function
calls, the local library replacement method can significantly
improve the efficiency.

5. Experimental Test

5.1. Experimental Environment. This paper aims to imple-
ment migrating the MPI executable program of the X86/
Linux platform to the domestic processor platform, using
the experimental environment shown in Table 1. Ms repre-
sents the source platform, with the application of X86-64
architecture CPU; Mt represents the local platform, with the
application of domestic SW processor (similar to Sunway
TaihuLight processor chip); Ms and Mt are equipped with
open-source MPI compilation environment MPICH-3. Mt
is equipped with MPI-QEMU, using a single multithreaded
environment to simulate MPI multiprocess execution. The
Intel MPI test set (IMB) [16] and NASA parallel program test
set (NPB) [17] are taken as the test cases.

5.2. Correctness Test. This paper uses IMB and NPB test set
to test the correctness of MPI-QEMU, with the test items
and results shown in Table 2. The result shows that using



8 Mathematical Problems in Engineering

Table 3: Test cases of IMB-MPI1.

Operation Number of processes Ratio
PingPong 2 0.981
Sendrecv 4 0.942
Exchange 4 0.992
Allreduce 4 0.958
Reduce 4 0.945
Allgather 4 0.935
Allgatherv 4 0.931
Gather 4 0.969
Gatherv 4 0.957
Scatter 4 0.987
Scatterv 4 0.977
Alltoall 4 0.928
Alltoallv 4 0.961
Bcast 4 0.956

Table 4: Test cases of IMB-EXT.

Operation Number of processes Ratio
Window 4 0.951
Unidir_Get 2 0.968
Unidir_Put 2 0.961
Bidir_Get 2 0.973
Bidir_Put 2 0.961
Accumulate 2 0.974
Accumulate 4 0.847

MPI-QEMU can translate and execute the MPI program of
the X86-64 platform in the domestic SW processor platform.

5.3. Performance Test. This paper, respectively, uses IMB and
NPB to test the performance of MPI-QEMU. Since IMB
test set almost covers all the MPI interactive functions, the
performance test of the system by IMB also verifies the
completeness of the system. In the experimental process,
𝑇mpi-qemu (the execution time of the MPI-QEMU) and 𝑇native
(running time under the source platform) are recorded and
the performance of MPI-QEMU is tested by defining the
speed ratio:

Ratio = 𝑇native
𝑇mpi-qemu

=
1/𝑇mpi-qemu

1/𝑇native
=
𝐵mpi-qemu

𝐵native
. (8)

In the formula, 𝐵mpi-qemu and 𝐵native, respectively, rep-
resent the execution speed in the MPI-QEMU and source
platform. If the ratio is greater than 1, this represents the
notion that the MPI-QEMU is faster; otherwise, the source
platform is faster.

(1) IMBTest. IMB focuses on testing the performance of every
MPI interactive function. This paper adopts the four items
of IMB to test, that is, IMB-MPI1, IMB-EXT, IMB-NBC, and
IMB-RMA.The test results are shown inTables 3–6, including

Table 5: Test cases of IMB-NBC.

Operation Number of processes Ratio
Ibcast 4 1.124
Iallgather 4 0.985
Iallgatherv 4 0.948
Igather 4 0.917
Igatherv 4 0.959
Iscatter 4 0.981
Iscatterv 4 0.948
Ialltoall 4 0.946
Ialltoallv 4 0.968
Ireduce 4 0.985

Table 6: Test cases of IMB-RMA.

Operation Number of processes Ratio
Unidir_put 2 0.977
Unidir_get 2 0.925
Bidir_put 2 0.963
Bidir_get 2 0.981
One_put_all 4 0.945
One_get_all 4 0.979
All_put_all 4 0.964
All_get_all 4 0.617
Put_all_local 4 0.989
Exchange_put 4 0.943
Exchange_get 4 0.957
Unidir_put 2 0.957
Unidir_get 2 0.949
Bidir_put 2 0.961

three columns in every table, that is, theMPI library function
name, number of processes, and the ratio from left to right. In
the 46MPI functions contained in the four test items, only the
ratio of 2 functions did not reach 0.9; the ratios of the others
are above 0.9 and close to 1, and there is even 1 function with
a ratio greater than 1. This indicates that the library function
encapsulation algorithm can make full use of the local MPI
environment to accelerate eachmessage interaction; theMPI-
QEMU has almost the same performance with the execution
on source platform.

(2) NPB Test. NPB test set applies the classic algorithms and
modules commonly used, to reflect the system’s ability to
solve practical engineering problems. This paper uses the
NPB of MPI version to test the performance of MPI-QEMU
in a multiprocess pattern. Figures 4–7, respectively, show
the test results of NPB-IS, NPB-CG, NPB-EP, and NPB-
FT. The horizontal axis represents the number of processes
and the longitudinal axis represents the running time of
the program, with the unit of seconds. The experimental
results show that as the number of processes increased,
the running time greatly reduced; and the running time is
inversely proportional to the number of processes, almost



Mathematical Problems in Engineering 9

44.62

23.46

11.83

5.37
2.95

49.2

25.89

13.69

7.02
3.62

1 2 4 8 16
Number of processes

Local execution
MPI-QEMU

0

10

20

30

40

50
Ex

ec
ut

io
n 

tim
e (

s)

Figure 4: Test result of NPB-IS.

339.58

248.07

117.63

58.53
32.02

355.43

262.07

130.58

61.97
35.58

1 2 4 8 16
Number of processes

Local execution
MPI-QEMU

0

50

100

150

200

250

300

350

400

Ex
ec

ut
io

n 
tim

e (
s)

Figure 5: Test result of NPB-CG.

reaching the theoretical process acceleration ratio; through
the calculation, the ratios of the four test cases are 85.1%,
92.9%, 94.5%, and 96.4%, with the average acceleration ratio
of 92.2%.

6. Conclusion

This paper carried out the beneficial attempt of migrating
the MPI program. A migration method of MPI program

Local execution
MPI-QEMU

1090.65

541.79

275.99

139.8

1216.76

561.45

288.49

147.6

72.86

1 2 4 8 16
Number of processes

0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n 
tim

e (
s)

69.87

Figure 6: Test result of NPB-EP.

Local execution
MPI-QEMU

676.13

344.79

173.25

87.2
43.88

684.6

356.45

181.76

89.83
46.72

1 2 4 8 16
Number of processes

0

100

200

300

400

500

600

700

800

Ex
ec

ut
io

n 
tim

e (
s)

Figure 7: Test result of NPB-FT.

combining binary translation and local library function call
has obtained periodic success. Starting from the equivalence
representation between the programs of the clusters and
through the analysis of the constitution principle of MPI
executable file, this paper put forward different processing
means for different parts and built the model for migration
of the MPI program: for the cross-platform part of the



10 Mathematical Problems in Engineering

executable file, the local library functions call is applied to
implement migration through the program flow redirection
at three stages; for the non-cross-platform part, the binary
translation based on instructions translation is applied to
implement migration. The experiment verified the correct-
ness and effectiveness of the proposed method. For the next
step, we will begin to explore the migration of large-scale
commercial MPI binary programs and new ways for the
improvement of migration efficiency.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors offer their heartfelt thanks to the funding unit
(supported by the National Natural Science Foundation of
China under Grant no. 61472447) and the reviewing experts.
Also, they would like to pay tribute to the predecessors who
provided the basis and research platform for the research of
this paper.

References

[1] E. R. Altman, D. Kaeli, and Y. Sheffer, “Welcome to the oppor-
tunities of binary translation,” Computer, vol. 33, no. 3, pp. 40–
45, 2000.

[2] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, andD. Appen-
zeller, “Dynamic and transparent binary translation,”Computer,
vol. 33, no. 3, pp. 54–59, 2000.

[3] C. Songsong, L. Qi, andW. Jian, “Optimization of binary trans-
lator based on GODSON CPU,” Computer Engineering, vol. 35,
no. 7, pp. 280–282, 2009.

[4] C. Cifuentes and V. Malhotra, “Binary translation: static, dy-
namic, retargetable?” in Proceedings of the Conference on Soft-
ware Maintenance, pp. 340–349, IEEE, Piscataway, NJ, USA,
November 1996.

[5] J. Li, X. Ma, and C. Zhu, “Dynamic binary translation and opti-
mization,” Computer Research and Development, vol. 44, no. 1,
pp. 161–168, 2007.

[6] O. Almer, I. Böhm, T. E. Von Koch et al., “Scalable multi-
core simulation using parallel dynamic binary translation,” in
Proceeding of the 11th International Conference on Embedded
Computer Systems, pp. 190–199, IEEE, Piscataway,NJ,USA, 2011.

[7] J.-H. Ding, P.-C. Chang, W.-C. Hsu, and Y.-C. Chung,
“PQEMU: A parallel system emulator based on QEMU,” in
Proceedings of the 17th IEEE International Conference on Parallel
and Distributed Systems, ICPADS 2011, pp. 276–283, IEEE,
Piscataway, NJ, USA, 2011.

[8] D.-Y. Hong, C.-C. Hsu, P.-C. Yew et al., “HQEMU: A multi-
threaded and retargetable dynamic binary translator on mul-
ticores,” in Proceedings of the 10th International Symposium on
Code Generation and Optimization, CGO 2012, pp. 104–113,
ACM, New York, NY, USA, April 2012.

[9] CUDA Toolkit Documentation v6.0. 2014 https://developer
.nvidia.com/cuda-toolkit-archive.

[10] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot:
a dynamic optimization framework for bulk-synchronous
applications in heterogeneous systems,” in Proceeding of the

19th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2010, pp. 353–364, New York,
NY, USA, September 2010.

[11] J. A. Stratton, S. S. Stone, and W. W. Hwu, “MCUDA: An effec-
tive implementation of CUDA kernels for multi-core CPUs,”
in Proceeding of the 21st International Workshop on Languages
and Compilers for Parallel Computing, Springer Verlag, Berlin,
Germany, 2008.

[12] F. Yue, J.-M. Pang, and R.-C. Zhao, “Detecting and treatment
algorithm of implicit synchronization based on dependence
analysis in SPMD program,” Ruan Jian Xue Bao/Journal of
Software, vol. 24, no. 8, pp. 1775–1785, 2013.

[13] N. Li, J. Pang, and Z. Shan, “Migration of CUDA program
based on a Divide-and-Conquer method,” in Proceedings of the
17th IEEE International Conference on Computational Science
and Engineering, pp. 1685–1691, IEEE, Piscataway, NJ, USA,
December 2014.

[14] SW410, 2014, http://www.shenweimicro.com/.
[15] MPI Forum, 2016, http://mpi-forum.org/.
[16] Nas parallel benchmarks, 2016, http://www.nas.nasa.gov/pub-

lications/npb.html.
[17] Intel� MPI Benchmarks 4.1., 2016, https://software.intel.com/

en-us/intel-mpi-library/.

https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
http://www.shenweimicro.com/
http://mpi-forum.org/
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
https://software.intel.com/en-us/intel-mpi-library/
https://software.intel.com/en-us/intel-mpi-library/


Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


